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We consider the dynamics of an elastic sheet as it starts to adhere to a wall, a process
that is limited by the viscous squeeze flow of the intervening liquid. Elastohydrody-
namic lubrication theory allows us to derive a partial di↵erential equation coupling
the elastic deformation of the sheet, the microscopic van der Waals adhesion, and
viscous thin film flow. We use a combination of numerical simulations of the govern-
ing equation and a scaling analysis to describe the self-similar touchdown of the sheet
as it approaches the wall. An analysis of the equation in terms of similarity variables
in the vicinity of the touchdown event shows that only the fundamental similarity
solution is observed in the time-dependent numerical simulations, consistent with
the fact that it alone is stable. Our analysis generalizes similar approaches for
rupture in capillary thin film hydrodynamics and suggests experimentally verifiable
predictions for a new class of singular flows linking elasticity, hydrodynamics, and
adhesion. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4938115]

The onset of adhesion between a thin sheet or membrane and a solid surface in a fluid environment
is a common paradigm in many situations in microfluidics, coating, and food processing; for example,
it is critical for initiation of intercellular signaling1 and for the formation of elastic bonding in engi-
neering applications, e.g., wafer bonding.2 A minimal description of the process requires us to couple
the elastic interface deformation, the microscopic adhesion physics, and the viscous flow between the
two solid surfaces, and can lead to diverging velocity gradients or geometric singularities.3–5 Indeed,
analogs of these flows have been well studied in the context of the rupture of capillary thin fluid films
on substrates6–15 that reveal a finite–time singularity.10,11

Our analysis focuses on small scale flows wherein inertial e↵ects in the fluid and the sheet may
be neglected. Initially, we consider the touchdown of a long and wide elastic sheet with a length
L, which is initially separated from a solid substrate by a thin viscous fluid film of viscosity µ
and height ĥ(x̂, t̂), focusing on the two-dimensional situation, although we will eventually also treat
the three dimensional case that might be easier to realize experimentally. The sheet starts to move
towards the wall owing to a van der Waals adhesion potential (Fig. 1(a)). Mechanical equilibrium of
the sheet is determined by the balance of transverse forces that reads16

p̂(x̂, t̂) = Bĥx̂ x̂ x̂ x̂(x̂, t̂) +
A

3ĥ3(x̂, t̂)
, (1)

where p̂(x̂, t̂) is the fluid pressure, Bĥx̂ x̂ x̂ x̂(x̂, t̂) is the elastic bending pressure due to long
wavelength deformations of the sheet with bending sti↵ness B [N ·m], and A

3ĥ3(x̂, t̂) is the van der
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FIG. 1. (a) Numerical simulations of (3) for the dynamics of touchdown showing the evolution of the sheet at five di↵erent
time points t = [0, 6.50, 7.98, 8.08, 8.09]. The sheet is initialized with h0= h(x,0)= 1�0.05⇥ (1+cos(x)) and is seen to
adopt a wedge-like profile as t! tC for x 2 [�2.5 2.5]. Our simulations suggest that the contact point xC = 0 and the contact
time tC = 8.0899. (b) The shapes obtained by solving (3) may be collapsed onto a universal self-similar shape by using the
rescaled variables H (⌘)= h(x, t)/(tC� t)

1
3 , ⌘ = (x� xC)/(tC� t)

1
3 , over more than two orders of magnitude in H (⌘) and

⌘. The inset in the lower left shows the self-similar collapse for ⌘ 2 [�20 20]. (c) The rescaled height H (⌘) obtained by
solving the PDE (3) and the similarity ODE (6) and (7) (with m = 1) shows that the height profiles adopt a shape H (⌘)= a1⌘
as |⌘ |!1 (red circle). The shaded area ⌘  1 illustrates the inner region near the contact point where the shape of the sheet
arises from the balance between viscous forces, van der Waals adhesion pressure, and elastic bending resistance.

