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CRYSTAL GROWTH

Controlled growth and form of
precipitating microsculptures
C. Nadir Kaplan,1,2* Wim L. Noorduin,1,3* Ling Li,1,4,5 Roel Sadza,1 Laura Folkertsma,1

Joanna Aizenberg,1,2,4,6 L. Mahadevan1,2,4,7†

Controlled self-assembly of three-dimensional shapes holds great potential for fabrication
of functional materials. Their practical realization requires a theoretical framework to
quantify and guide the dynamic sculpting of the curved structures that often arise in
accretive mineralization. Motivated by a variety of bioinspired coprecipitation patterns of
carbonate and silica, we develop a geometrical theory for the kinetics of the growth front
that leaves behind thin-walled complex structures. Our theory explains the range of
previously observed experimental patterns and, in addition, predicts unexplored assembly
pathways. This allows us to design a number of functional base shapes of optical
microstructures, which we synthesize to demonstrate their light-guiding capabilities.
Overall, our framework provides a way to understand and control the growth and form of
functional precipitating microsculptures.

M
icrostructures with complex three-
dimensional (3D) shapes emerge as im-
portant elements in magnetic, electronic,
and optical devices (1–4). Well-defined
highly curved and hollow shapes are in-

creasingly essential for sophisticated micropho-
tonic components, such as optical resonance
cavities (5–7), light directors (8), photonic trum-
pets (9), and next-generation optical metamate-
rials (4, 10, 11). Currently, none of the existing
fabrication approaches takes full advantage of
the physicochemical processes that arise in na-
tural systems. Top-down lithographic manufactur-
ing has the capability of creating complex 3D
geometries precisely but is laborious and diffi-
cult to scale up. Similarly, molding and 3D print-
ing show enormous potential in building intricate
shapes but have limited ability to control feature
sizes at the submicron scale (12, 13). Finally, drop-
let microfluidics or colloidal self-assembly are
simple and scalable but typically form highly
symmetric superstructures (14, 15).
A promising candidate for the bottom-up fabri-

cation of cheap, scalable, and intricate geome-
tries is the biomineralization-inspired coprecipitation
of silicawithbariumor strontiumcarbonates (16–22).
The resulting structures—such as vases, corals,
and helices (Fig. 1, A to D)—can be rationally
sculpted by modulating the reaction conditions

(22). Although semiempirical arguments allow
for a qualitative view of themechanisms involved,
the absence of a quantitative theoretical frame-
work makes it difficult to characterize or control
these precipitation patterns. Here, we provide a
geometrical theory for the morphogenesis of
carbonate-silica coprecipitation as an interface
growth problem. We use the theory to explore
the range of possible shapes and determine ways
to control them.
When CO2 flows into an alkaline aqueous so-

lution (pH = 11 to 12) of barium chloride (BaCl2)
and sodium metasilicate (Na2SiO3), carbonate-
silica structures coprecipitate in three stages
(Fig. 1E) [section I. A in the supplementary ma-
terials (SM)]: (i) Barium carbonate (BaCO3) crys-
tallizes in the entire basic pH range according to
Ba2+ + CO2 +H2O→BaCO3 (s) + 2H+ (Fig. 1F); (ii)
the local decrease in the pH triggers the acid-
catalyzed reaction of silicate to orthosilicic acid
[Si(OH)4] in a narrow pH range (Fig. 1F and Eq.
S2) and its polycondensation into amorphous
SiO2 on the dendritic BaCO3 crystals (23), leading
to cylindrical posts; and (iii) abundant CO2 dis-
solved in the solution induces splitting of the
growing tips into either a single connected front
at high nucleation densities or multiple discon-
nected fronts at low nucleation densities, both of
which form thin walls composed of rod-shaped
BaCO3 nanocrystals coated by SiO2 on the lateral
wall faces (section II. A in the SM) (20, 22). Be-
cause BaCO3 is produced at higher rates than
SiO2 (section II. A in the SM), the pH at the
growth site is lower than that in the bulk solu-
tion. Note that when the local pH is within the
SiO2 deposition range, silica precipitates and ter-
minates the growth of BaCO3 crystals. Therefore,
successful carbonate-silica coprecipitation only
occurs when the local pH at the growth front is
either slightly above (regime I) or below (regime
II) the SiO2 deposition range, so as to sustain con-

tinuous carbonate precipitation (22) (Fig. 1F; section
II. A in the SM).
In regime I, the pH of the solution is set signif-

icantly higher (pH ≈ 12) than that associated
with SiO2 deposition, resulting in growth direct-
ed from the low-pH front toward the high-pH
bulk solution where the BaCO3 supersaturation
is higher (Fig. 1F). Consequently, at high nucle-
ation densities, vaselike (Fig. 1A) and petal-like
(Fig. 1B) structures grow steeply away from the
vicinity of other growing fronts, whereas at low
nucleation densities, multiple fronts originating
from a single root blossom into coral-like struc-
tures (Fig. 1C). We quantified the growth in this
regime via a microfluidic reactor that allowed for
direct in situ visualization under constant reaction
conditions (section I. B to D in the SM and movie
S1). When CO2 enters the microfluidic channel
through a membrane, corals nucleate in distinct
bands (Fig. 1G) with a spatial and temporal pe-
riodicity (section I. E in the SM). Approximating
each coral by ahemispherewith a time-dependent
radius R(t), we find that the projected circular
area of the corals grows linearly in time (pR2 ≅ t)
with a rate of 30 to 50 µm2/min (Fig. 1H). The
radius R and the growth speed,U, scale as R ≅

ffiffi

t
p

and U ≡ dR/dt ≅ 1/R, respectively, i.e., growth is
diffusion-controlled at the coprecipitation fronts
with a rate proportional to the interfacial curvature,
1/R (24, 25). In the vicinity of the front, the soluble
silica oligomers may buffer the local acidity and
act as slow-diffusing species. The growth of corals
reduces the local pH and eventually stops when
silica passivates the low-pH fronts that approach
each other.
In regime II, the initial bulk solution pH only

slightly exceeds that for silica deposition (pH ≈
11). Carbonate precipitation steers the structures
toward each other’s growth fronts or close to the
substrate, where the local pH at the growth site
remains below the pH range of excessive silica
formation that would overgrow BaCO3 crystals
and passivate growth (22) (Fig. 1F). This yields
helical or leaf-shaped structures (fig. S6C), which
develop a high-curvature front that must result in
a lower oligomer concentration at the interface
(25). The buffering ability of the oligomers is
then reduced, which induces the lowering of the
local pH. As a result, structures inherently bend
away from the bulk with an increased curvature.
Helical structures display a high edge-to-surface
ratio with strong curling of the walls, both of
which reduce the pH at the growth site (Fig. 1D).
Leaves grow along the substrate by forming a
curved front (fig. S6C), which must again sustain
carbonate precipitation by having a localized
zone of sufficiently low pH at the growth site.
Evolving leaves develop tips with high curvature,
where the precipitation rate increases and, in
turn, sharpens the tips even more (21). We in-
terpret this as a growth instability characteristic
of a diffusion-limited process (25).
In either regime, after front splitting [Fig. 1E,

stage (iii)], a diffusion-limited growth front lays
down a thin-walled structure. Thewall thickness,
w, is limited by the SiO2 precipitation to w ≈ 0.5
to 0.8 µm even as the wall itself continues to
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extend laterally over lengths of order 10 µm or
larger (section II. A in the SM). The resulting
low–aspect ratio structure may thus be well
approximated as a surface that is left behind by
a space curve, which represents the growth front
and evolves over time (Fig. 2A). The instanta-
neous configuration of the growth front and its
embedding in the surface can be formulated in
terms of the curve metric, g; the geodesic cur-
vature, kg; the normal curvature, kN; the geodesic
torsion, tg; and the second normal curvature, kN,2
(Fig. 2, B and C, and table S2). The variables kg, kN,
tg, and g are linked by the partial differential
equations of surface theory in differential ge-
ometry (26) that embody the geometric con-
straints on the curve embedded in a surface
(section II. B in the SM). The position of the
moving front

→
X is determined by its evolving

Lagrangian velocity

d
→
X
dt

¼ n̂U ð1Þ

where n̂ is the growth direction, U is the local
speedof thecurved front,d=dt ≡@=@tj→Xðs;tÞ (seeFig.
2A). To characterize the diffusion-limited accre-
tion, we assume that U is a function of the local
geometry of the growth front, as in dendritic
patterning processes (27). Our assumption is
justified by the localized growth due to the copre-
cipitation reactions (Eqs. S1 and S2) and slow
diffusion of soluble silica oligomers. This corre-
sponds to the inequalityw ≪ LD < Lk, wherew is
the wall thickness, LD is the diffusion length and
Lk is the radius of curvature. In contrast, growth
of a 2D front in dendritic solidification is diffusion-

controlled only when it is nonlocal, i.e., LD > Lk
(section II. C in the SM). Writing U = U(kg, kN ,
tg , kN,2) and expanding this function as a power
series up to cubic order (section II. D in the SM),
the resulting equations of motion for U and the
geometrical variables (g, kg, kN, tg, kN,2) yield the
position of the growth front

