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The interaction of a robotic manipulator with unknown soft objects represents a

significant challenge for traditional robotic platforms because of the difficulty

in controlling the grasping force between a soft object and a stiff manipulator.

Soft robotic actuators inspired by elephant trunks, octopus limbs and muscular

hydrostats are suggestive of ways to overcome this fundamental difficulty.

In particular, the large intrinsic compliance of soft manipulators such as

‘pneu-nets’—pneumatically actuated elastomeric structures—makes them

ideal for applications that require interactions with an uncertain mechanical

and geometrical environment. Using a simple theoretical model, we show

how the geometric and material nonlinearities inherent in the passive mechan-

ical response of such devices can be used to grasp soft objects using force

control, and stiff objects using position control, without any need for active

sensing or feedback control. Our study is suggestive of a general principle

for designing actuators with autonomous intrinsic impedance control.
1. Introduction
Complex haptic interaction with the world is a common task that many organisms

successfully master. Indeed, humans and animals, with elephants and cephalo-

pods being particularly spectacular examples, routinely use multifunctional soft

limbs and appendages to safely interact with uncertain mechanical environments.

Attempts to imitate this performance in artificial systems such as robotic grippers

has highlighted the intrinsic difficulties associated with this task. These difficul-

ties include the ability to get a good grasp on objects with different shapes

while controlling the interaction force to achieve robust grasping without dama-

ging the object (or the gripper itself ) and simultaneously predicting the

mechanical response of the unknown grasped objects [1].

The traditional approach to robotic manipulation is based on the active feedback

control of hand-like grippers—composed of actuated rigid links and equipped with

sensors and controllers to safely interact with the environment. Although techniques

for the controlled motion of manipulators in the absence of obstacles or interacting

with known objects are well established, both the stability of the system while in con-

tact with objects of unknown stiffness and the safety of the manipulator and the

object being held still pose significant challenges [1]. To see this, we note that, in

the simplest setting where a rigid single degree-of-freedom actuator enters into con-

tact with an elastic object with intrinsic stiffness ke, the interaction force simply reads

keDx, where Dx is the indentation. This force can attain large values and can even

destabilize a controller designed only to regulate the position of the end effector

[1]. Embedding soft linkages in underactuated grippers can mitigate this issue by

partially delegating the stabilization of the grasping task to the mechanical response

of the gripper itself: see [2] fora recent design of an underactuated compliant grasper

exploiting this principle; however, there are clear limitations to this approach, which

requires partial or complete knowledge of the environment.

To partially circumvent the need for active sensing and feedback, a natural

strategy is for the controller to emulate a dynamic relation between the
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Figure 1. (a) Schematic diagram of the actuator geometry indicates the
chamber dimensions and wall thicknesses. The out-of-plane dimension t is
not shown. (b) As the actuator is inflated, the top and side walls extend,
whereas the base does not. This causes the device to curve. (c) Geometry
of the deformed chamber according to the simple concentric-circles
one-chamber model of the pneu-net. (Online version in colour.)
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manipulator end-effector position and force, rather than merely

controlling one of these variables. One of the first systematic

frameworks for artificial grippers to move in this direction

was proposed in a seminal paper by Hogan over 30 years ago

[3], and it is commonly known as impedance control. In this scen-

ario, stability is achieved by controlling the gripper dynamics,

so that it emulates a dynamical impedance. In the context of

the simple example from the previous paragraph, the dynamic

impedance may be modelled by a virtual spring kp, so that the

interaction force now reads kpke(kp þ ke)
21Dx. By choosing

kp�ke, the interaction force can be greatly reduced and the over-

all closed-loop stability is preserved, albeit at the expense of an

error in tracking the position of the end effector. This approach

has since been extended and widely used to control the motion

of robotic arms and fingers and, simultaneously, the force

exerted on the grasped object, as reviewed for example in [1].

In modern implementations, a combination of position and

force controllers is therefore used to divide the control task

into subtasks normal and tangential to the contact surface [1];

examples of real experimental realizations of this class of con-

trollers are presented in [4–6].

