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Inspired by the differential-growth-driven morphogenesis of
leaves, flowers, and other tissues, there is increasing interest
in artificial analogs of these shape-shifting thin sheets made of
active materials that respond to environmental stimuli such as
heat, light, and humidity. But how can we determine the growth
patterns to achieve a given shape from another shape? We solve
this geometric inverse problem of determining the growth fac-
tors and directions (the metric tensors) for a given isotropic elas-
tic bilayer to grow into a target shape by posing and solving an
elastic energy minimization problem. A mathematical equivalence
between bilayers and curved monolayers simplifies the inverse
problem considerably by providing algebraic expressions for the
growth metric tensors in terms of those of the final shape. This
approach also allows us to prove that we can grow any target
surface from any reference surface using orthotropically grow-
ing bilayers. We demonstrate this by numerically simulating the
growth of a flat sheet into a face, a cylindrical sheet into a flower,
and a flat sheet into a complex canyon-like structure.

inverse physical geometry | growth | form | morphogenesis | 4D printing

Nonuniform in-plane growth of thin sheets generically leads
to metric frustration that is relieved by out-of-plane buck-

ling. This mechanism lies at the heart of many morphogenetic
processes in botany, such as the shaping of a leaf (1), the bloom-
ing of a flower (2), or the explosive dispersal of seeds from cer-
tain pods (3). From an engineering perspective, these examples
raise the possibility of biomimetic design: programming shape
(morphogramming) into matter that can be actuated with envi-
ronmental signals such as light, temperature, or concentration.

The theory of non-Euclidean plates and shells that links the
elastic response of materials into the correctly invariant frame-
work provided by differential geometry (1, 4–8) is a natural start-
ing place to analyze the growth and form of sheets and shells.
Growing a thin structure by changing the in-plane intrinsic dis-
tances and angles between material elements makes its metric
non-Euclidean; generically, this implies that the strain-free refer-
ence configuration may not be physically realizable in 3D space.
Therefore, the system settles into a residually strained equilib-
rium configuration that is determined by a local minimum of the
energetic cost of stretching and bending the sheet. Generally, this
state might not be unique, and, typically, there will be a range
of metastable configurations accessible to the system. This raises
the natural question of the inverse problem: How should one
program growth patterns into a sheet so that it morphs into a pre-
scribed target shape? Recent attempts to solve this question have
focused on theoretical designs of optimal growth patterns for the
weakly nonlinear deformations of thin shape-shifting isotropic
elastic sheets (9), axisymmetric growth patterns for morphable
shells (10), design of director fields into deformable nematic elas-
tic sheets (11), or a 4D phytomimetic printing approach based
on a linearized elastic analysis to derive the print paths of an
anisotropic bilayer made of a responsive ink (12). However, there
is no general theoretical or computational framework to solve
this inverse problem.

Here, we address this question in the context of a growing
elastic bilayer, inspired by the growth and form of plant organs

such as leaves and flowers that are usually made of two cell
layers that adhere to each other and can grow independently.
This bilayer geometry may be naturally described in terms of
an infinitesimally-thin “midsurface” and a “thickness” h that is
amenable to a physical description as a thin elastic shell capable
of in-plane growth. For very thin plates and shells, an asymp-
totically correct low-dimensional description of the solid can be
used to justify the Kirchhoff–Love assumption, namely, that nor-
mals to the cross-section are inextensible and remain normal dur-
ing deformations. Then, the shell volume is characterized at all
times in terms of a solid that extrudes a short distance in the
normal direction above and below the midsurface. We assume
that growth (i) occurs only in the in-plane directions (tangent to
the midsurface) and that (ii) the shell can be divided into several
“layers,” with growth constant through the thickness direction
for each layer. These assumptions allow us to represent growth
within each layer as a tensor field specified at each point of the
midsurface. “Isotropic growth” consists of an equal growth fac-
tor in all in-plane directions at every point, and is thus encoded
by one independent degree of freedom (the isotropic scaling fac-
tor) per layer at each point on the midsurface. With “orthotropic
growth,” the growth factor of the material at each point is a func-
tion of the in-plane direction, providing three degrees of freedom
per layer for each location on the midsurface: the two growth fac-
tors in the orthogonal “principal growth directions” and the pla-
nar rotation angle of this axis. Given the ubiquity of the bilayer
geometry in plant organs, and the ease of additive manufactur-
ing techniques that allow us to approach this possibility, we will
focus on this case from now on.