→
X from Eq. 1, and

the surface left behind by it, given the second
normal curvature, kN,2.
The variable kN,2 controls the local bend dis-

tortions along the growth direction, n̂, and it is
either enhanced or reduced by the initial pH of
the bulk solution. This suggests a pH-dependent
coarse-grained bending parameter qb = qb(pH).
In regime I, the growth direction toward the high-
pH solution is roughly preserved (Fig. 1, A and B);
thus, qbmust be low. In regime II, inward-directed
growth toward lower pH forces the structures to
curl gradually at the interface (Fig. 1D); there-
fore, qb must be high. Experimentally, the bend-
ingdeformations are governed by the pHgradients
at the scale of the wall thickness, w (Fig. 2A).
Because we focus on the wall morphogenesis at
length scales much bigger than w, we propose the
following phenomenological equation of motion
for kN,2 to characterize both regimes

dkN ;2

dt
¼ g

@2kN ;2

@s2
þ zkgkNU ðkN ;2−qbÞ ð2Þ

The first term on the rightmodels the diffusive
relaxation of the curling mode along the edge
(20) with a diffusivity g (Fig. 2D). The second term
controls bending with a rate z by accounting for
the following observations: First, bending satu-
rates when kN,2 = qb; second, the sign of the geo-

desic curvature, kg, determines whether bending
should increase or decrease, which allows for
dynamic modulations between different growth
regimes; third, bending increases more slowly in
relatively flat sections with a small normal cur-
vature, kN, than in already curled regions with a
higher kN ; and last, bending stops when the speed
U vanishes. Eqs. 1 and 2, and the geometrical com-
patibility relations (section II. B in the SM), com-
plete the formulation of the problem when initial
and boundary conditions are provided.
Given qb and the angle b that sets the initial

orientation of n̂, we simulated the evolution of
walls that emerge after front splitting [Fig. 1E,
stage (iii)], in particular the vaselike and petal-
like structures in regime I and helices in regime
II (section II. E in the SM and movies S2 to S6).
In Fig. 3A, we show the formation of vases that
start from a circle of radius ℓ. To model the ex-
perimentally observed correlation between the
high nucleation density of precipitates and vase
formation, we take the initial growth direction to
be strongly out of the substrate plane (b: large,
Fig. 1E). As the planar and circular growth site of
a vase expands over time, its geodesic curvature,
kg, decreases (Fig. 2B). When the growth speed
U is linear in kg, we analytically deduce that the
projected area of a vase varies linearly in time
(section II. F in the SM). By contrast, growth is
sublinear when U also depends on higher-order
terms (fig. S8), and the projected area of a vase as
a function of time is in accordance with the micro-
fluidics experiments at low qb (Fig. 1H). Whereas
low values of qb (high pH) lead to cones, for higher
qb (lower pH) the conical vases start to curve
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Fig. 1. Carbonate-silica coprecipitation patterns. (A) to (D) Scanning
electron microscopy (SEM) images of the typical (A) vaselike, (B) petal-like,
(C) coral-like, and (D) helical microstructures. (E) Stages of coprecipitation:
(i) nucleation of the seed carbonate crystal; (ii) outgrowth of carbonate/silica
coprecipitate; (iii) splitting of the thin wall. The initial slope between a thin
wall and the substrate is defined by b. (F) Schematics of the SiO2 (solid
black curve) and BaCO3 (dashed red line) precipitation rates between pH 8

and 12 (22). Regimes I and II are indicated. (G) Growth of coral-like struc-
tures produces three distinct bands (marked alongside with orange, 1; green,
2; and magenta, 3, from bottom to top) in a microfluidic chamber where
the CO2 flows from the bottom edge. (H) Projected circular area of grow-
ing corals as a function of time [line colors correspond to the bands in (G)],
and the simulated growth of a conical vase for the bending parameter qb =
10–3 (black line, see text).
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inwards (Fig. 3A). When the speed of the front is
set to zero at a point of the advancing front that
starts from a circle, we see nonuniform growth
associated with the local passivation by silica
overcoating. This leads to the formation of petals

for both low and high qb as shown in Fig. 3B and
fig. S9, respectively, and in agreement with
experiments (Fig. 1B).
Finally, helices emerge bymeans of the unstable

growth of a nearly semicircular front as shown in

Fig. 3C. We observe that the pitch and overall size
of the helices become larger when qb decreases
(fig. S10), whereas the growth reaches a steady
state at lower qb with a constant pitch and width
over the twisted region. At still higher qb, the heli-
ces develop tips and stop (fig. S10), consistentwith
experiments (20, 22). For an areal growth rate of
40 µm2/min and an initial radius of ℓ ~ 2 µm,we
see that vases and helices reach a size ofO(10 µm)
in O(10 min), in quantitative agreement with
experiments (fig. S8) (see section III. A in the SM
for the stereolithography files of the simulated
sculptures).
Our theoretical framework couples two phys-

icochemical processes to the instantaneous local
geometry of the reaction front and, in turn, the
morphology of carbonate-silica precipitates. These
processes are the diffusion-limited growth, which
is localized by the condition LD < Lk (where LD is
the diffusion length and Lk, local radius of cur-
vature) and, hence, quantified by the local growth
rateU, and the effect of solution pH on the emer-
gence of curling deformations, modeled by the
bending parameter qb and Eq. 2. The agreement
between theoretical and experimental shapes es-
tablishes the relation between qb and pH, as plotted
in Fig. 3D.
Photonic microcomponents—such as optical

waveguides, light directors (8), and Bragg resona-
tors (7)—are excellent candidates for bottom-up
design owing to their shell-like geometries and
stringent tolerances. Given the transparency and
relatively high refractive index n of the carbonate
salts (n = 1.5 to 1.7) and silica (n = 1.5), the sim-
ilarity of size and shape between vaselike preci-
pitates (Fig. 3A) and top-down lithographically
fabricated analogs (8, 9) suggests the use of our
bottom-up strategy to build optical components.
To solve the inverse problem of designing func-
tional shapes, we split the simulations into a se-
quence of steps corresponding to switching growth
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Fig. 2. Geometry of growth. (A) Precipitation in a narrow semicylindrical edge zone leaves behind a
thin wall (left). Colors depict the pH values (Fig. 1F).We represent the moving growth front as a curve
(shades of red, right) with a position vector,

→
Xðs; tÞ. An orthonormal triad is formed by the curve

tangent, @
→
X/@ s, the growth direction n̂, both of which lie in the surface, and the surface normal,

N̂ ≡ @
→
X=@s� n̂. (B) The front geometry is partly determined by the geodesic curvature, kg, the curvature of

a line with respect to a geodesic (kg = 0) on a surface (26). Folding a plane into the cone introduces a
normal curvature (kN) along the curve. (C) Unless the orthonormal triad twists, the geodesic torsion, tg,
characterizes a nonplanar curve; it is zero around the point P where the front is tangent to the light red
plane. At point Q, the front becomes a space curve (as tg is finite). The second normal curvature, kN,2, is
associated with the bending of the surface at the front (black curve on the light blue plane). (D) Curling
diffuses from high kN,2 (at R) to lower kN,2 (around P) with diffusivity g according to Eq. 2.

Fig. 3. Dynamics of form. (A) (Left) Axisymmetric profiles of the vases
as a function of the bending parameter qb ∈[10–3 – 0.013] in 3 × 10–3

increments with the gray scale changing from dark to light. (Right) Resulting
vases corresponding to qb = 0.013 (1) and qb = 10–3 (2). (B) Time evolution
of petal growth (qb = 10–3), showing the elevated and plan views. (C) Growth
of a helical precipitate (qb = 0.9). In (A) to (C), the lengths x, y, z, and r
are scaled by ‘, defined as the radius of the initial circular front, and the

time is scaled by T (see section II. E in the SM). (D) Relation between the
reciprocal bending parameter 1/qb and the initial solution pH (regime I
pH, magenta; regime II pH, orange) defines the two regimes. The qb value
of each structure is represented by the nearest dashed gray line. The
structures grown by the successive modulations between the two regimes
(green dashed arrows) correspond to a set of qb values (green dotted
lines) (Fig. 4A).
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conditions from regime I to regime II, where the
final state of the growth site from the preceding
step serves as the initial condition for the next
regime (movies S7 and S8). For example, our theory
predicts that curved precipitates depicted in Fig. 4A
(top) may arise in two or three consecutive steps.
Starting fromavasewith low qb (highpH), inducing
bend at a higher qb (lower pH) results in the for-
mation of hollow shapes that resemble spheri-
cally symmetrical Bragg resonators (5, 6). Reverting
to a low qb (high pH) as a third step plants a nar-
row neck on top and generates the base shape of
an onionlike Bragg resonator similar to that
described in (7). This theoretical sequence of al-
ternating growth conditions associated with step-
wise changes of qb in themodel corresponds to the
control of the pH around a structure (Fig. 3D),
indicating how these geometries can also be real-
ized experimentally. These shapes were success-
fully synthesized following the theoretical guidance
(Fig. 4A, bottom, and section I. F in the SM).

To demonstrate that our carbonate-silica pre-
cipitates are optically functional, we incorporated
a light source in the system. Crystallizing BaCO3

can be doped with organic additives, including
dyes, during precipitation (28). To this end, for the
growth stage (i), we introduced the fluorescent dye
rhodamine B into the initial solution containing
BaCl2 (section I. G in the SM). The resulting BaCO3

crystals with the embedded light source served as
seeds for subsequent dye-free synthesis of various
BaCO3-SiO2 or SrCO3-SiO2 microstructures at the
growth stages (ii) and (iii) (Fig. 4B), inwhich light is
effectively directed from the fluorescent crystal to
the edge. The thus synthesized helix, photonic
trumpets, and an array of posts grown atop a coral,
which clearly demonstrate the ability to guide or
split light beams, are shown in Fig. 4, C to E.
Our theoretical model explains the range of

patterns in a carbonate-silica system and offers a
means to guide the synthesis of complex 3D
shapes. We have used this bottom-up strategy to

make functional optical microarchitectures using
the underlying physicochemical processes in
sharp contrast to top-down lithographicmethods.
When combined with an optimization algorithm
for process control, our approachhas the potential
to provide a scalable, inexpensive, and accurate
strategy to create 3D photonic microstructures.
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Fig. 4. Controlled growth and form of optical microcomponents. (A) Simulations (top) and exper-
imental realization (bottom) of the base shapes for Bragg resonators. The simulations correspond to
the sequences qb = 0.01, 0.1 (top, left) and qb = 0.01, 0.3, 0.01 (top, right). The green curves denote the
heights at which qb changes.The lengths are scaled by ‘. Likewise, the experimental shapes are grown by
two (bottom, left) and three (bottom, right) steps. (B) Schematics for synthesizing microstructures with
integrated light source (red) and waveguide properties. The gray scale denotes the growth sequence
(section I. G in the SM). (C) Helical structure (overlay of fluorescence and optical microscopy) and
(D) trumpet-shaped assemblages (top, SEM image, and bottom, confocal microscopy image) that operate
as waveguides. (E) A coral decorated with posts (top, SEM) acting as a beamsplitter (bottom, confocal).
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I. Experimental materials and methods
A) Growth of carbonate/silica structures. An aluminum slide was vertically positioned in
a 100 mL beaker containing 15 ml aqueous solution of BaCl2 (19.1 mM) and Na2SiO3 (8.2
mM) (Sigma Aldrich). The reaction vessel was loosely covered with a Petri dish to allow CO2

from the air to diffuse into the system. The pH was measured using a Mettler Toledo FE20
FiveEasy pH meter and adjusted to either 11.9 (Regime I) or 11.2 (Regime II) by adding HCl or
NaOH. After 2-3 h, the experiment was stopped by carefully transferring the samples into pure
water to terminate the reaction. Subsequently, the samples were placed in acetone for 3 min to
replace water with a low surface tension liquid, and carefully dried in the air. Sample analysis
was performed using a Leica DMRX optical microscope equipped with polarizers and a FEI
Verios 460 scanning electron microscope (SEM) that was equipped with a SE2 detector and a
four-quadrant electron backscatter detector.