In all the approaches described above, the ability to predict

the mechanical response of the grasped object and sense the

position of the end effector is critical, but such information is

not always available a priori. Therefore, the application

of such techniques is limited to environments where the

grasped objects are more or less homogeneous. Bio-inspired

designs based on using soft materials are now emerging to

circumvent the intrinsic limitations of traditional rigid robotic

manipulators. These designs have many applications, includ-

ing grasping, locomotion and surgery assistive devices

[7–10], by using finger-like digits combined with either a

learning phase that can be used to achieve stable grasping

[11] or compliant joints that also achieve the same end without

learning [12], or, at another extreme, a transition between fluid

and rigid states in a confined granular medium achieved via a

jamming transition [13]. Similarly, soft actuators inspired by

muscular hydrostats—segmented tubular structures seen in a

range of biological organs and organisms [14] that work by

using a combination of muscles and hydraulics to generate

and control both organ shape and the forces applied by it—

are increasingly being used in soft robotics [15,16] as they mini-

mize the computational and sensing resources for a robust

interaction with an uncertain mechanical environment.

These examples suggest that soft robots that use highly

compliant structural elements in their design are well placed

as potential impedance-controlled manipulators. A particu-

larly interesting class of these compliant structural elements

are pneu-nets, a novel, simple and inexpensive design fabri-

cated through soft lithography and capable of sophisticated

motions with simple pneumatic inputs [17–19]. These soft

limb or trunk-like elements are made of elastomeric silicone

rubbers, which are flexible, exhibit high surface compliance

and tolerate large tensile strains. This makes them particularly

useful for handling soft or fragile objects, a daunting task for

traditional hard manipulators. In fact, one can successfully

complete such manipulating tasks in open loop, i.e. without

using any active feedback control [17]. Despite these successes,

a crucial limiting factor preventing a full exploitation of these

concepts is the dearth of models with good predictive capabili-

ties for actuator dynamics and the interaction force with the

environment [9,10], which prevents further optimization of

their design and their efficiency as grippers.
Here, we show that, by varying the geometry and mate-

rial properties of soft actuators, it is possible to natively

emulate complex closed-loop control functions without requir-

ing either sensing or external control [20,21]. In §2, we describe

the pneu-net actuator and introduce a simple two-dimensional

model whose predictions compare well with experimental

studies. In §3, using this model, we show that soft actuators

provide an excellent combination of large intrinsic compliance

and significant interaction force, and that they are therefore

ideal candidates for all the applications where manipulators

have to interact with soft, fragile or uncertain objects. In

particular, we show that the response of these actuators auto-

matically switches between position control (for stiff objects)

and force control (for soft objects), without sensing and feed-

back, thus resolving a major issue of object manipulation

with stiff graspers. In §4, we discuss the impact of material

properties and geometry on the macroscopic behaviour of the

actuator, and conclude in §5 with a general principle for the

design of intrinsically impedance-controlled actuators.
2. Pneu-net geometry and mechanics
In its simplest form, a pneu-net is a long trunk-like structure

with a series of connected internal chambers which, when

inflated pneumatically, cause the structure to transform into

a curved configuration (figure 1). It has recently been proposed

http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160867

3

 on March 19, 2017http://rsif.royalsocietypublishing.org/Downloaded from 
as a flexible platform for robotic surgery and rehabilitation [22],

and other examples where interaction with soft tissues plays a

major role. The material components underlying the geometric

structure are a soft and highly stretchable elastomer which is

attached to a thin flat sheet of polydimethylsiloxane (PDMS).

This PDMS layer is much stiffer than the first elastomer,

and thus constrains one face of the device as its other faces

expand. This strain mismatch in turn forces the inflated

actuator to adopt a curved state.

The response of the actuator is characterized by the curva-

ture kof the PDMS base as a function of the inflation pressure p.