Waal adhesion pressure17 with A [N ·m] the Hamaker constant. Here, and elsewhere, the subscript
denotes derivative i.e., (·)x̂ = @(·)/@ x̂. Furthermore, we have assumed that the scaled fluid film
thickness ĥ(x̂, t̂)/L ⌧ 1 and that the elastic sheet has a small slope, ĥx̂(x̂, t̂) ⌧ 1.

As the sheet approaches the substrate, the intervening fluid is squeezed out, leading to non-
uniform deformations of the sheet. We assume that there is no-slip of the fluid at both surfaces and
that viscous forces dominate over inertial e↵ects. By using the lubrication approximation for the
description of the fluid motion,18 we obtain an evolution equation for the film height ĥ(x̂, t̂) given by

ĥt̂(x̂, t̂) =
 

ĥ3(x̂, t̂)
12µ

p̂x̂(x̂, t̂)
!

x̂

= *
,

ĥ3(x̂, t̂)
12µ

 
Bĥx̂ x̂ x̂ x̂(x̂, t̂) +

A
3ĥ3(x̂, t̂)

!

x̂

+
-x̂. (2)

The sixth order nonlinear partial di↵erential equation (2) couples the dynamics of the elastic sheet,
the viscous forces in the lubricating film, and the destabilizing intermolecular adhesion pressure.
To simplify the parameter dependence of the solutions to this equation, we scale the variables ap-
pearing in (2) as; x̂ = x` = xĥ0(B/A) 1

4 , ĥ(x, t) = ĥ0h(x, t) and t̂ = ⌧t = 12ĥ0`
2µ

A
t, where ⌧ = 12ĥ0`

2µ
A

.
Introducing these scaled variables into (2) gives us the parameter free dimensionless elastohydrody-
namic lubrication equation,

ht(x, t) =
 
h3(x, t)hxxxxx(x, t) �

hx(x, t)
h(x, t)

!

x

. (3)
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Completing the formulation of the initial value problem requires an initial condition which
we assume is given by a perturbed flat profile h0 = h(x, t = 0) = 1 � 0.05 ⇥ (1 + cos(x)) with the
minimum initial film height located at x = 0, and six boundary conditions at the ends. Assuming
that the touchdown region x = xC, t ! tC is far from the boundary, we use periodic conditions
at the two ends of the sheet, with vanishing odd derivatives i.e., hx(x, t)|x=±⇡ = hxxx(x, t)|x=±⇡
= hxxxxx(x, t)|x=±⇡ = 0.

The dispersion relation of linearized version of (3) can be obtained by substituting h(x, t)
= h0(1 + ✏ exp(�t + ik x)) in (3), (✏ ⌧ 1) with k the wave number, h0 the initial film height and we
find that the growth rate � = k2

h0
(1 � (h0k)4). Thus, we see that the elastic thin film is only unstable

for long wavelength perturbations h0k < 1, similar to what is known in capillary dominated flows.
This suggests that when we solve (3) numerically with h0 ⇡ 1, a minimal domain size x � 2⇡/kc is
required, with kc = 1 the critical wave number.

We solve (3) using a second order finite di↵erence discretization in space and a Gear method19

for time stepping. In Fig. 1(a), we plot the evolution of the shape of the sheet and see that
the solution appears to adopt a self-similar shape in the neighborhood of the touchdown point
x = xC = 0, t = tC, where the contact time tC is defined as the last time point before h(x, t)  0,
when the numerics also breaks down.