B) Fabrication of the microfluidic device. A master was made by laser cutting the desired
channels out of three layers of double-sided adhesive paper, which was then stuck to a glass slide
(see Fig. S1 for the design mold). The typical width of the channels was 1.8 mm, the length
18.6−36.9 mm, the height 150−200µm, and the thickness of the membrane between the growth
channel and the CO2 channel was 1.1 mm. This master was plasma cleaned and functionalized
with a demolding agent (tridecafluoro-1,1,2,2-tetrahydrooctyl)-trichlorosilane (Gelest Inc.) by
exposure in a desiccator under vacuum overnight. For polydimethylsiloxane (PDMS) molding
of the functionalized master, we used DowSylgard 184 with a prepolymer:curing agent ratio of
10:1. After extensive mixing of the prepolymer and curing agent, the mixture was poured onto
the master and placed in a vacuum desiccator for 1 h to eliminate air bubbles. The sample was
then thermally cured in an oven for 3 h at 70oC. After cooling, the negative PDMS mold was
gently peeled off the master. To insert the tubing into the channels, holes were punched through
the PDMS, at both the start and end points of the channels. Tubing was put into these holes
and the device was clamped between two glass plates. Syringes containing growth media were
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attached to the ends of the tubing and syringe pumps were used to let the solution flow through
the channels in a controlled manner.

5 cm 1 cm

2.5 cm

TOP SIDE

Fig. S1: Microfluidic setup. (A) Schematics of the top and side view of the microfluidic
device for the growth of corals that was made by clamping PDMS (light gray) containing the
microchannels on top of a glass slide (dark gray). The channel indicated in red contains the
NaHCO3 solution whereas the blue channel is filled with the degassed BaCl2/Na2SiO3 solution.
The deposition of the BaCO3/SiO2 microstructures is triggered in the blue channel by the influx
of CO2 from the red channel via the thin PDMS wall that separates the two channels. (B) The
experimental setup of the microfluidic device. The dimensions of the structure are given in
(A). The microfluidic design contains an additional channel to which NaHCO3 solution can be
pumped. This allows us to perform a second experiment simultaneously.

C) Preparation of the solutions for the microfluidics experiments. The solution for the
growth channel was prepared by making an aqueous solution containing BaCl2 (19.1 mM) and
Na2SiO3 (82.0 mM) in deionized water through which N2 gas was bubbled to remove CO2 .
The pH was then adjusted to either 11.9 or 11.2 using NaOH and HCl. The solution for the CO2

channel contained 20 mM NaHCO3 in deionized water. The pH was set to 7.0 using NaOH.

D) Experimental procedure and image analysis. Both the growth channel and CO2 channel
were flushed with degassed water at a rate of ca. 100 − 150µL/min for approximately 15 min
to remove CO2 and air bubbles from the PDMS. The syringes containing the BaCl2/Na2SiO3

and CO2 solutions were connected to the tubings that lead to the growth channel and CO2
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channel, respectively (Fig. S1). To start the growth, the BaCl2/Na2SiO3 solution was pumped
at 100µL/min for 5 min and subsequently reduced to 8.15µL/min. The precipitation of the
structures was initiated by switching on the CO2 flow (50µL/min) and the process was followed
in real time using a Leica DMRX optical microscope equipped with polarizers (Fig. 1 G and
Movie S1). Image analysis was performed with an in-house programmed MATLAB script that
identified the formation of new structures and tracked their development as a function of time.
This allowed us to measure the growth rates of nucleated sites from the time-lapse images that
were taken using optical microscopy (Fig. 1 H).

E) Formation of periodic bands in the microfluidic chamber. The periodic formation of
bands can be rationalized by a nucleation/precipitation/depletion mechanism reminiscent to so-
called Liesegang bands. Starting from the membrane, the gradual flow of CO2 into the growth
channel induces the nucleation of a band of BaCO3/SiO2 coral-like structures. BaCO3 crystal-
lization favors growth on existing structures with exposed BaCO3 sites rather than nucleating at
a new site on the substrate. This initially confines growth to a single band. While the corals are
growing, they locally deplete the solution and lower the pH over time. As the growth fronts of
the neighboring structures approach each other, silica overcoating takes over and passivates the
fronts at low pH. Only after this stage, new BaCO3 nucleation events will take place, causing
the formation of the next row of structures further away from the already grown ones. Overall,
this process results in the formation of precipitation bands with spatial and temporal periodicity.

F) Model-guided sequential synthesis of functional shapes. In a 100 mL beaker, 0.210 g
BaCl2 and 0.048 g Na2SiO3 were dissolved in 45 mL degassed water. The solution was then
transferred to a 50 mL syringe. A microfluidic tube was inserted through the spout of a 50 mL
beaker containing a gold-coated glass slide, until it reached the bottom of the beaker. The other
side of the microfluidic tube was connected to the 50 mL syringe containing the BaCl2/Na2SiO3

solution. Using a syringe pump, 15 mL of the BaCl2/Na2SiO3 solution was injected carefully
in the beaker. Subsequently, this beaker was also covered with a petri dish lid. The pH in the
vicinity of the growing structures was increased (decreased) by adding (subtracting) solution
via the syringe. When CO2 enters the beakers from the top, there is a vertical gradient in the
CO2 concentration and therefore also in the local pH, meaning that the highest pH is close to
the bottom. By adding fresh BaCl2/Na2SiO3 solution (0.3 mL in total, 1.0 mL/min), which
has a high pH of 11.9, we raised the reacting solution from the bottom of the beaker, and thus
increased the local pH around the growing structures on the glass slide. A similar effect can
be induced by immersing a solid, such as a magnetic stirring bar, to the bottom of the beaker,
which also causes the solution to rise, and thus locally increases the pH. Similarly, withdrawing
the stirring bar from the solution decreases the local pH around the growing structures. When
not coated by SiO2, the margins of the structures grown in a given regime serve as growth sites
for a subsequent precipitation, and thus allow for the evolution of different architectures on top
of each other. After ca. 180 min the glass slides were removed from the solution, washed twice
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with water and then with acetone, and air-dried. Optical microscopy and SEM were used to
analyze the structures that grew on the gold-coated glass slide (Fig. 4 A).

G) Synthesis of waveguiding microstructures with integrated light source. To grow the
dyed seed crystals, 0.074 g BaCl2 and 0.01 g Rhodamine B were dissolved in 15 mL of water
in a 50 or 100 mL beaker. The pH of the solution was adjusted to pH = 11.9 using NaOH. A
previously prepared gold-coated glass was vertically positioned in the solution and the beaker
was covered with a petri dish. After ca. 45 min, the slide was removed from the solution,
washed twice with water, subsequently washed with acetone and air-dried. For waveguiding
helices (Fig. 4 C), 0.074 g BaCl2 and 0.016 g Na2SiO3 were dissolved in 15 mL water and
the pH was adjusted to 11.3 using HCl. The previously prepared glass slide was carefully
positioned in the solution such that the BaCO3 crystals were submersed. After ca. 1.5− 2 hours
the glass slide was removed from the solution, washed twice with water, subsequently washed
with acetone and air-dried. To grow waveguiding trumpet shapes (Fig. 4 D), 0.084 g SrCl2 and
0.016 g Na2SiO3 was dissolved in 15 mL water and the pH was adjusted to 11.9 using NaOH.
The previously prepared glass slide was carefully positioned in the solution such that the BaCO3

crystals were submersed. A petri dish was loosely placed on the beaker so that CO2 from the air
could enter the beaker. After ca. 75 min, the petri dish was carefully removed for 2 min to give
a CO2 pulse that resulted in the opening of the SrCO3/SiO2 stem shapes into vases (Fig. 4 B,
sections in dark gray at the bottom, middle). Cleansing of the structures was performed as
described above. Beamsplitting structures (Fig. 4 E) were prepared by dissolving 0.084 g SrCl2
and 0.016 g Na2SiO3 in 15 mL water and adjusting the pH to 11.9 using NaOH. To induce the
splitting of the growth front into an array of posts atop a coral-like structure (Fig. 4 B, sections in
dark gray at the bottom, right), the temperature was lowered to 4oC for 15 min and subsequently
increased to 40oC. Cleansing of the structures was performed as described above. Fluoresence
microscopy with a Rhodamine filter and scanning electron microscopy were used to analyze the
slides.