For small inflation pressures, the increase in curvature

of such devices is small. However, at a critical pressure, the

top walls of the chambers undergo a classical ballooning

instability [23–25], causing a significant jump in curvature on

additional inflation. Subsequent increases in pressure have

little effect on the curvature, owing to significant strain stiffen-

ing in the compliant elastomer. To understand this behaviour,

we must thus account for both the geometry of the structure,

which includes large rotational deformations induced by

strain mismatch between the constituent materials, as well as

the accompanying strain stiffening at high strains. Therefore,

simple theories, such as those associated with the onset of clas-

sical ballooning, do not provide a satisfactory description of the

system behaviour. On the other hand, a full three-dimensional,

geometrically accurate model (like the ones presented in

[26,27], for example) is insufficiently flexible to allow us to

gain a fundamental understanding of the behaviour of the

actuator. Instead, we need a model that is simple enough

for semi-analytical manipulation while realistic enough to cap-

ture both the geometric and material nonlinearities inherent in

the mechanical response of the materials in the pneu-net. One

such model, predicated on the eventual inextensibility of long

polymer chains, is the incompressible Gent model [28],

described by a stored energy density that is given by

W ¼ �mJ
2

log 1� ðI1 � 3Þ
J

� �
, ð2:1Þ

where I1 is the first invariant of the left Cauchy–Green

deformation tensor. This minimal model for neo-Hookean

materials exhibits strain stiffening, and is consistent micro-

scopically with the statistical mechanics of a freely jointed

polymer filament. It depends on only two parameters to

capture the mechanical response over a large range of

strains; m is the shear modulus (for small strains) and J is

the limiting value of I1 2 3 at which the material becomes infi-

nitely stiff.

Using this material model, we consider a two-dimensional

pneu-net whose deformation in the third dimension is set

by empirically assuming that the elastomer wall strains are

equibiaxial. Although simplified, such a model is capable of

correctly capturing the actuator behaviour described in

the literature [17,18]. The actuator geometry is sketched

in figure 1a: the pneu-net is composed of a series of N chambers

each having width w and height d, measured to the centre-

surface of the chamber walls. The thicknesses of the top, side

and base walls are denoted by, respectively, hm, hs and hb.

The out-of-plane depth of the actuator is denoted by t. We

consider the mechanics of a single chamber, the unit cell of a

pneu-net, and assume that the top and the base walls sit on

concentric circles (figure 1c). The benefit of this configuration

is that the actuator behaviour can now be described using

only two parameters: the strain in the side wall 1s, and the
curvature k of the bottom wall. Under this assumption, the

strain in the top wall may be written

�1m ¼ dð1þ 1sÞk: ð2:2Þ

The actuator inflates under the application of an internal

pressure difference p between the chamber and the ambient

medium. At equilibrium, the pneu-net has a configuration

that minimizes the total potential energy

U ¼ Up þUb
b þUs

s þUm
s þUobj: ð2:3Þ

In this expression, Up is the work done by the pressure p, Ub
b is

the bending energy for the base, Us
s and Um

s represent, respect-

ively, the stretching energy of the side and top walls, and Uobj is

the potential energy stored in the grasped object. We have neg-

lected the bending energy in the top walls as these elements are

primarily loaded in tension and are much softer and more flex-

ible than the base. Similarly, two adjacent chambers have the

same internal pressure; therefore, the side walls do not undergo

significant bending, and the bending energy in these elements

can be neglected as well. The work done by the pressure p is

simply

Up ¼ �pDV, ð2:4Þ

where DV is the change in the chamber volume. Taking into

account the geometry and the thinning of the walls (see the

electronic supplementary material), Up can be written

Up¼�pt
wkð1þ 1sÞ

2
dð1þ 1sÞ �

hm

2ð1þ �1mÞ2
� hb

2

" #(

� dð1þ 1sÞ �
hm

2ð1þ �1mÞ2
� hsðcot wkþ csc wkÞ

ð1þ 1sÞ2

"

þ hb

2
þ 2

k

�
� ðw� hsÞ d� hb

2
� hm

2

� ��
:

ð2:5Þ

The remaining terms in the energy can be approximated by

Ub
b ¼

Ebh3
bk

2wt
24ð1� n2Þ , ð2:6Þ

Us
s ¼ �

mJdths

2
log 1� ðI1ð1sÞ � 3Þ

J

� �
, ð2:7Þ

Um
s ¼ �

mJwthm

2
log 1� ðI1ð�1mÞ � 3Þ

J

� �
ð2:8Þ

and Uobj ¼ wtWobj, ð2:9Þ

where Wobj is the elastic energy stored in the object per unit con-

tact area and

I1ð1Þ ¼ 2ð1þ 1Þ2 þ ð1þ 1Þ�4, ð2:10Þ

owing to the equibiaxial extension assumption.