Such a bilayer where each of the two layers can experience
independent orthotropic growth (Fig. 1, Left) has six degrees of
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Fig. 1. (Left) A growing bilayer is considered as two independently, possibly inhomogeneously, growing layers, characterized by their own respective
metrics ar1 and ar2, that are glued together at a shared midsurface. In this example, each layer grows in only one direction, orthogonal to that of the other
layer, with the linear growth factor s > 0. After each layer is grown, the bilayer embedding that minimizes the total elastic energy, characterized by first
and second fundamental forms ac and bc, can be computed. (Right) The surface M is defined as an embedding ~m of an arbitrary region of the plane U into
R3. The embedding provides a normal field ~n, as well as the first and second fundamental forms ac and bc, as described in the text.

freedom at every location along the common midsurface. Any
choice of these degrees of freedom constitutes a growth field for
the shell, giving rise to an equilibrium shape in R3 determined
by minimizing the elastic energy of the composite. The design of
the growth pattern to achieve a given target shape from an initial
reference state leads to the formulation of the following inverse
problem: Is it possible to find growth factors and directions for
an orthotropically growing bilayer, so that its midsurface changes
from a region of the plane or other simple shape initially, into
some specified target surface after growth?

Classical differential geometry of 2D surfaces (13) tells us
that a surface is uniquely defined by two symmetric quadratic
forms (the first and second fundamental form), which consist of
six quantities at every location along it. Naive counting of the
degrees of freedom suggests that since we have three degrees of
freedom associated with the in-plane growth of each of the layers
in the composite bilayer, solutions to the inverse problem should
be possible. In this work, we show that a solution does indeed
always exist for the inverse problem when regularized as an elas-
tic energy minimization problem. Furthermore, while this solu-
tion typically does not yield a resultant shape with zero residual
strain (due to incompatibility when crossing from one layer to the
other through the midsurface), we show that the residual strain
is constant (i.e., independent of the realization of the bilayer).
We provide a simple algebraic expression for the growth factors
and angles that achieve this solution, allowing any bilayer to grow
into any target shape.

Geometry and Elasticity
We parameterize the midsurface of a shell using curvilinear coor-
dinates (x , y) in a domain U of the plane, and define its embed-
ding in space by a map ~m :U→ R3. Each point ~m(x , y) on
the midsurface is characterized by its tangent vectors ∂ ~m/∂x
and ∂ ~m/∂y , and a normal unit vector ~n = (∂ ~m/∂x × ∂ ~m/∂y)/
‖∂ ~m/∂x × ∂ ~m/∂y‖, as shown in Fig. 1, Right. By using the
Kirchhoff–Love assumption, any material point ~s inside the vol-
ume of the shell can then be written in terms of a normal offset
from the midsurface:

~s(x , y , z ) = ~m(x , y) + z~n(x , y),

where z ∈ [−h/2, h/2], and h is the thickness of the shell. This
map gives rise to a metric G on the volume U × [−h/2, h/2]

G(x , y , z ) = (d~s)Td~s =

(
gc(x , y , z ) 0

0 1

)
,

with the 2× 2 tensor gc defined as

gc(x , y , z ) ≡ (d~m + zd~n)T (d~m + zd~n)

= ac(x , y)− 2zbc(x , y) +O(z 2),

where ac =(d~m)Td~m and bc =−(d~m)Td~n =−(d~n)Td~m are
the first and second fundamental forms of the midsurface in the
current configuration. The metric gc can be interpreted as mea-
suring the lengths of tangent vectors on any offset surface normal
to the midsurface, as well as the angles between them.

Similarly, we can describe the “growth” of U by prescribing a
rest (unstrained) metric gr to each location in the shell. This rest
metric can be written similarly:

gr (x , y , z ) = ar (x , y)− 2zbr (x , y) +O(z 2).

In general, the shell whose midsurface is described by this growth
metric will not have a strain-free embedding in three dimensions,
so that for any actual embedding, the shell will be subject to resid-
ual strain. To understand which embedding is then realized in
physical space, we must therefore turn to a physical description
of the shell as an elastic object.