H) Transmission electron microscopy (TEM) procedure. TEM samples were prepared
through two main techniques: direct growth on TEM copper grid and focused ion beam (FIB)
milling. For direct growth samples, copper mesh TEM samples were attached on aluminum
substrate during the synthesis and imaged with a TEM instrument subsequently (JEOL 2011
operated at 120 kV and JEOL 2010F operated at 200 kV). For FIB milling method, structures
of interest were identified and transferred in situ with a micromanipulator (OMNIProbe) inside
a Helios Nanolab 660 Dual Beam electron microscope (FEI, OR) before a protective layer was
laid down on top of the structures (PT∼ 1µm). The specimens were then sequentially thinned
by FIB at 30, 16, 5, and 2 kV ion beam voltages in order to reach electron transparency. TEM
images with typical bright-field, dark-field, and SAED techniques were taken by using a JEOL
2011 operated at 120 kV. The image magnification and camera constants were calibrated using
as standard sample (MAG*I*CAL, Electron Microscopy Sciences, PA). HRTEM imaging was
carried out using a field emission JEOL 2010F at 200 kV.
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II. Supplementary text
A) Carbonate-silica coprecipitation and emergence of thin walls. When the influx of CO2

causes the nucleation of BaCO3 crystals on the substrate, the pH decreases around the growing
crystal through the simplified chemical reaction

. (S1)

In turn, the lowering of the local pH triggers the acid-catalyzed polycondensation of metasilicate
ions and formation of silica polymers that deposit on the BaCO3 crystal through the reaction:

(S2)
The simplified form of Eq. S2 is SiO2−

3 + 2H+ → SiO2+H2O. The anisotropy of BaCO3 nee-
dles that are elongated in the c-axis direction, in which the growth rate is fastest, results in
preferential silica precipitation and passivation of the slow-growing faces of BaCO3 crystals
whereas the faster-growing faces in the c-axis are less coated and continue growing through the
coprecipitation reactions. The silica-induced growth inhibition orthogonal to the growth direc-
tion results in the formation of anisotropic BaCO3 nanocrystals that are embedded in the SiO2

scaffold. The soluble silica polymers buffer the local acidity and act as slow diffusing species in
the solution. Importantly, if the silica deposition rate exceeds that of BaCO3 even in the fastest
growth direction, the growing fronts become fully passivated by the silica coat, leading to com-
plete termination of coprecipitation. The incomplete, directional overcoating of carbonate by
silica may only persist when the BaCO3 growth rate is sufficiently high. Therefore successful
carbonate-silica coprecipitation can only occur at the outskirts of the SiO2 pH range where sil-
ica deposition rate is low (see Fig. 1 F in the main text), in order to sustain continuous carbonate
precipitation. The described mechanism can be validated and visualized using a microfluidic
reactor in which exact reaction conditions can be controlled (Section I. B-E), in particular by the
dynamic modulation of the CO2 concentration (Fig. S2). Slowing down the growth of BaCO3

by lowering the CO2 inflow in the microfluidic channel results in the overcoating of BaCO3

crystals by silica at the growth front, entirely hampering the growth of BaCO3 and in turn the
co-precipitation (Fig. S2 A). After switching on the CO2 flow again, new structures can grow
from the active growth sites embedded deep inside the already grown structures (false-colored
red in the SEM) instead of the continuation of coprecipitation at the growth sites of the original
wall (false-colored green in the SEM) (Fig. S2 C). Once a microstructure is completely passi-
vated by silica, any increase of the CO2 concentration leads to new BaCO3 nucleation elsewhere
on the substrate (indicated by arrows) but not on the silica overcoated BaCO3/SiO2 structures
(Fig. S2 B).

The crystallographic characteristics of the BaCO3 phase within the Regime I and II mi-
crostructures were studied by transmission electron microscopy (TEM) and selected area elec-
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tron diffraction (SAED) (Fig. S3, S4, see Sec. I. H for the TEM procedure). At the wall of
a vase-like structure (Fig. S3 A-D), the SAED pattern (Fig. S3 E) reveals that the c-axis of
BaCO3 in witherite form (orthorhombic structure) is aligned with the growth direction. The
high-magnification image of the wall also reveals that the long axes of the rod-like structures,
are aligned with the local growth direction (Fig. S3 F).

In Regime II, the 2D helical structures grow and undergo curling under confinement in a
thin film of the solution, and hence have a finite structure height (22) (Fig. S4 A, B). At a
slice of the 2D helical structure (Fig. S4 A, B), multiple diffraction patterns were taken from
SAED (Fig. S4 C-E) and indexed as BaCO3 with witherite structure with zone axis of [100] .
More importantly, the c-axes are aligned with the morphological direction of the helical rotation
(Fig. S4 D, E), which indicates that the crystals are also aligned with the local growth direc-
tion. This observation is consistent with previous measurements on the BaCO3/SiO2 composite
structures formed in silica gels (20). A similar co-alignment between the c-axis and growth di-
rection was also observed in vase-like structures (Fig. S3). We conclude that in both regimes,
rod-like carbonate nanocrystals show a preferential alignment of the c-axis with the growth
direction.

The presence of a silica-dominated boundary layer was also evident by examining the struc-
tural organization across an inner boundary in the 2D helical structure through high-resolution
transmission electron microscopy (HRTEM) (Fig. S4 F-H). From the boundary to the interior
of the structure, the relative amount of the crystalline carbonate phase appears to increase grad-
ually (from Fig. S4 G, H).

The relative deposition rates of BaCO3 and SiO2 directly control the wall thickness of the
structures during growth. The local diffusion gradients of acid arising from coprecipitation in-
duce a nonuniform distribution of the pH around the growth front (Fig. S5 A). Silica precipita-
tion mainly occurs along the lateral boundaries defining the wall (gray boundaries in Fig. S6 B,
insets), while BaCO3 nanocrystals grow between the silica layers that bound the wall (red re-
gions shown in Fig. S6 B, insets). The microscopic spatial distribution of BaCO3 and SiO2 can
be visualized by selectively dissolving the BaCO3 using 0.5M HCl, which removes the inner
part of the walls that is mainly composed of BaCO3, leaving behind only the SiO2 cladding that
covers the sides of the structures (Fig. S5 B-D).

The relative amounts of the deposited BaCO3 and SiO2 are set by the mutual feedback
mechanism. Electron Dispersive X-Ray spectroscopy study reveals the BaCO3/SiO2 ratio as
89±3%/11∓3% in Regime I and 78±4%/22 ∓4% in Regime II. The increase in the SiO2

precipitation for a lower pH in Regime II is consistent with the relative solubilities and reaction
rates of BaCO3 and SiO2 (22). These fixed values, in turn, result in a constant surface-to-volume
ratio of the cross-sectional carbonate-rich area (A) to the silica-rich boundary (S) and restrict
the wall thickness. For example, in coral-like architectures for all four configurations of the
constituent structures – posts, walls, wall ends, and junctions (Fig. S6, Table S1), we found that
A/S ∼ 0.25− 0.4µm, which sets the thickness of the walls to 2A/S ∼ 0.5− 0.8µm. The walls
continue to grow laterally to sizes on the scale of 10µm or larger, leading to very low aspect
ratio systems.
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Fig. S2: Silica overcoating of the growing front and passivation of coprecipitation. (A)
Optical polarized light microscopy images of a coral-like structure that initially grows when
the CO2 is first introduced. When the CO2 input is stopped, the structures initially continue
growing until some regions abruptly come to a halt as they become completely passivated by
silica, resulting in a highly irregular morphology. As the CO2 flow is subsequently switched
on again, some regions of the structure resume growth. (B, C) Scanning electron microscopy
(SEM) was used to investigate the same structure in more detail (the area inside the red box).
(C) False-colored SEM image shows that, after switching on the CO2 flow again, new structures
(red) may grow from the active growth sites embedded deep inside the already grown structures
(green). This demonstrates that the active growth sites of the original structure indeed became
passivated. With hardly any active growth sites remaining, the secondary increase in the CO2

concentration results in the nucleation of new structures next to the already formed ones, as
indicated by the arrows in (B).
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Fig. S3: Fine structure of the precipitates from Regime I. (A)-(D) An intact vase-like struc-
ture was picked up by an OMNIprobe, transferred to a copper TEM grid, and subsequently
thinned down to become electron transparent. (E) A diffraction pattern taken from the SAED
measurements at the wall of the vase. (F) The high-magnification image of the wall (shown in
D) also reveals rod-like structures (aligned along white arrows).
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Fig. S4: Fine structure of the precipitates from Regime II. (A), (B) By using focused ion
beam (FIB) milling, a horizontal TEM slice was prepared from a 2D curled precipitate, which
forms in confinement in a thin film of the solution (22). Multiple SAED patterns were acquired
at different locations of the structure, which are shown in (C)-(E) at higher magnification. (F)
Multiple HRTEM images were taken across the thin boundary (the area surrounded by the
magenta rectangle in B) at two different locations (G, H). It is seen that the structure changes
from (G) merely an amorphous SiO2 phase to (H) the coexistence of the BaCO3 and amorphous
SiO2 . HRTEM analysis along the opposite direction yields an equivalent cross-over.
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Fig. S5: Wall composition of the microstructures (reproduced from Ref. (22)). (A)
Schematic of the cross-section of a growing wall and the nonuniform pH cloud atop it, where
SiO2 precipitates mainly at the wall sides (shown in white) and thereby fixes the wall thickness
throughout growth. (B)-(D) Microstructures after selective dissolution of BaCO3 , revealing the
SiO2 scaffold that is covering the sides of the walls of the (B) coral-like and (C) helical struc-
tures. (D) Partial dissolution of BaCO3 shows the SiO2 layer while BaCO3 crystals are still
present deeper in the structure.
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A B C

Fig. S6: The growth of BaCO3/SiO2 microstructures. (A) SEM image of a coral (Regime I).
(B) In the enlarged view of the white-boxed region over the coral in (A), the ratio of the area
of the growth front A to the boundary of the silica passivation S is calculated for each segment
surrounded by the colored boxes. The cartoons of top view outline the simple two-dimensional
geometries assumed for A (red) and S (gray) for each segment (Table S1). (C) A bundle of
leaves, helices, and globular structures observed in Regime II.

Post Wall End of wall Junction

Area A πr2 I × w πr2 πr2

Boundary S 2πr 2I 2πr − w 2πr − 3w
Measurements r = 0.5µm w = 0.8µm r = 0.7µm, w = 0.4µm r = 0.4µm, w = 0.4µm

A/S 0.25µm 0.4µm 0.4µm 0.4µm
w ∼ 2 A/S 0.5µm 0.8µm 0.8µm 0.8µm

Table S1: Cross-sectional wall surface-to-area ratio. Measurements of the cross-sectional
carbonate-rich area (A) to the silica-rich boundary (S) ratio of the posts, walls, wall ends, and
junctions in a coral (Fig. S6 A and B). These measurements yield the thickness (w) of the
corresponding regions.

B) Equations of motion for the geometrical variables. Our theory models the dynamics of
the curvilinear growth front in a fundamentally different way from that of conventional curves,
such as vortex filaments in fluids (29, 30), where only the intrinsic geometry of the curve is
relevant. This is because the configuration of the growth site is coupled with the extrinsic
geometry of the embedding surface determined by its local orientation N̂ , as well as the intrinsic
geometries of the surface and the curve itself that are independent of N̂ .