For simplicity, we assume that the pneu-net is used to grasp

a soft object along a circular arc of radius 1/kobj with a uniform

local spring stiffness kobj. If the normal displacement associated

with the pneu-net contacting the object is 1/kobj 2 1/k, we may

write the elastic energy stored in the object per unit area as

Wobj ¼
kobj

2k2k2
obj

ðk� kobjÞ2 if k . kobj,

0 if k , kobj:

8><
>: ð2:11Þ

This is equivalent to setting kobj ¼ 0 when k , kobj, i.e. when the

object is not grasped.

Minimizing the total energy of the pneu-net and the object

yields the equilibrium configuration of the system and sets the

stage for understanding its potential use as a robotic element.

http://rsif.royalsocietypublishing.org/
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3. Autonomous intrinsic impedance control
To understand the grasping performance of pneu-nets, we

ask how the force used to grasp objects varies as a function

of the stiffness of the grasped object relative to that of

pneu-net itself, noting that the stiffness of the pneu-net is

itself a function of both its material properties and its geome-

try. To evaluate the applied force (per unit length) on the

object, we minimize (2.3) for several different values of kobj

and for incrementally increasing values of p, and determine

Fr ¼ kobj
1

kobj
� 1

k

� �
: ð3:1Þ

In figure 2a,b, we plot the curvature k and the applied

force Fr as functions of increasing pressure and the dimen-

sionless stiffness of the grasped object kobjw/m. We clearly

see two different characteristic actuator behaviours; for very

compliant objects (kobj � 1026m/w), the pressure–curvature

graph in figure 2a is almost coincident with that of the

object-free actuator. This leads to a gradual increase in curva-

ture for low pressures, followed by a rapid increase at a

critical pressure, and subsequently a saturation to a constant

curvature owing to the strain-stiffening behaviour of the elas-

tomer. This observation is in qualitative agreement with

experimental results reported in [17,18,27]. For comparison,
in figure 2a, we plot a recent pressure–curvature curve

reported in [27] for a five-chambered device with comparable

dimensions, and see that our minimal model can capture the

salient features of the observations despite the many simpli-

fications we have made. In figure 2b, we also see that the

applied force per unit width increases as the balloon instabil-

ity gets underway, but for larger pressures the applied force

saturates to a constant value when the scaled stiffness of the

grasped object is very small.

Conversely, in figure 2a,b, we see that, for very stiff objects

(kobj � 1023m/w), the curvature of the pneu-net coincides

approximately with that of the grasped object, whereas the

applied force increases monotonically as the pressure in the

actuator is increased. We see that the grasper thus automatically

switches from position to force control as the grasped object

stiffness changes; for soft objects the force applied to the

object is constant, whereas for stiff objects the displacement of

the actuator (represented by k) is constant. These two limits

are precisely what is required of an impedance-controlled

device, except that here they arise naturally in the absence of

any sensing or feedback control. The transition between force

and position control occurs at intermediate values of kobjw/m.