Elastic Energy of a Curved Monolayer. Given the “rest quantities”
U , ar and br , we can compute for any map ~m an elastic poten-
tial energy E(~m), so that ~m is an equilibrium embedding of
(U , ar , br ) whenever d~mE =0 (i.e., whenever ~m extremizes the
elastic energy). Assuming a hyperelastic isotropic material con-
stitutive model for the material of the shell (known as a St.
Venant–Kirchhoff model), we can derive (see SI Appendix for
details) the depth-integrated elastic energy as

EML =
1

2

∫
U

[
h

4
‖a−1

r ac − I‖2e

+
h3

12
‖a−1

r (bc − br )‖
2

e

]√
det ar dx dy ,

[1]
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where ac and bc are, respectively, the first and second funda-
mental form of the midsurface in its current realization (and so
depend on ~m). Here, the norm ‖ A ‖2e = αTr2(A) + 2βTr

(
A2
)

defines the elastic constitutive law (14), with α=Y ν/(1 − ν2)
and β=Y /(2+ 2ν), where Y is the Young’s modulus and ν the
Poisson’s ratio of the material. We note that this energy formula-
tion contains the classical decomposition into a stretching energy
term ofO(h), penalizing the stretch and shear of the midsurface,
and a bending energy term ofO(h3), measuring the resistance to
curvature (15). Furthermore, for weakly nonlinear deformations
this energy formulation is equivalent to the well-known Föppl–
Von Karman formulation for thin elastic plates (see SI Appendix
for details of this equivalence).

Elastic Energy of a Bilayer. A bilayer is made of two monolayers of
thickness h/2 each, that have been ‘glued’ together at the shared
midsurface. Each of the layers has its own independent first fun-
damental form given by ar1 for the bottom and ar2 for the top
layer (Fig. 1, Left). Here, ‘bottom’ and ‘top’ are used with the
convention of midsurface normal vectors pointing upward (i.e.,
into the layer whose metric is ar2).

The elastic energy of a bilayer made of two layers with metrics
given by ar1 and ar2, and a midsurface embedded in R3 with first
and second fundamental forms ac and bc , can then be written as
the sum of the energies of the individual layers. After integration
over the depth of each layer, we obtain the energy as an integral
over the common midsurface (SI Appendix)

EBL =
1

2

∫
U

[
h

8
‖a−1

r1 ac − I‖2e +
h3

24
‖a−1

r1 bc‖
2

e

+
h2

8

〈
(a−1

r1 ac − I), a−1
r1 bc

〉
e

]√
det ar1 dx dy

+
1

2

∫
U

[
h

8
‖a−1

r2 ac − I‖2e +
h3

24
‖a−1

r2 bc‖
2

e

−h2

8

〈
(a−1

r2 ac − I), a−1
r2 bc

〉
e

]√
det ar2 dx dy ,

[2]

where we have defined an elastic energy inner product 〈A, B〉e =
αTr(A)Tr(B)+ 2β Tr (AB). In the special case when the two
monolayers grow exactly the same amount starting from a flat
reference configuration, ar1 = ar2 = ar so that this energy sim-
plifies to the monolayer energy of Eq. 1.

Energy Equivalence Between Monolayers and Bilayers. A natural
question that is raised by the geometric and mechanical descrip-
tion of the composite bilayer is whether we can relate it to an
equivalent monolayer with appropriate first and second funda-
mental forms. In this work we show that, indeed, if ar and br are
appropriately expressed in terms of ar1 and ar2, the energy of
a monolayer can be related to the energy of a bilayer whenever
they share the same realization of their midsurfaces.

To see this equivalence, consider the ansatz ar =(ar1 + ar2)/2
and br = ζ(ar1− ar2)/h . The simple and natural choice ζ =1/2
has been proposed in ref. 3 and adopted in ref. 11; however, an
analysis of the shell energetics suggests that this value is incor-
rect: Substituting the ansatz above into the expression for EBL
shows that the correct choice is actually ζ =3/4 as it yields the
result (see SI Appendix for details)

EBL = EML +

∫
U

h3

72
‖a−1

r br‖
2

e

√
det ar dx dy . [3]

The last term on the right side corresponds to a strain that is
independent of the embedding, since it does not depend on ac

and bc . This result shows that the minimum-energy realization
of a monolayer with reference quadratic forms

ar =
1

2
(ar1 + ar2), br =

3

4h
(ar1 − ar2), [4]

is identical to that of a bilayer with ar1 and ar2, allowing for
a much simpler representation of the composite made of two
elastic layers of the same thickness in terms of an energetically
equivalent monolayer with curved reference configuration. The
generalization to a bilayer with layers of unequal thicknesses
and/or Young’s moduli can be solved similarly, where Eqs. 3 and
4 become functions of h1, h2, Y1, and Y2, which define the thick-
nesses and Young’s moduli of the bottom and top layer, respec-
tively (see SI Appendix for details).