In Eq. 1, surface smoothness demands that the growth direction is tangential to the surface.
This disallows a velocity component parallel to the local surface normal N̂ , defined in Fig. S7.
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Although a velocity component along the tangent of the curve ∂ ~X/∂s (Fig. S7) may exist, we
choose the growth direction n̂ to be orthogonal to both ∂ ~X/∂s and N̂ in our model. This choice
is associated with a gauge freedom for a closed curve with no loss of generality (27). For an
open curve, however, the growth direction does not have to be orthogonal to ∂ ~X/∂s at both ends
of the curve; in that case our choice is a simplification. In this work, we confine ourselves to
closed curves representing the growth front of precipitated morphologies. It is straightforward
to generalize our framework to the motion of open curves leaving behind surfaces.

To calculate the set of equations governing the spatial and temporal dependence of the geo-
metrical quantities, first we give their definitions (Table S2) : Along the growth site, the geodesic
curvature is given as κg ≡ n̂ · ∂2~X/∂s2 , the normal curvature is κN ≡ N̂ · ∂2~X/∂s2 , and the
geodesic torsion τg ≡ N̂ · ∂n̂/∂s . On a curve perpendicular to the edge, the second normal
curvature is given by κN,2 ≡ N̂ ·dn̂/Udt . The time derivative is defined in the frame comoving
with the growth front, i.e. d/dt ≡ ∂/∂t| ~X(s,t) . Second, we note that n̂ , N̂ , and ∂ ~X/∂s form an
orthonormal set, so their scalar products are zero. Third, we define the infinitesimal arc length
along the growth site as ds ≡ √gdσ . Here g ≡ ∂ ~X/∂σ · ∂ ~X/∂σ is the metric of the curve and
σ is a fixed coordinate along the curve such that σ ∈ [0 , σmax] always (26).

One can arrive at the equations of motion of κg (Eq. S20), κN (Eq. S21), and τg (Eq. S23)
by using (i) Eq. 1, (ii) the definitions of κg , κN , κN,2 , and τg , as given in Table S2, (iii) the
time evolution of the metric g (Eq. S6), (iv) a relation between mixed space and time deriva-
tives at the curve (Eq. S7), and (v) the constraint that n̂ , N̂ , and ∂ ~X/∂s form an orthonormal
triad (Fig. S7). The three partial differential equations (PDEs) governing κg , κN , and τg im-
pose mathematical constraints between the geometrical variables. Below, we will present the
derivation of the PDEs in four steps.

1) Preliminary relations. In order to derive the equations that determine κg , κN , and τg,
first we derive the preliminary mathematical relations. Since σ is time independent, the mixed
partial derivatives satisfy the equality

∂

∂σ

d

dt
=

d

dt

∂

∂σ
. (S3)

Next, we wish to obtain a relation between the mixed derivatives of the covariant derivative
∂/∂s and the time derivative. This requires determining the equation of motion of the metric g .
Using Eq. S3, and taking the derivative of Eq. 1 with respect to σ and substituting the result in
the time derivative of the metric yields

dg

dt
= 2

∂ ~X

∂σ
· ∂
∂σ

(n̂U) . (S4)

Then, rewriting the spatial derivatives in terms of the covariant derivative, which satisfies√
g∂/∂s = ∂/∂σ , and the orthogonality relation n̂ ⊥ ∂ ~X/∂s transforms Eq. S4 into

dg

dt
= 2gU

∂ ~X

∂s
· ∂n̂
∂s

= −2gU
∂2~X

∂s2
· n̂ . (S5)
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In Eq. S5 we have successively made use of the product rule ~a · ~b′ = (~a · ~b)′ − ~a′ · ~b , where
~a and ~b are vectors (accents denote derivatives), and n̂ ⊥ ∂ ~X/∂s to obtain the second equality.
Substituting the definition of κg (Table S2), Eq. S5 becomes

d
√
g

dt
= −√gκgU . (S6)

Eq. S6 governs the time dependence of the metric, in other words, the change of the local arc
length during growth. Combining Eqs. S3, S6 and the relation

√
g∂/∂s = ∂/∂σ allows us to

derive the following identity between the mixed derivatives,

d

dt

∂

∂s
=

∂

∂s

d

dt
+ κgU

∂

∂s
. (S7)

An equivalent expression was found for the curvature of a moving interface in two dimen-
sions (27).

Obtaining the time variation of the geometrical variables involves evaluating the higher
order derivatives of the unit vectors, as can be seen from the following example,

dκg
dt

=
dn̂

dt
· ∂

2~X

∂s2
+ n̂ · d

dt

∂2~X

∂s2

 . (S8)

Similarly, the right-hand sides of dκN/dt and dτg/dt need to be calculated as well. In the
following, we will evaluate these higher order derivatives by using Eq. 1, the definitions of κg ,
κN , τg , and κN,2 , Eq. S7, the cross product n̂ × N̂ = ∂ ~X/∂s and its cyclic permutations.
Additionally,

â · â′ = 0 (S9)

always holds for any unit vector â where prime denotes any derivative.

2) First-order derivatives. In the following, we evaluate the first-order space and time
derivatives of the vectors n̂ , N̂ , and ∂ ~X/∂s . Because of Eq. S9, ∂2~X/∂s2 does not have a
component along ∂ ~X/∂s , leading to the relation

∂2~X

∂s2
= κNN̂ + κgn̂ . (S10)

Next, we determine ∂n̂/∂s by taking the derivative of n̂ = N̂× ∂ ~X/∂s , which becomes

∂n̂

∂s
=
∂N̂

∂s
× ∂ ~X

∂s
− κg

∂ ~X

∂s
, (S11)

Since ∂N̂/∂s should lie in the plane spanned by n̂ and ∂ ~X/∂s , the first term of Eq. S11 on the
right hand side must be either parallel or antiparallel to N̂ . Then, by using the definition of the
geodesic torsion (Table S2), Eq. S11 becomes

∂n̂

∂s
= τgN̂− κg

∂ ~X

∂s
. (S12)
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By virtue of the scalar product of N̂ with Eqs. S10 and S12, followed by using the product rule,
the spatial derivative of N̂ is found as

∂N̂

∂s
= −τgn̂− κN

∂ ~X

∂s
. (S13)

Now we calculate the time derivatives of the unit vectors. We start by evaluating d(∂ ~X/∂s)/dt ,
which requires implementing Eq. S7, leading to

d

dt

∂ ~X

∂s
=

∂

∂s

d~X

dt
+ κgU

∂~X

∂s
. (S14)

According to Eq. S9, d(∂ ~X/∂s)/dt must be orthogonal to the second term on the right hand
side of Eq. S14. When ∂(d~X/dt)/∂s is evaluated by using Eq. 1 and Eq. S12, then Eq. S14
becomes

d

dt

∂ ~X

∂s
= UτgN̂ +

∂U

∂s
n̂ . (S15)

The definition of the second normal curvature κN,2 (Table S2) allows us to determine the
first component of dn̂/dt . Its second component can be extracted by dotting n̂ into Eq. S15 and
using the product rule subsequently. These steps yield

dn̂

dt
= UκN,2N̂−

∂U

∂s

∂ ~X

∂s
. (S16)

Taking the scalar product of N̂ with Eqs. S15 and S16 and applying the product rule gives
dN̂/dt as

dN̂

dt
= −UκN,2n̂− Uτg

∂ ~X

∂s
. (S17)

3) Higher-order derivatives. Next, we determine the expressions d(∂2~X/∂s2)/dt and
d(∂n̂/∂s)/dt , which are required to calculate dκg/dt (Eq. S8), dκN/dt , and dτg/dt . We start
by applying Eq. S7 to d(∂2~X/∂s2)/dt , followed by taking the derivative ∂/∂s of Eq. S15,
which corresponds to the first term from the preceding step. Then, using Eqs. S13, S12, and S10,
respectively, in the resulting expression, we find

d

dt

∂2~X

∂s2

 = N̂

[
∂

∂s
(Uτg) +

∂U

∂s
τg + κgκNU

]
+ n̂

(
−Uτ 2

g +
∂2U

∂s2
+ κ2

gU

)

−∂
~X

∂s

(
UτgκN + κg

∂U

∂s

)
. (S18)
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Similarly, in order to evaluate d(∂n̂/∂s)/dt , we first apply Eq. S7 and then take the deriva-
tive ∂/∂s of the resulting first term (Eq. S16). After that, we use Eqs. S13, S10, and S12,
respectively. These steps lead to

d

dt

(
∂n̂

∂s

)
= N̂

[
∂

∂s
(UκN,2)− ∂U

∂s
κN + κgτgU

]
− n̂

(
UτgκN,2 + κg

∂U

∂s

)

−∂
~X

∂s

(
UκNκN,2 +

∂2U

∂s2
+ κ2

gU

)
. (S19)

4) Geometrical compatibility relations. Evaluating Eq. S8 by making use of Eq. S10,
Eq. S16, and Eq. S18, we arrive at

dκg
dt

=
∂2U

∂s2
+
(
κ2
g + κG

)
U . (S20)

This equation is in fact the differential form of the Gauss-Bonnet theorem, which relates the
total Gaussian curvature of a surface κG ≡ κNκN,2 − τ 2

g to the geodesic curvature of its bound-
aries (26). In that sense, the quantity −∂U/(U∂s) is the geodesic curvature of the curve inter-
secting the growth site orthogonally.