When the actuator is in contact with an arbitrary object, as

the pressure increases, the curvature of the actuator increases

until it coincides with the curvature of the grasped object. For

a subsequent increase in the pressure, the curvature of the

actuator is slaved to that of the object, while the force

increases. Eventually, at a certain value of the pressure (not

necessarily related to that of the balloon instability) the

grasped object gives in to the actuator, and subsequently

becomes very soft, allowing the actuator curvature to

change as if it were not grasping anything, until the applied

force saturates at a constant value. To couch these notions in a

concrete example, let the grasped object be a curved arc of

outer radius r1 ¼ k21
obj, thickness H, and made of an incom-

pressible material with shear modulus mobj. The Winkler

elastic constant of this object can then be shown to be

kobj ¼ 2mobjkobj
1

ð1�HkobjÞ2
� 1

" #
ð3:2Þ

(see electronic supplementary material). Following [17,18],

we consider a typical object thickness H ¼ 1 cm (comparable

to the thickness of the actuators), and let the elastomer have

shear modulus 50 kPa and chamber width 5 mm. Then, using

the parameter choices in figure 2, the object stiffness can be

related to ~kobj through

mobj � ð1:5� 107~kobjÞ Pa: ð3:3Þ

Thus a stiff object of shear modulus 15 kPa or more

(~kobj � 10�3), such as an elastomer, would be grasped by

this actuator without being deformed, though the traction

on the object would increase unboundedly with increasing

pressure. Conversely, a compliant object, such as a gel or

foam with shear modulus less than 1.5 kPa (~kobj < 10�4),

would undergo large deformations while being grasped,

though the tractions it experienced would be bounded.
4. General criteria for actuator design
Even in our minimal model, the effective stiffness of the pneu-

net developed in §2 is seen to be a function of its geometry and

material properties, both of which can be varied to affect its

http://rsif.royalsocietypublishing.org/
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macroscopic response. Variations in material parameters

(achieved by altering the curing process or using a different

type of elastomer) and chamber geometry can thus be success-

fully exploited to tailor the shape of the pressure–curvature

graph and thence the design of the actuator to different

requirements dictated by specific grasping applications.

There are four characteristics of this pressure–curvature

relation that can be modified by changing these parameters:

(i) the initial slope, which is a measure of actuator stiffness;

(ii) the critical pressure at which the ballooning instability

occurs, which determines the location of abrupt transition in

the actuator stiffness; (iii) the severity of this instability,

i.e. the maximum gradient in the pressure–curvature response

relation; and (iv) the maximum curvature achieved after strain

stiffening. Figure 3 shows the results of varying the wall thick-

nesses hm and hs on these characteristics, while keeping all of

the other constants fixed (see the electronic supplementary

material for the dependence on the other parameters). We

find that the critical pressure for initiation of the balloon

instability is very sensitive to changes in the parameters; the

instability can be made to occur at a lower pressure by lowering

the value of m, the wall stiffness, or as a result of lowering the

wall thickness hm or hs relative to the chamber width w. In

either case, this corresponds to a weakening of the chamber

walls and leads to an aneurysm.
More generally, our analysis shows that we can control the

severity of the balloon instability by varying the geometric

parameters at our disposal. For example, if we need a fine-

grained control over the curvature, having a sudden jump in

the curvature as the actuator pressure passes a critical value

can be deleterious. Instead, we can smooth this jump by low-

ering the Gent parameter J (see electronic supplementary

material). This has the effect of lowering the strain at which

strain stiffening occurs, making the curvature jump smaller.

Conversely, increasing J allows the actuator to reach larger cur-

vatures, but it may ‘snap’ owing to transient instabilities where

the geometric softening is not suitably counterbalanced by

strain stiffening. The jump in the pressure–curvature graph

may also be mollified by stiffening the top wall (by increas-

ing hm), or by weakening the side wall (by reducing hs). The

latter is effective because it allows more of the work done by

pressure to be stored in the side walls rather than in the top

wall, where the balloon instability has its effect.
5. Discussion
Building on experimental observations of pneu-nets for

grasping [17], locomotion [18] and generic actuation [19],

we have derived a simple theoretical model for these actua-

tors to show that they are particularly suitable for robotic

grasping in the presence of mechanical and geometric uncer-

tainty in graspable objects. Furthermore, their intrinsically

large compliance allows them to interact with the environ-

ment without requiring an additional feedback controller,

efficiently solving many of the problematic issues associated

with traditional hard robotic manipulation. In particular, the

geometrically nonlinear effects that take over once the actua-

tor is in contact with an object allow for stable grasping of

objects with intrinsically small stiffnesses. This is because in

pneu-nets large compliance does not necessarily translate to

low values of the interaction force, this being regulated by

the inflation pressure p.