Inspired by the apparent self-similar shape of the sheet as h(x ! xC, t ! tC)! 0, we look
for a self-similar solution of (3) to understand the scaling behavior of the sheet in the immediate
vicinity of touchdown. Adopting the similarity ansatz,

h(x, t) = (tC � t)↵H(⌘), ⌘ =
x � xC
(tC � t)� , (4)

with H(⌘) the scaled height, ⌘ the similarity variable, and inserting (4) into (3) we get

(t � tC)↵�1(↵H(⌘) � �⌘H 0(⌘)) =
 
(t � tC)4↵�6�H(⌘)3H 00000(⌘) � (t � tC)�2� H 0(⌘)

H(⌘)

! 0
, (5)

with H 0(⌘) ⌘ @H(⌘)/@⌘. Equating the exponents appearing on both sides of the equation, we find
that ↵ � 1 = 4↵ � 6� = �2� so that ↵ = � = 1/3. To test the self-similar scaling ansatz (4) with
↵ = � = 1/3, we re-plot the results obtained by solving the partial di↵erential equation (3) in
Fig. 1(a) using the ansatz (4). In Fig. 1(b), we see that the solution of (3) converges rapidly to a
self-similar form H(⌘) over many orders of magnitude in ⌘, confirming the validity of our similarity
hypothesis.

Inserting this result in (5), we find that the similarity variable H(⌘) satisfies the ordinary
di↵erential equation (ODE)

1
3
(H(⌘) � ⌘H 0(⌘)) =

 
H3(⌘)H 00000(⌘) � H 0(⌘)

H(⌘)

! 0
. (6)

Since the similarity solution of partial di↵erential equation (3) is well described by (6), a natu-
ral question is if we can solve this latter equation directly and determine the self-similar shape
associated with the touchdown event. This requires that we supplement (6) with a set of boundary
conditions. Noting that numerical solution of (3) in Fig. 1(a) is symmetric around the contact
point ⌘ = 0 suggests that odd derivatives of the solution vanish, i.e., H 0(0) = H 000(0) = H 00000(0) = 0.
Furthermore, since the sheet height changes rapidly near the contact point, i.e., x = xC, t ! tC, the
far-field is quasi-static by comparison, i.e., ht ⇡ 0.10,11 Thus, we expect that the far-field solution
is independent of the evolution of the singularity as t ! tC. This translates into a far-field Robin
boundary condition that in similarity variables reads as

1
3
(H(⌘) � ⌘H 0(⌘))! 0, as | ⌘ |! 1. (7)

We immediately see that the far-field solution is satisfied by H(⌘) = a⌘ + C as | ⌘ |! 1, and
the integration constant C = 0 for consistency. Plotting the results of the numerical solution of
(3) shown in Fig. 1(a) in terms of the rescaled height H(⌘) as t ! tC in logarithmic coordi-
nates (Fig. 1(c)) confirms that H(⌘) ⇠ ⌘ over a wide range of ⌘. The constant a corresponds
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TABLE I. Discrete solutions of self-similar ODE (6)-(7) showing the val-
ues am,Hm(0),H 00m(0),H 0000m (0). Comparison of these values with those
obtained from the solution of PDE (3) show that it is consistent only with
the fundamental self-similar solution H1(⌘).

m am Hm(0) H 00m(0) H 0000m (0)

PDE (3) . . . 0.708 0.324 �0.183
1 0.625 0.719 0.321 �0.186
2 0.290 0.452 0.031 0.190
3 0.193 0.338 0.051 �0.099
4 0.147 0.283 0.0215 0.068
5 0.119 0.245 0.0223 �0.034

to an asymptotic matching condition for the far-field associated with (6), so that all together
H 0(1) = a, H 00(1) = H 000(1) = H 0000(1) = 0, along with the symmetry conditions at ⌘ = 0 com-
plete the formulation of the boundary value problem for H(⌘) that satisfies (6).