To obtain dκN/dt , we substitute n̂ with N̂ in Eq. S8 and utilize Eqs. S10, S17, and S18.
This yields

dκN
dt

=
∂

∂s
(Uτg) + τg

∂U

∂s
+ κg(κN − κN,2)U . (S21)

Last, the equation of motion of the geodesic torsion is determined from

dτg
dt

=
dN̂

dt
· ∂n̂
∂s

+ N̂ · d
dt

(
∂n̂

∂s

)
. (S22)

According to Eq. S22, adding the N̂ component of Eq. S19 to the scalar product of Eqs. S12
and S17 gives

dτg
dt

=
∂

∂s
(κN,2U)− κN

∂U

∂s
+ 2κgτgU . (S23)

Alternatively, by defining a second line element ds(2) ≡ Udt along a curve intersecting the
growth site orthogonally, and noting that its geodesic curvature is given by κ(2)

g ≡ −∂U/(U∂s) ,
the equations of motion of κg , κN , and τg can be derived from the partial differential equations
of the surface theory, i.e. the Codazzi-Mainardi equations (26). Once the growth speed U is
given by Eq. S26 as a series expansion in terms of the geometrical variables, we can then track
the time evolution of the growth site, which constructs a surface in space and time, by solving
Eqs. 2, S20, S21, S23, S26, and Eq. S6.
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Fig. S7: Growth of a surface. (A) The growth front of a thin wall is represented in terms of
a spatial curve with a position vector ~X(s, t) , where s is the position along the curve. The
tangent vector of the curve ∂ ~X/∂s , the surface normal N̂ , and the growth direction n̂ form an
orthonormal triad.

Variable Definition Description
σ ∈ [0, σmax] fixed coordinate along

the boundary curve
ds

√
gdσ local arc length

g ∂ ~X/∂σ · ∂ ~X/∂σ metric of the boundary curve
κg n̂ · ∂2 ~X/∂s2 geodesic curvature
κN N̂ · ∂2 ~X/∂s2 normal curvature
τg N̂ · ∂n̂/∂s geodesic torsion
κN,2 N̂ · dn̂/Udt 2nd normal curvature

Table S2: Definitions of the geometrical variables.

C) Carbonate-silica coprecipitation versus regular solidification. We highlight the phys-
ical rationale behind our theoretical approach to the experimental measurements and previous
works (20, 21, 22), based on the following outline: First, we clarify the differences between
dendritic solidification and carbonate-silica coprecipitation. For the latter, the mechanism of
bending at the interface, which gives rise to curled structures as a function of the solution pH,
is explained in the main text. Using our observations of chemical precipitation reactions at
the growth site, we quantify how growth via carbonate-silica coprecipitation can remain diffu-
sion controlled yet strongly localized, distinct from the conventional solidification picture. This
serves as a physical basis for our model of the growth rate as a function of interface geometry
(Section II. D). The measurements in the microfludic channel (Sections I. B–E) provide evi-
dence for a diffusion-limited growth mechanism, as discussed in the main text. Furthermore, as
noted in the main text, similar behavior was observed in an alkaline solution for a leaf where
growth accelerates as the structure develops a tip (21).
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Carbonate-silica coprecipitation produces solid structures in which carbonate in the crys-
talline state and silica in the amorphous state coexist. Therefore, growth through coprecipi-
tation is fundamentally different than conventional growth of ionic crystals, both in terms of
governing physico-chemical processes and the resulting thin-walled morphologies, which owe
their complexity to the amorphous phase of polymerized silica as opposed to simpler shapes of
carbonate crystals restricted by crystal symmetries. The carbonate crystal aggregation within
the silica backbone thus plays a limited role in the development of form. This can be inferred
from the difference between intricate geometries arising from BaCO3/SiO2 coprecipitation in
Regimes I and II (defined in Fig. 1 F in the main text) and simple dendritic morphologies of
BaCO3 crystal precipitation when the original solution containing Na2SiO3 and BaCl2 was set
at pH below the silica deposition range (22). Here, the role of silica in pattern formation is
likely analogous to protein-affected crystal growth, in that it shapes in situ the morphologies of
the coprecipitating patterns.

In conventional solidification of bulk materials, the sole physical mechanism is the growth
mode (either interface or diffusion controlled), which is determined by two length scales: The
diffusion length LD and the local radius of curvature LH , where H is the mean curvature at
a given point on the two-dimensional growth front. When LH � LD , growth must always
be interface controlled as in spherulitic cystallization where growth reaches a steady state in
an effectively one dimensional setting because the interface is nearly flat on length scales LD .
Conversely, when LH � LD , growth must be diffusion controlled since the curved front cannot
reach a steady state (24).

Unlike conventional solidification/crystallization, thin-walled accretion of BaCO3/SiO2 co-
precipitation involves two physical processes: tangential growth (Eq. S26) and bending (Eq. 2 in
the main text). BaCO3/SiO2 coprecipitation is governed by three length scales (rather than two
as in conventional solidification): The diffusion length LD of the soluble oligomeric/polymeric
species that are slowly diffusing nearby the growth front, the local radius of geodesic (in-plane)
curvature Lκg of the one-dimensional growth front, and the wall thickness w that satisfies
w � Lκg because of the high aspect ratio of the wall (w ∼ 1µm). The comparison among
these three length scales sets the growth mode:

(1) LD > Lκg � w : growth is diffusion controlled,

(2) Lκg > LD � w : growth is diffusion controlled but more localized than (i). Growth does
not reach a steady interface-controlled state as the diffusive flux will be effectively two
dimensional, because LD � w .

(3) Lκg � w � LD : growth is in steady state and thus interface controlled.

A comparison of the length scales Lκg , w , and LD determines if/when coprecipitation re-
sults in diffusion-limited growth. When the growth rate increases with higher interfacial cur-
vature, this means that growth is governed by a diffusive flux pointing outward (into the liquid
phase) at the solid-liquid interface, as in a growing snowflake where the latent heat generated
at the interface diffuses into the supercooled liquid (25). In our case the outward diffusive
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flux is due to excessive silica polymer concentration at the interface, only partially permitted
in the solid structure. The rest is rejected and has to diffuse away from the interface, set-
ting the coprecipitation rate. Estimating ∼ 101 − 102 monomers in a soluble oligomerized
or polymerized silica chain brings the diffusion coefficient to D ∼ 10 − 100µm2/s at room
temperature. Given that our system is an alkaline aqueous solution, the diffusion length is
then LD ≡ D/Ū ∼ (10µm2/s)/(1µm/min)∼ 600µm for silica polymers and LD ≡ D/Ū ∼
(100µm2/s)/(1µm/min)∼ 6 × 103µm for silica oligomers, where Ū is the approximate speed
of the front. The local radius of curvature at the interface is given by Lκg = UA/Ū ∼ 100µm,
where UA ∼ 50µm2/min is the areal growth rate extracted from the microfluidics measure-
ments. Based on these estimates, we conclude that LD ≥ Lκg � w , which is at the interface of
categories (1) and (2). Thus, growth must be diffusion limited in agreement with our microflu-
idics experiments (see main text and Sections I. B–E). Below we will show that our system falls
into category (2) by defining an effective diffusion length LDeff

that takes into account the rate
of localized coprecipitation reactions at the interface.

Another fundamental aspect of the growth mechanism is the chemical reactions happening
at the interface, which localize the coprecipitation of crystalline BaCO3 and amorphous SiO2

into microstructures. To reveal the effect of the reaction rate and reactant concentration at the
interface, we note that the modified Stefan condition in the presence of chemical reactions at
the growth site is

−D
∆c0

n̂ · ~∇c = Ū
[
1 +

ρ

∆c0

(c− cs)
]
. (S24)

Here, c is the concentration of diffusing species controlling the growth rate, ∆c0 ≡ cL − cS
is the difference between equilibrium concentrations of the particles in the solid phase and
the surrounding liquid phase. The dimensionless silica polymerization rate (assumed to be
proportional to the production rate of SiO2 due to precipitation reactions) is denoted by ρ ≡
τD/τr , where τD is the diffusion time scale and τr is the reaction time scale. When ρ = 0 ,
the above equation reduces to the conventional Stefan condition for diffusion-limited growth.
When the reactions are much faster than diffusion (τr � τD) leading to ρ � 1 , furthermore
c− cS and ∆c0 are at the same order, the modified Stefan condition reduces to

−Dn̂ · ~∇c = ρŪ(c− cs) . (S25)

Then, the effective diffusion length is given by LDeff
≡ D/(ρŪ) , which is much smaller

than the bare diffusion length LD , i.e. LDeff
� LD . Clearly, the effect of localized chemical

reactions can bring the relevant length scale to values smaller than the local radius of curvature
Lκg > LDeff

, constraining the relevant physical processes to the neighborhood of the growth
front, still at bigger length scales than the wall thickness w (Lκg > LDeff

� w). We conclude
that within the classification above, the growth mode is in category (2), namely carbonate-silica
coprecipitation is strongly localized as opposed to conventional solidification of bulk crystals,
yet avoids a steady interface-controlled state owing to the thin-wall formation. Thus, a local
growth model given by a power series expansion of the growth speed (Eq. S26) in terms of local
geometric variables is a better approximation to diffusion-controlled growth in carbonate-silica
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coprecipitation than in dendritic crystallization processes, which nevertheless was successfully
applied and yielded an accurate qualitative description (27).

D) Determination of speed. We determine the local growth speed U by a power series ex-
pansion in terms of κg , its second derivative ∂2κg/∂s

2 , κN , τg , and κN,2 . For reasons clarified
below, we choose to truncate the expansion at the third order in an inverse characteristic length
scale 1/` , where ` sets the linear dimensions of the initial condition of the sculptures in the
simulations. This approximation reproduces qualitatively the dynamics of the diffusion-limited
precipitation, in analogy with the geometrical models of dendritic solidification (27). Further-
more, it simplifies the analysis because solving for diffusion fields around an evolving two
dimensional structure in the space is cumbersome, and the boundary conditions modeling the
constant wall thickness remain unknown.

In real units, the series expansion of the growth speed up to third order in 1/` is given by

U = −α1κg + α2κ
2
g + α3κ

3
g + η1H

2 + η21κNκN,2 + η22τ
2
g + η3κgH

2

−η41κgκNκN,2 + η42κgτ
2
g + η5τgH + η6κgτgH − λ

∂2κg
∂s2

+O(`−4) , (S26)

where H ≡ (κN + κN,2)/2 is the mean curvature of the surface, and the coefficients of each
term are positive scalars. The term ∂2κg/∂s

2 suppresses unstable outward kinks along the
reaction front originating from the terms with κg , analogous to the Mullins-Sekerka instability
in dendritic solidification (31). Therefore, the prefactor λ multiplying ∂2κg/∂s

2 is proportional
to the line tension along the growth front (27).