From a mathematical and engineering perspective, pneu-

nets are thus capable of intrinsic impedance control, without

a sophisticated sensing and control strategy. This desirable

feature is a direct consequence of the ability of pneu-nets to

provide two different pathways for expending the work

done by the inflation pressure: (i) object deformation and

(ii) actuator deformation. When grasping compliant objects,

most of the work is done to deform the object, just as in stan-

dard rigid actuators in the limit of position control. On the

other hand, when grasping stiff objects most of the energy

is spent on deforming the actuator itself, leading to force con-

trol. We note that this latter option is precluded in the

standard design of rigid actuators that do not have the ability

to store internal energy in self-deformation. This simple

observation provides a general design principle for actuators

with autonomous intrinsic impedance control: any potential

design must provide at least two different ways of expending

the energy provided by the control input. While pressure-

driven soft actuators satisfy this criterion, other designs that

have the flexibility to vary both conjugate components of

work will also be feasible.

From a design perspective, this general principle can

be used as guidance for designing new actuators capable

of ‘morphological computation’ or passive control of the

interaction with an unknown environment. Besides obvious

http://rsif.royalsocietypublishing.org/
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applications in human–robot interaction, medicine and reha-

bilitation (as suggested, for example, in [22]), such a capability

has the potential to have an impact in a variety of industrial

settings such as agriculture and food handling [29].

From a broader evolutionary perspective, the presence of

soft structures in many biological situations that deal with

geometric and mechanical uncertainty in the environment

points to a natural convergence of a design that allows for

intrinsic impedance control. Our theoretical study shows

that pneu-nets, or similar soft slender fluidically actuated

structures, reduce the demands on a complex central con-

troller by harnessing the local link between force and
deformation via geometric and material nonlinearities and

obviate the need for sensing and feedback control. This

simple fact might well have driven their near ubiquitous

presence in early metazoans [14].
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1 Justification for the expression for ∆V

In the article we required the expression for the change in volume for one cham-
ber under the assumption that its top and bottom walls lie on concentric circles.
Representing the pre-inflation volume by V0 and the post-inflation volume by
V1, we have ∆V = V1 − V0. Before inflation, the chamber has dimensions in
the x, y and z directions of w, d, and t respectively. The thickness of the side,
top, and bottom walls pre-inflation are respectively hs, hm and hb. Thus the
original volume of the cavity is

V0 = t(w − hs)
(
d− hb

2
− hm

2

)
. (1)

Following inflation, the thicknesses of the side and top walls are reduced to
hs(1 + εs)

−2 and hm(1+ ε̄m)−2 respectively, where εs and ε̄m are the respective
strains in the walls. The geometry of the deformed cavity is shown in Figure
1, and its cross-sectional area can be seen to be the difference of two circular
sectors, so

∆S = Sr1+r2,wκ − Sr1,wκ, (2)

where Sr,θ = θr2/2 is the area of the circular sector with radius r and angle
θ. Multiplying this area difference by the assumed out-of-plane cavity length
t(1 + εs) (due to the equibiaxial strain assumption in the side wall), we find

V1 =
twκ(1 + εs)

2

[
(r1 + r2)2 − r21

]
(3)

=
twκ(1 + εs)

2
r2(r2 + 2r1). (4)

From Figure 1, r2 is the vertical height of the deformed cavity while r1 is
largely the radius of curvature of the bottom wall, but corrected for the finite
thickness of the bottom wall and a correction factor λ due to the thickness of
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the side wall:

r1 =
hb
2

+
1

κ
− λ, (5)

r2 = d(1 + εs)−
hm
2

(1 + ε̄m)−2 − hb
2
, (6)

so that

V1 =
twκ(1 + εs)