We solve the self-similar ODE ((6) and (7)) with the finite-di↵erence-based boundary value
solver BVP4C in Matlab20 on a finite size domain ⌘ = 50, with the boundary conditions; H 0(0)
= H 000(0) = H 00000(0) = H 00(50) = H 000(50) = H 0000(50) = 0, H 0(50) = a, noting that our results are
insensitive to changes in domain size. We find that we get a discrete family of solutions for (6)-(7)
(Table I) denoted by the subscript m with

H(⌘) ⌘ Hm(⌘), a ⌘ am. (8)

To determine them, our numerical procedure starts with an initial guess for the height in the vicinity
of contact H0(0), together with a guess of the initial solution H0(⌘) = H0(0) + a0⌘. We system-
atically vary the initial guesses H0(0) and a0, allowing us to identify the first thirteen solutions
m = 1,2, . . . ,13 for Hm(⌘) satisfying (6) and (7). In Fig. 2(a) and Table I, a comparison of these
solutions of ODE (6) and (7) with the solution of the time-dependent partial di↵erential equation
(3) shows that only the fundamental solution associated with m = 1 agrees with the solution of
complete PDE (3), a scenario also seen for capillary film rupture9,11,12,14 and justified using a stabil-
ity analysis in similarity coordinates. A qualitative explanation of why this is so follows by noting
that solutions of (6) and (7) with m , 1 has multiple minima in the height h; any perturbation will
cause one of them to be lower, and run away dynamically from the others, and thus eventually end
up locally like the fundamental discrete solution with m = 1. To test this, we use time-dependent
solution of (3) to evolve these self-similar solutions, using Hm(⌘) as the initial condition for the time
dependent PDE (3). In Fig. 2(b), we show the result of our simulation of (3) with h(x,0) = Hm(⌘),
m = 3. The position xC and time tC of contact shifts and similar results arise for all values of m > 1.
Similar observations have been made for capillary thin film rupture.9 Rescaling the results with (4)
shows that the solution converges to that associated with the shape of the fundamental solutions
m = 1 in the vicinity of touchdown (Fig. 2(c)).

Having analyzed the two-dimensional problem, we now turn to the three-dimensional version
of touchdown, which in the lubrication approximation is governed by the two-dimensional version
of (3),

h(x, y, t)t � r ·
 
h3(x, y, t)r

 
r4h(x, y, t) + 1

3h3(x, y, t)

!!
= 0, (9)

where r is the two-dimensional gradient operator. We solve the partial di↵erential equation (9)
numerically by using an adaptive finite-element method21,22 after the sheet is initialized with a con-
stant height that has an axisymmetric perturbation at the center of the domain. In Fig. 3(a), we show
that the three dimensional shape of the sheet is axially symmetric near the contact region. Noting
that this solution also has the same scaling structure as the planar problem, we test the self-similar
scaling ansatz h(x, y, t) = (tC � t)1/3H(⌘) with ⌘ = (r � rC)/(tC � t)1/3, where r2 = x2 + y2 and rC
is the contact position, by plotting the numerical height profile in Fig. 3(a) along a plane that goes
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FIG. 2. Comparison between the self-similar shape of the sheet predicted by time-dependent PDE (3) and the first thirteen
solutions Hm(⌘);m 2 [1�13] of the similarity ODE (6) and (7). We note that only the fundamental solution H1(⌘) of (6)
and (7) is consistent with that of the PDE (3) (red circle). (b) Numerical simulations of the PDE (3) using the initial condition
associated with the self-similar shape h0(x, t = 0)=H3(⌘) shows the evolution of the shape of the sheet for four di↵erent
time points t = [0, 0.28, 0.336, 0.341]. We find that the numerically measured contact time is tC = 0.3412 and the contact
points are xC = [�1.48,1.48]. (c) By using the rescaled variables H (⌘)= h(x, t)/(tC� t)

1
3 , ⌘ = (x� xC)/(tC� t)

1
3 with

xC = 1.48 corresponding to the contact on the right side, we see that the shapes of the sheet obtained in Fig. 2(b) collapse
onto the universal shape of the fundamental solution of (6) and (7) H1(⌘) (shown in black). The deviations away from the
contact point are due to the e↵ects of the second touchdown at xC =�1.48.

through the origin. In Fig. 3(b), we see that solution of (9) converges rapidly to the self-similar
form H(⌘), confirming our similarity hypothesis. Plotting the result of the numerical solution of
(9) shown in Fig. 3(a) in terms of the rescaled height H(⌘) as t ! tC in logarithmic coordinates
(Fig. 3(c)) confirms that H(⌘) ⇠ ⌘ over a wide range of ⌘. We note that the asymptotic matching
condition a is di↵erent for the two-dimensional (2D) simulation compared to the one-dimensional
(1D) simulation.