The power series given in Eq. S26 implies that growth may continue indefinitely albeit with
an ever decreasing speed e.g. while a vase is precipitated, where only κg and κN are finite
(Fig. S8 A and B). In Eq. S26, κg breaks the n̂ → −n̂ symmetry and is present at all orders,
i.e. n̂ points to the solution whereas −n̂ is directed to the solid. Additionally, there are no first
order derivatives in the arc length coordinate s because U must remain unchanged under the
transformation s → −s . In contrast with the geodesic curvature κg , the extrinsic geometrical
quantities κN , τg , and κN,2 appear as even terms since they change sign under N̂ → −N̂
transformation, under which U must remain invariant. In Eq. S26, these terms at order O(`−2)
increase the growth speed when the associated deformations emerge. When the absolute values
of any of κN , τg , and κN,2 become very large, then the terms penalizing the speed can enter the
expansion first at the third order, namely by the product of any pair of these variables with κg .
Thus, all of the third order terms in Eq. S26 are mainly responsible from decreasing the growth
rate, including the terms proportional to κ3

g and ∂2κg/∂s
2 . Exceptions to these may occur when

for instance η3κgH
2 reinforces the speed for κg > 0 ; however it is in general balanced by

the other third order terms for a variety of sculptures simulated in this work. An expansion
including the fourth order terms in 1/` would enable us to shift the speed penalty terms to
this order, but such an expansion would produce many additional free parameters, making the
numerical implementation and analysis tedious, without additional insight.
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Fig. S8: Dynamics from the geometrical morphogenesis model. (A) The square of the radius,
proportional to the projected area, and (B) the radius of the projected area enclosed by the
circular growth site are shown as a function of time, giving rise to vases (Fig. 3 A). The grayscale
changes from dark to light with the bending parameter increasing from qb = 10−3 to 0.013 in
3 × 10−3 increments. As a function of time, (C) demonstrates the position of the growth site
of the petals along the x−axis (y = 0) for qb = 10−3 (black) and qb = 0.07 (gray) (Fig. S9 B).
(D) depicts the position of the growth site along the central axis of the helices (y = 0 , z = 0)
as a function of time for qb = 0.8 , 0.9 , and 1 with the grayscale changing from dark to light,
respectively (Fig. S10 from top to bottom).

E) Numerical implementation of the model and simulation parameters. Eqs. 2 and S26
incorporate the physical processes at work, whereas Eqs. S6, S20, S21, and S23 impose geomet-
rical constraints along the growth site. These equations constitute our model, and we solve them
by using the COMSOL 4.3a finite element package (http://www.comsol.com). Eqs. 2, S6, S20,
S21, S23, and S26 form a set of coupled nonlinear partial differential equations, which is sev-
enth order in space and first order in time. Thus, an initial condition for each of the variables
and a total of seven boundary conditions at the two ends of the growth edge need to be deter-
mined. The growth starts either from a circle (vases, petals, structures grown in two and three
steps) or a semicircle with small spatial perturbations (helices), where the initial direction of
local growth n̂ is also determined for every sculpture. For structures with a circular margin at
all times (vases or structures grown in two and three steps), the spatial dependence is irrelevant
when the initial distribution of κN,2 is uniform and the line tension is sufficiently high so as to
suppress any minute protrusions along the growth site (λ → ∞). Then, the spatial derivatives
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in Eqs. 2, S20, S21, S23, and S26 vanish, leading to an initial value problem. For petals and
helices, the full boundary value problem is solved to account for spatial variations. Regardless
of the structure under consideration, the fixed coordinate σ always increases in the clockwise
direction since n̂ , N̂ , and ∂ ~X/∂s form a right-handed coordinate system (Fig. S7). The initial
and boundary conditions (in case there are any) are given as follows:

1) Vases or structures grown in two and three steps. The following surface vector pa-
rameterized by σ ∈ [0 , 1] along the interface and the height z constitutes the initial condition:

~X = {f(ε,m, z, σ) cos(2πσ) ,−f(ε,m, z, σ) sin(2πσ) , z} , (S27)

where f(ε,m, z, σ) ≡ 1 + mz + ε cos(2πσ) . The angle of the slope β (Fig. 1 E) is equal to
β = 1/m . For vases or structures grown in multiple steps, we set ε = 0 . The derivatives of
Eq. S27 with respect to σ and z yield the vectors ∂ ~X/∂σ and ~n ≡

√
1 +m2 n̂ . By using higher

order derivatives and other relations from differential geometry (26), all geometric quantities
are determined from Eq. S27 and evaluated at z = 0 .

2) Petals. At σ = 0 (the intersection of the black lines with the initial circular configura-
tion, see Fig. S9 B), ∂κg/∂s = ∂U/∂s = ∂κN,2/∂s = 0 , namely no-flux boundary conditions
are implemented. Then τg = 0 is trivially satisfied at σ = 0 as a fourth boundary condition (see
Eq. S23) since the geodesic torsion of a planar circular interface is initially zero. At σ = 1/2 ,
∂κg/∂s = ∂κN,2/∂s = 0 , and U = 0 . The structures are symmetric with respect to a plane
intersecting σ = 0 , σ = 1/2 , and extending along the z–direction. Again, Eq. S27 is used as
an initial configuration of the front, where ε = 0 .

3) Helices. The initial condition is given by the following surface vector, which is param-
eterized by σ ∈ [0 , 1/2] along the interface and the radius r:

~X =

{
−r cos(2πσ) , r sin(2πσ) , δ

[
r

R
sin(2πσ)

]ξ}
, (S28)

where R = 1 in dimensionless units. The derivatives of Eq. S28 with respect to σ and r yield
the tangent vectors of the surface ∂ ~X/∂σ and ∂ ~X/∂r , respectively, which are not necessarily
orthogonal to each other. The surface normal N̂ can be constructed by making ∂ ~X/∂σ×∂ ~X/∂r
a unit vector. Then, the initial condition of the growth direction can be determined from the re-
lation n̂ = N̂ × ∂ ~X/∂s . Both n̂ and N̂ are evaluated at r = 1 , which correspond to a unit
circular growth front decorated by a very small perturbation. Using the higher order deriva-
tives and other relations from differential geometry (26) allows us to determine all geometric
quantities from Eq. S28, which are again evaluated at r = 1 . The initial growth orientation is
nearly parallel to the plane of the semicircle to reproduce the effect of low nucleation densities
in Regime II. The angle β defined in Fig. 1 E can be extracted as a function of σ from Eq. S28
and is very low.
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The boundary conditions of the helix are; at σ = 1/4 (the point of the growth site restricted
to x = 0 in Fig. S10), ∂κg/∂s = ∂U/∂s = ∂κN,2/∂s = 0 , namely no-flux boundary con-
ditions are implemented. Then, τg = 0 is trivially satisfied at σ = 1/4 as a fourth boundary
condition since its initial value is zero (see Eq. S23). The remaining three boundary condi-
tions are imposed at σ = 0 (the central axes at y = 0 and z = 0 in Fig. S10), which are
∂κg/∂s = ∂U/∂s = 0 , and κN,2 = 0 .

We note that the geometrical constraints (Eqs. S6, S20, S21, and S23) are scale free. To
define the dimensionless quantities of our model in terms of the physical parameters, first we
give Eq. 2 in real units as

dκN,2
dt

= D1
∂2κN,2
∂s2

+ `1κgκNU (κN,2 − q̄b) , (S29)

where D1 is the diffusivity and `1 is the characteristic length scale of the geodesic curvature
κg at which it affects the effective rate of folding. The dimensionless diffusivity in Eq. 2 is
given as γ ≡ D1T/`

2 , the folding rate is ζ ≡ `1/` , and the dimensionless bending parameter
is qb ≡ q̄b` . Here T is the characteristic time scale, and ` is the radius of the initial circular
configuration. The time scale is determined from the speed, and we choose it as T ≡ `2/α1 .
Eq. S26 stays the same when it is made dimensionless by defining ᾱ1 ≡ 1 , ᾱ2 ≡ α2/α1` ,
ᾱ3 ≡ α3/α1`

2 , η̄1 ≡ η1/α1` , η̄21 ≡ η21/α1` , η̄22 ≡ η22/α1` , η̄3 ≡ η3/α1`
2 , η̄41 ≡ η41/α1`

2 ,
η̄42 ≡ η42/α1`

2 , η̄5 ≡ η5/α1` , η̄6 ≡ η6/α1`
2 , and λ̄ ≡ λ/α1`

2 , followed by dropping the bars
of these definitions.

The speed of the curling rim propagating at the interface of a leaf, which later turns into a
helix, was defined in Refs. (20, 21) as VΦ . In our model, this speed determines the diffusivity
of the κN,2 as D1 ≡ VΦ` (Eq. S29). In our simulations, we fix the dimensionless diffusivity
as γ ≡ D1T/`

2 = VΦ`/α1 = 2 . When ` ∼ 2µm, roughly twice the thickness of the walls,
and the areal growth rate is taken as α1 ∼ 40µm2/min (Eq. S33), we find the propagation
speed of the bent region as VΦ ≈ 40µm/min, which is at the same order of magnitude with
VΦ ≈ 10µm/min as measured in Ref. (21). Additionally, the characteristic time scale of growth
is found as T ≡ `2/α1 ∼ 0.1 min.

The remaining simulation parameters for all calculations are as follows: ζ = 4 for a right-
handed coordinate system (see Fig. S7) and changes sign when switching to a left-handed coor-
dinate system, i.e. ζ is a pseudoscalar. Furthermore, α1 = 1 , α2 = 5 , α3 = 2 , η1 = η21 = 10 ,
η22 = 5 , η3 = 20 , η41 = 50 , η42 = η5 = η6 = 0 , and λ = 250 . Note that the coefficients as-
sociated with κN,2 are considerably bigger than α1 , α2 , and α3 . This difference in the order of
magnitude imposes rapid curling of the rim throughout the evolution of the helix, as observed in
experiments. The structural variables present in the initial conditions are; for vases or structures
grown in multiple steps m = 0.5 (Eq. S27); for petals m = 0.5 , ε = 10−3 (Eq. S27); for helices
δ = 2× 10−3 and ξ = 7 (Eq. S28).