Forward Problem of Growth
The result of Eqs. 3 and 4 can be used to compute the quadratic
forms ar and br , defining the monolayer that is energetically
equivalent to a bilayer with individual layer metrics ar1 and
ar2. However, for the corresponding midsurface to have a valid
embedding in 3D space, we need to satisfy certain compatibility
relations between the first and second fundamental forms. Those
relations are given by three differential compatibility relations:
the Gauss and Peterson–Mainardi–Codazzi equations (13). The
six degrees of freedom of ar and br , or equivalently ar1 and ar2,
together with these three differential relations, can be integrated
to obtain the three components of ~m at each location on the sur-
face (up to rigid body motion), as specified by the Bonnet theo-
rem (ref. 16, p. 236); see SI Appendix for the mathematical details
of these constraints.

To give a sense of how this plays out practically, we consider
two examples of the forward problem. First, consider the case of
Fig. 1, Left, where we prescribed orthotropic growth to each of
the layers, with the top layer growing in one principal direction
and the bottom layer growing in the orthogonal direction. Both
layers experience 1D expansion with the same, constant factor s ,
so that the affected metric entry for each of the layers gets scaled
by (1 + s)2. The quadratic forms of the energetically equivalent
monolayer, ar and br , are then given by Eq. 4. It is easy to see
that these two forms, being spatially homogeneous, automati-
cally satisfy both of the Peterson–Mainardi–Codazzi equations.
Gauss’ equation, however, cannot be satisfied: The Gauss cur-
vature K of the suggested embedding is necessarily negative for
any growth factor, whereas the derivatives of the metric ar are
identically zero. This means that no surface with ac = ar and
bc = br can exist, as it would violate Gauss’s Theorema Egregium
(13). The equilibrium configuration in Fig. 1, Lower Left is
therefore characterized by residual strain (see SI Appendix for
details).

Second, consider a modification of the example of Fig. 1,
where the two layers instead grow in the same direction, but
with different growth factors s1 and s2. For this case, the first
and second fundamental forms ar and br satisfy the compati-
bility relations identically, and correspond to a surface of zero
Gauss curvature. Furthermore, if we assume small growth fac-
tors, we find that the nonzero principal curvature of the resulting
surface is equal to 3/(2h)(s1 − s2). This result is identical to the
classical analysis of Timoshenko (17) for the curvature of heated
bimetallic strips, and the correspondence holds also for the case
of unequal layer thicknesses and unequal layer Young’s moduli
(see SI Appendix for more details). Our solution, summarized in
Eqs. 3 and 4, therefore not only generalizes Timoshenko’s theory
to nonlinear elasticity and arbitrary growth factors, but can also
be seen as its extension that allows us to proceed from strips to
surfaces.

Inverse Problem of Growth
As noted above, inhomogeneous orthotropic growth for each
layer in the bilayer can be represented in terms of three degrees
of freedom at every point—two growth factors corresponding to
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the growth in orthogonal principal directions and one angle to
define the axes. Together, these three values define the symmet-
ric positive definite first fundamental form at a given location.
For orthotropic growth of a bilayer, we therefore have indepen-
dent control of the first fundamental forms for the bottom and
top layer, which provides six degrees of freedom for each point
on the surface. This leads to the following theorem:

Theorem 1. Given any surface M ⊂R3 and any shaped planar
region U ⊂R2 (topologically compatible with M ) with embedding
~m :U →R3, so that the immersion of ~m is equal to M , there exists
a bilayer (U , ar1, ar2), with sufficiently small desired thickness h
so that ~m defines the energetically equilibrated configuration of the
bilayer’s midsurface. This bilayer is defined by

ar1 = ac +
2h

3
bc , ar2 = ac −

2h

3
bc , [5]

where ac and bc are the first and second fundamental forms of M .
Moreover, this embedding is free of residual strain, with the excep-
tion of a deformation-independent strain due to incompatibility of
the bilayers at their common boundary. Finally, the metrics ar1 and
ar2 as defined in Eq. 5 can be decomposed as orthotropic growth of
a bilayer on U .
Proof. Eq. 3 states that the minimum energy embedding of
a curved monolayer, with ar =(ar1 + ar2)/2 and br =3(ar1−
ar2)/(4h), is identical to that of a bilayer with ar1 and ar2. From
Eq. 1 we can immediately see that the minimum energy config-
uration of a curved monolayer with embedding ~m is achieved if
ar = ac and br = bc . With ar and br defined as such, we can solve
for ar1 and ar2 of the bilayer using Eq. 4, resulting in Eq. 5. From
Eq. 3, we can see that the resulting bilayer embedding is free
of residual strain except for the already-mentioned deformation-
independent term. Finally, by performing a spectral decomposi-
tion of the metric, we can write both ar1 and ar2 as orthotropic
growth of a bilayer on U .