2

[
d(1 + εs)−

hm
2

(1 + ε̄m)−2 − hb
2

]
×
[
d(1 + εs)−

hm
2

(1 + ε̄m)−2 +
hb
2

+
2

κ
− 2λ

]
. (7)

To determine the length λ geometrically (see inset to Figure 1), we see that
the length λ can be written as `1 + `2, where `1 is the edge length of rhombus
A. Both `1 and `2 can be determined from the right triangle B, where L is half
the thickness of the side wall, L = hs(1 + εs)

−2/2:

`1 = L cscwκ, `2 = L cotwκ, (8)

⇒ λ = L(cscwκ+ cotwκ), (9)

and thus

V1 =
twκ(1 + εs)

2

[
d(1 + εs)−

hm
2

(1 + ε̄m)−2 − hb
2

]
×
[
d(1 + εs)−

hm
2

(1 + ε̄m)−2 +
hb
2

+
2

κ
− hs(1 + εs)

−2(cscwκ+ cotwκ)

]
.

(10)

2 Nondimensionalization

Representative values of the geometric and material parameters used in the
model are displayed in Table 1.

The equations are solved in a dimensionless setting, using the nondimen-
sional parameters d/w = 1, hm/w = hs/w = hb/w = 0.5, Eb/µ = 60, wκobj =
0.02, in addition to J and ν listed in Table 1. The chamber depth t is listed for
completeness; it does not affect the solution.

3 Calculation of the Winkler elastic constant for
a grasped object

We consider the grasped object to be a sector of an annulus of outer radius κ−1
obj

and inner radius κ−1
obj −H. The Winkler elastic constant measures the traction

on the outer surface of this object for a given displacement. We are not looking

2



Symbol Quantity Typical value
w Chamber width 5 mm
d Chamber depth 5 mm
t Chamber out-of-plane depth 5 mm
hb Base PDMS layer thickness 2.5 mm
hs Side wall thickness 2.5 mm
hm Top wall thickness 2.5 mm
µ Elastomer shear modulus 50 kPa
J Elastomer Gent limit parameter 20
Eb PDMS Young’s modulus 3 MPa
ν PDMS Poisson’s ratio 0.5
κobj Typical object curvature 4 m−1

Table 1: Parameter values used for numerical calculations in this article.

to solve this problem exactly, so to get a representative value for this constant
we consider the compression of a full annulus in plane strain.

An annulus with inner and outer radii r0, r1 respectively, on which are
imposed radial tractions −p0, −p1, has displacement field

U(r) =
r21p1 − r20p0
r20 − r21

r

2(λ+ µ)
+
r20r

2
1(p1 − p0)

r20 − r21
1

2µr
, (11)

where λ, µ are the Lamé constants of the material [1]. Now assume that the
traction at the interior is zero, and that the material is incompressible (λ→∞).
Then the displacement on the outer surface is

U(r1) =
r20r1p1

2µ(r20 − r21)
(12)

This corresponds to a Winkler constant of

kobj =
2µ(r21 − r20)

r20r1
(13)

which, in terms of κobj , reads

kobj = 2µκobj

[
1

(1−Hκobj)2
− 1

]
. (14)

4 Parameter selection criteria

In Figure 2 we plot the dimensionless curvature κ̃ = wκ as a function of dimen-
sionless inflation pressure p̃ = p/µ, for a range of parameter values. We chose
to vary the wall thicknesses (as a fraction of the chamber width w), the cham-
ber aspect ratio d/w, and the Gent parameter J . Little change was observed
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on varying hb or Eb (as the overall bending stiffness is largely dominated by
stretching in the top wall), and t was irrelevant in our two-dimensional model.

Analysis of these graphs shows that the actuator can be made more com-
pliant for small pressures by increasing w, or by decreasing hm or µ. This
corresponds to a weakening of the top wall, the major contributor to the actu-
ator’s bending stiffness.