The equations of motion of the geometrical variables, boundary conditions, and simulation
parameters are listed in Table S3.
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Fig. S9: Calculated profiles of petals. (A) The elevation and plan views demonstrate the time
evolution of the petal growth for qb = 0.07 . The simulated petal growth at qb = 10−3 is shown
in Fig. 3 B. (B) The copies of the petals from Fig. 3 B (qb = 10−3) and (A) (qb = 0.07), which
show the black (σ = 0) trajectories corresponding to the profiles of the time-dependent position
of the growth site in Fig. S8 C. The fixed coordinate along the curve is denoted by σ . The red
curves at each petal represent the growth sites. The lengths are scaled by ` , defined as the radius
of a circular initial condition.
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Fig. S10: Calculated profiles of helices. (A) Helices drawn to scale for qb = 0.8 , 0.9 , and
1 , from top to bottom. An exemplary growth process is shown in Fig. 3 C: At qb = 0.9 ,
a circular front lays down a section of a planar disk at early times (Fig. 3 C, t/T = 20).
Simultaneously, minute initial height perturbations at one end of the front are amplified and
give rise to local bending, as dictated by the source term in Eq. 2 when qb is high. Due to the
diffusion term in Eq. 2, the bend propagates along the advancing front until it reaches the apex
with the boundary condition κN,2 = 0 (Fig. 3 C, t/T = 70), which accounts for the symmetry
between the oppositely curved regions. As the structure grows further at the apex (Fig. 3 C,
t/T = 100), the front starts to twist around the central axis (Fig. 3 C, t/T = 140 − 193),
leading to the double-helical structures that wind around each other. The red curves at each
helix represent the growth sites. The lengths are scaled by ` , defined as the radius of a circular
initial condition.
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Variable Equation

κg
dκg
dt = ∂2U

∂s2
+
(
κ2
g + κG

)
U , Eq. S20

κN
dκN
dt = ∂

∂s(Uτg) + τg
∂U
∂s + κg(κN − κN,2)U , Eq. S21

τg
dτg
dt = ∂

∂s (κN,2U)− κN ∂U
∂s + 2κgτgU , Eq. S23

κN,2
dκN,2

dt = γ
∂2κN,2

∂s2
+ ζκgκNU (κN,2 − qb) , Eq. 2

g
d
√
g

dt = −√gκgU , Eq. S6
U U = −α1κg + α2κ

2
g + α3κ

3
g + η1H

2

+η21κNκN,2 + η22τ
2
g + η3κgH

2 − η41κgκNκN,2 Eq. S26
+η42κgτ

2
g + η5τgH + η6κgτgH − λ∂

2κg
∂s2

.

Structure Position Boundary condition
Petals σ = 0 , ∂κg/∂s = ∂U/∂s = ∂κN,2/∂s = 0 , τg = 0∗ ,

Petals σ = 1/2 , ∂κg/∂s = ∂κN,2/∂s = U = 0 ,

Helices σ = 0 , ∂κg/∂s = ∂U/∂s = κN,2 = 0 ,

Helices σ = 1/4 , ∂κg/∂s = ∂U/∂s = ∂κN,2/∂s = 0 , τg = 0∗ .

Equation Parameters
Eq. 2 γ = 2 , ζ = 4

Eq. S26 α1 = 1 , α2 = 5 , α3 = 2 , η1 = 10 ,
η21 = 10 , η22 = 5 , η3 = 20 , η41 = 50 ,
η42 = η5 = η6 = 0 , and λ = 250 .

Table S3: Equations of motion of the geometrical variables, boundary conditions, and sim-
ulation parameters. The partial differential equations governing the front motion, boundary
conditions (see Sec.II. E 2 for petals and Sec.II. E 3 for helices), and variables. The boundary
conditions denoted by ∗ are trivially satisfied when other boundary conditions are specified as
in the list (see Sec.II. E). The only parameter that is varied in the simulations is the bending
parameter qb . For the definitions of the parameters and initial conditions, see Sec.II. E.

F) Growth of the projected area of a vase and its limiting mechanism. In this section we
intend to reveal the rate-limiting step of growth in Regime I, guided by the rate measurements
in the microfluidics experiments. In a growing conical vase, only two of the curvatures, namely
κg and κN are finite (Fig. 2 B). Furthermore, since the vase acquires a planar circular growth
front, the spatial derivatives along the growth site vanish. Then, Eq. S20 at the interface of a
conical vase, where the Gaussian curvature κG also vanishes, becomes

dκg
dt

= κ2
gU . (S30)

When the growth rate is reaction or interface controlled, then the speed should be propor-
tional to the reactant concentration Cx at the interface, namely U ∼ Cx . It is well known
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that the curvature of an interface alters the local concentration, such that it decreases if the in-
terface protrudes into the solution and increases in a trough. This condition is known as the
Gibbs-Thomson relation, and is given in our case as Cx = C0 + C1`κg (25). Here C0 > 0 is
the concentration at the wall front that is flat, and C1 > 0 is the change in the concentration
in response to the interface geometry, which is proportional to the line tension of the front.
Furthermore, κg < 0 always throughout the evolution of a conical vase.

To reveal the limiting step of the growth, we will suppose the simplified general form for
the speed

Ũ ≡ α̃0 + α̃1κg . (S31)

In case the growth is reaction limited, α̃0 and α̃1 > 0 are proportional toC0 andC1 , respectively.
However, for a diffusion-limited growth mechanism as in Eq. S26, α̃0 = 0 and α̃1 < 0 , i.e. the
sign of α̃1 is such that it induces an instability due to the enhanced or suppressed diffusive flux of
excess chemicals away from the curved interface. Then, Eq. S31 becomes a mere simplification
of Eq. S26 at first order, where other higher order terms are zero.

Eqs. S30 and S31 permit a simple law for the areal growth rate. Definining the total cur-
vature of a circular interface with a radius r = r(t) as κ ≡ 1/r , and the angle between the
vase wall and the substrate as β (Fig. 1 E), we find that the geodesic curvature is given by
κg = −κ cos β and the normal curvature by κN = κ sin β . Then, the combination of Eqs. S30
and S31, as well as the expression of the geodesic curvature in terms of the interface radius
yield

1

2

dr2

dt
= α̃0r cos β − α̃1 cos2 β . (S32)

Eq. S32 can also be recovered by replacing the normal curvature in terms of the total curvature
into Eq. S21 and taking κN,2 = τg = ∂U/∂s = 0 . In order for the projected area to increase
linearly in time as in the experiments, the right-hand side of Eq. S32 must be independent of the
radius r and be positive. This means that α̃0 = 0 and α̃1 < 0 , which indicates that the growth
is controlled by diffusion. For Regime I, this result excludes the scenario unambiguously where
the limiting factor is the reaction rates of BaCO3 and SiO2 , assuming that the projected area of
the vases grows linear in time just like the corals in this regime.

Next, we determine α1 > 0 from the experiments, which is the scalar prefactor of the first
term of the speed, as given in Eq. S26. When α̃0 = 0 and α̃1 ≡ −α1 , Eq. S32 can be rewritten
as

d(πr2)

dt
= 2πα1 cos2 β . (S33)

The right-hand side of Eq. S33 is equal to 30−50µm2/min in a microfluidic channel (Fig. 1 G, H).
We find that 2π cos2 β ∼ O(1) for the values of the initial slopes used in the simulations, thus
α1 ∼ 30− 50µm2/min.
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III. Other supplementary materials
A) Stereolithography (STL) files

We provide STL files to enable the reader to 3D print the simulated sculptures or closely in-
vestigate their structural details in an STL file viewer, such as the freely distributed softwares
Blender 2.76 (https://www.blender.org/) or MeshLab: an Open-Source Mesh Processing Tool
(http://meshlab.sourceforge.net/). The URL link to the STL files in the Science database is
given at the end of the main text. For printing purposes, thickness is added to the simulated
surfaces via the “Solidify Modifier” option in Blender, and the modified structures are exported
in the STL format. The ideal printing size of each sculpture is given in metric units in the file
names along its longest cartesian dimension, in accordance with the coordinate system in the
corresponding figure. Note that not all of the simulated structures in the STL files are to scale
since e.g. the longest helix is roughly 18 times taller than a petal. Defining the scale of the
vases as unity (s̃v ≡ 1), the petals are at a scale s̃p = 3, i.e. they are magnified three times with
respect to a vase to highlight their details. The helix at qb = 0.8 is at a scale s̃h1 = 0.75 , and
the helices at qb = 0.9 and qb = 1 are at a scale s̃h2 = 1.25 . The scales of the structures grown
in two and three steps are, respectively, s̃2 = s̃3 = 1.5 .

B) Movies

Movie S1. The formation of coral-like structures in distinct bands inside a microfluidic cham-
ber where the reaction conditions are conrolled. CO2 enters the channel via a semipermeable
PDMS membrane that is situated at the bottom edge.
Movie S2. The simulated growth of two vase-shaped structures at the bending parameters
qb = 10−3 and qb = 0.013 . Each second of the movie corresponds to 48T , where T is the
characteristic time scale of growth (see Section II. E for the definition of T ). The red curves
denote the growth site.
Movie S3. The simulated growth of two petal-shaped structures at qb = 10−3 and qb = 0.07 .
Each second of the movie corresponds to 1.5T . T is the characteristic time scale of growth
(defined in Section II. E).
Movie S4. The simulated growth of a helix at qb = 0.8 . Each second of the movie corresponds
to 96T . T is the characteristic time scale of growth (defined in Section II. E).
Movie S5. The simulated growth of a helix at qb = 0.9 . Each second of the movie corresponds
to 12T . T is the characteristic time scale of growth (defined in Section II. E).
Movie S6. The simulated growth of a helix at qb = 1 . Each second of the movie corresponds
to 6T . T is the characteristic time scale of growth (defined in Section II. E).
Movie S7. The simulation of a two-step growth sequence. Each second of the movie corre-
sponds to 12T . The green curves denote the heights at which a change in qb is imposed. T is
the characteristic time scale of growth (defined in Section II. E).
Movie S8. The simulation of a three-step growth sequence. Each second of the movie corre-
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sponds to 12T . T is the characteristic time scale of growth (defined in Section II. E).
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