With this theorem, we have the capability to grow any ini-
tial bilayer structure into any target shape. However, we need
to specify two practical considerations. First of all, the metrics
ar1 and ar2, defined by Eq. 5 have to be positive-definite to be
admissible (13). We show in the SI Appendix that this results in
the constraint

max (|κ1|, |κ2|) <
3

2h
,

where κ1 and κ2 are the principal curvatures of the target sur-
face. In theory, this condition can always be met if the bilayer
is thin enough, although in practice, manufacturing constraints
on the thickness may limit the space of target shapes that can
be grown.

Secondly, the trajectory of growth that is followed to tran-
sition from initial to final bilayer metrics might pose compli-
cations in practice. Although the embedding of the geometry
that globally minimizes the energy given the final bilayer met-
rics is always unique and identical to the target configuration,
some growth trajectories might result in a metastable shape dif-
ferent from the target shape. Since any metastable shape can
always be “snapped” into the desired target shape, this issue
is of secondary importance to our main contribution, yet pro-
vides some interesting questions. In particular, to guarantee that
a growth process always results in the target shape, we antici-
pate two numerical and/or physical difficulties that could arise
during interpolation of the metrics. First, it is important for the
symmetric positive definite (SPD) matrices encoding the bilayer
metrics to vary smoothly over time and remain SPD throughout
the interpolation, and, moreover, for the eigenvectors and eigen-
values (encoding the anisotropy amount and direction) to vary as

smoothly as possible during interpolation. Second, interpolated
bilayer metrics at intermediate growth stages should remain as
compatible as possible; by this, we mean that the first and second
fundamental form corresponding to the interpolated bilayer met-
rics should deviate as little as possible from satisfying the Gauss
and Peterson–Mainardi–Codazzi compatibility relations. Other-
wise, residual strain accumulates during the interpolation and
could pose an energetic barrier between the final realized shape
and the target solution. Again, the target solution would still
be the global energetic minimum, but physically or numerically,
we could find ourselves stuck at a local minimum. A particular
numerical example of this is further detailed in the SI Appendix,
for the case of the snapdragon flower growth case shown below.

A systematic approach to completely avoiding metastable
states during the growth process is a very interesting direction
for future work, and we can now pose the problem in a crisp way:
Is it possible to interpolate two pairs of bilayer metrics, so that
the equivalent minimum-energy midsurface fundamental forms
are always compatible? Even more interesting is the prospect to
harness incompatibility at intermediate growth stages to control
the final grown shape, or exploit multiple solutions depending on
the spatiotemporal distribution of growth, for instance, by snap-
through (18).

Results
For parametrized surfaces, we can use Eq. 5 directly to solve
the inverse problem algebraically. In simple situations associated
with parametric surfaces that have explicit fundamental forms
(e.g., a hemisphere, catenoid, and a saddle), we can carry out
these computations analytically (SI Appendix). However, to truly
demonstrate the usefulness of our approach, we need to show
how to design growth patterns for complex shapes with multiple
spatial scales. We do this by using numerical methods to mini-
mize Eq. 2. For a given 3D target surface, we first triangulate it
using a mesh that can capture the smallest length scale of inter-
est, and then compute the current first and second fundamen-
tal forms ac and bc . We compute the first fundamental forms of
the two layers that constitute the bilayer according to Eq. 5, and
decompose each of them spectrally into local orthotropic growth
rules for a given reference mesh and its corresponding bilayer
metrics. We then interpolate the growth factors on each point in
the initial mesh into a set of discrete values between those of the
reference and target surfaces and solve a sequence of problems
to determine the intermediate equilibrium configuration at each
of the discrete growth steps. This provides a way to visualize the
transition from initial to final configuration in a quasi-static man-
ner, and further allows us to design arbitrary way-points between
the initial and final state (SI Appendix).