Changes in the actuator’s initial stiffness can be understood by referring
to the small-strain limit. We can take the full expression for potential energy,
and analyze it further in the limit of small curvatures and strains, keeping only
quadratic terms:

Ulin =
t

2

[
− hsp(hb + hm) + 2d(6hsµ− pw)

]
ε2s

+
ptw

8

[
h2b − (2d+ hm)(6d+ hm)

]
εsκ

+
t

24

[
Ebh

3
bw(1− ν2)−1 + (hb + hm)hspw

2

+ 2dpw(6h2m − hsw)− 12d2hm(3hsp− 12µw − pw)
]
κ2

+
pt

2

[
(hb + hm)(hs + w)− 4dw

]
εs

+
pt

8

[
8dhmhs + w(h2b − (2d+ hm)2)

]
κ. (15)

This expression assumes that the object is not being grasped (kobj = 0), and
helps us understand the behavior of the system in the small-curvature (initial
inflation) limit. At equilibrium, the curvature κ and side wall strain εs must
satisfy

∂Ulin
∂κ

= 0,
∂Ulin
∂εs

= 0. (16)

This leads to a closed-form expression for the curvature in terms of the applied
pressure. The leading-order behavior of this expression for small pressures p is

κ(p) ∼ p(4dw(d+ hm) + (h2m − h2b)w − 8dhmhs)

8w(Ebh3b(1− ν2)−1/12 + 12d2hmµ)
, (17)

with a correction of O(p2). The bending stiffness of the actuator is given by the
second derivative of the energy:

B =
1

tw

∂2Ulin
∂κ2b

=
Ebh

3
b

12(1− ν2)
+ 12d2hmµ

+
p

12w

[
(hb + hm)hsw

2 + 2dw(6h2m − hsw) + 12d2hmw − 36d2hmhs
]
. (18)

We can see that the curvature (17) is essentially determined by a balance be-
tween the moment generated by the pressure acting on the side walls, and the
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overall actuator bending stiffness (18), which at low pressures is the sum of the
intrinsic bending stiffness of the PDMS layer and a contribution from the re-
sistance of the top wall. The range of validity of this linearized expression can
be seen in Figure 3, which shows that it is a good assumption until the onset
of the balloon instability, which is a nonlinear phenomenon requiring the use of
the full hyperelastic model.

The critical pressure for initiation of the balloon instability was very sensitive
to changes in the parameters. The instability could be made to occur at a
lower pressure by weakening the walls (by lowering either µ, hs, or hm), or by
increasing the chamber’s aspect ratio (making it taller than it is wide). The
severity of the balloon instability is discussed in the main text; for completeness
we note that the jump in the pressure–curvature graph may be mollified by
stiffening the top wall (by increasing hm or J), or by weakening the side wall
(by reducing hs).

Finally we note that the maximum curvature at which the device saturates is
also affected by the choice of parameters. In particular this maximum curvature
can be increased by increasing the Gent parameter J , making the chamber wider
than it is tall (by lowering d/w), or by weakening the top wall (by lowering hm).
Of course, since the dimensional curvature κ is given by κ̃/w, the saturation
curvature may also be increased by decreasing the size of the device (represented
by the common lengthscale w).
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Figure 1: Schematic diagram of a pressurized chamber, modeled as a sector of
an annular region.
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Figure 2: Graphs of the dimensionless pressure-curvature relation of the actu-
ator, changing one geometric or material parameter while keeping others fixed.
(a) The top wall thickness hm/w. (b) The side wall thickness hs/w. (c) The
chamber aspect ratio d/w. (d) The Gent model parameter J . Apart from these,
parameter values are fixed at hb = hm = hs = d/2 = w/2, Eb = 60µ, ν = 1/2,
J = 20, kobj = 0. The dimensionless pressure is p̃ = p/µ while the dimensionless
curvature is κ̃ = wκ.
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Figure 3: The dimensionless presssure–curvature relations for both the full en-
ergy minimization and the quadratic energy (15), indicating the range of valid-
ity of the latter. Parameter values are fixed at hb = hm = hs = d/2 = w/2,
Eb = 60µ, ν = 1/2, J = 20, kobj = 0. The dimensionless pressure is p̃ = p/µ
while the dimensionless curvature is κ̃ = wκ.
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