We conclude with a few remarks on the approximations inherent in our approach, associated
with using a continuum theory for the fluid that neglects molecular and inertial e↵ects, and an
elastic plate theory that neglects three-dimensional e↵ects. Our simulations show that the sheet con-
verges to the self-similar shape relatively quickly, when the scaled height h(x, t) ⇡ 0.3 (Fig. 1(b)).
Choosing a typical value for the initial height of the fluid film to be ĥ0 = 300 nm suggests that
by this time the height dips down to ⇡100 nm, much larger than molecular dimensions, so that
a continuum theory should remain valid. During touchdown, the horizontal scale over which
the deformation varies is given by `(t) = hmin(t)(B/A) 1

4 . Since hx ⇠ hmin(t)/`(t) ⇠ (A/B) 1
4 ⌧ 1

because B � A, (A = 10�20 N ·m, B = 1 N ·m), the two-dimensional plate theory that we have
used here remains reasonable and does not have to be replaced by a three-dimensional theory.
Finally, as the sheet and fluid velocity diverges near contact, inertial e↵ects can become important,

particularly as the reduced Reynolds number Re ⌘ ⇢Uh2
0

Lµ ⇠ (tC � t)� 1
3 is also singular as t ! tC. By
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FIG. 3. (a) Numerical simulation of (9) for the dynamics of touchdown shown just before touchdown at xC = yC = 0
associated with a scaled time t = 5.26. The sheet is initialized with h0= h(r,0)= 1�0.1⇥ (tanh(r2/2)�1.0) and is seen to
adopt a conical profile as t! tC for x 2 [�2.5 2.5], y 2 [�2.5 2.5], where r2= x2+ y2. Our simulation allows us to measure
the contact time tC = 5.2622 with the following conditions imposed at the boundaries; r2h ·n=rp ·n= 0, h(x, y, t)= 1.0.
(b) The shapes obtained by solving (9) may be collapsed onto a universal self-similar shape by using the rescaled variables
H (⌘)= h(r, t)/(tC� t)

1
3 , ⌘ = (r �rC)/(tC� t)

1
3 , over more than two orders of magnitude in H (⌘) and ⌘. (c) The rescaled

height H (⌘) obtained by solving PDE (9) shows that the height profiles adopt a shape H (⌘)= 0.48⌘ as |⌘ |!1 (red circle).
The shaded area ⌘  1 illustrates the inner region near the contact point where the shape of the sheet arises from the balance
between viscous forces, van der Waals adhesion pressure, and elastic bending resistance.

assuming Re ⇡ O(1), we get a scaling estimate for the height at which inertia becomes significant

ĥI ⇠ ⇢A
3
2

12B
1
2 µ2

; for µ = 10�3 Pa · s, ⇢ = 103 kg/m3, we find that ĥI < 2.5 Å so that the approximation

of neglecting inertial e↵ects remains valid.
All together, our analysis reveals a new class of singular flows linking elasticity, hydrody-

namics and adhesion, relevant to contact between a thin elastic sheet and an adherent surface. A
combination of numerical simulations and similarity analysis shows that the height and deformation
of the sheet has a simple power law form. Analysis of the governing equations in similarity coordi-
nates further allows us to determine the universal self-similar shape of the elastic sheet in the neigh-
borhood of touchdown. A qualitative analysis of the discrete set of self-similar film shapes shows
that the fundamental solution alone is consistent with the time-dependent numerical simulation. A
natural next step is to experimentally test the regime of applicability of our results, particularly since
they are well within the scope of methods such as total internal reflection microscopy imaging that
can visualize the wedge-like (or conical) profiles associated with contact.
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