Inspired by recent work on floral morphogenesis (19–21), we
first show how we can grow a cylinder made of two thin sheets
of the same uniform thickness into a snapdragon flower. In this
case, we assume the initial cylinder, with aCYL and bCYL, is formed
by a bilayer with growth factors aCYL

r1 and aCYL
r2 , defined according

to Eq. 5. The snapdragon flower, with aSD and bSD, is similarly
represented by a bilayer with aSD

r1 and aSD
r2 . To interpolate

the reference first fundamental forms of the bilayer from
(aCYL

r1 , aCYL
r2 ) to (aSD

r1 , a
SD
r2 ), we follow a log-Euclidean method

(22): Linear interpolation in log-space ensures smoothly varying
symmetric positive-definite tensors with monotonically-varying
determinants at any point in the growth process. At each interme-
diate pair of first fundamental forms, we compute the minimum-
energy embedding corresponding to the interpolated bilayer
metrics. To address the incompatibility of first and second fun-
damental forms at intermediate stages, we guide the growth
process by prescribing four intermediate states, which serve as
“way-points” for the growth trajectory (see SI Appendix for more
details). In Fig. 2, Left, and Movie S1, we show a sequence of
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Fig. 2. Inverse design of vegetable, animal, and mineral surfaces. A snapdragon flower petal starting from a cylinder (Left), a face starting from a disk
(Center), and the Colorado River horseshoe bend starting from a rectangle (Right). For each example, we show the initial state (top), the final state (bottom)
and two intermediate grown states in between. In each state, the colors show the growth factors of the top (left) and bottom (right) layer, and the thin black
lines indicate the direction of growth. The top layer is viewed from the front, and the bottom layer is viewed from the back, to highlight the complexity
of the geometries. The target shape for each case is given in Inset at the bottom: a snapdragon flower (image courtesy of E. Coen); a computer-render of
a bust of Max Planck (model is provided courtesy of Max Planck Institute for Informatics by the AIM@SHAPE Shape Repository); a satellite photo of the
actual river bend (image courtesy of Google Earth). The height of the actual snapdragon flower is ∼30 mm (19), whereas the depth of the canyon is 393 m
according to USGS elevation data. (See SI Appendix for animations and details.)

intermediate shapes viewed from two different angles and, for
comparison, the actual snapdragon flower.

To highlight the ability of our approach to capture complex
surface geometries with features on multiple scales, we turn to
the human face. In Fig. 2, Center, and Movie S2, we show that we
can grow an initially flat bilayer disk into a 3D model of a human
face, that of the physicist Max Planck. In this case, we linearly
interpolate the growth factors from unity, on the initial disk, to
their final values computed from Eq. 5, and show the result for
energetic equilibria at two intermediate stages.

Finally, we use our inverse-design theory to grow a simulacrum
of a complex inanimate surface, a horseshoe bend in the Col-
orado River in Arizona. Using United States Geological Survey
(USGS) elevation data, we create our 3D target shape and grow
it from a rectangular sheet. As in the snapdragon example, we
use anchor points to guide the interpolation (see SI Appendix
for more details). In Fig. 2, Right, and Movie S3, we show a
sequence of intermediate shapes obtained during the growth
process. These numerical results demonstrate the practical valid-
ity of our theoretical framework that allows us to capture the

shapes of complex absolute-scale-independent surfaces from the
animal, vegetable, and mineral world.

Discussion
This study poses and solves the inverse-design problem of design-
ing growth patterns for creating complex shapes from a uniformly
thin isotropic elastic bilayer capable of sustaining orthotropic
growth. It opens the way for formulating and solving other
variants of the inverse-design problem for growth-metric ten-
sors encountered in such cases as a single growing monolayer,
isotropically growing bilayers (23), or the most general case of
orthotropically growing bilayers with incompatible metrics, all
of which will generally require numerical approaches for both
the forward and inverse problems. The generalization to account
for situations where the thicknesses of the two layers h1 and h2
are unequal (SI Appendix) provides yet another perspective, as
this can be exploited for applications such as artificial lenses (24)
or controlled actuation of the curvature in the presence of con-
straints. It is worth noting that in all of these situations, there are
specific instances where the final residually strained state may
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constitute an orbit of connected minima associated with a Gold-
stone mode, e.g., saddle-like solutions in heated or swollen plates
(refs. 9 and 15, p. 158), but the general nature of these states and
how to design them remains open.

Our approach is agnostic to the actual mechanism that induces
this growth, whether it is heat, light, swelling, or biological
growth, as long as it is mathematically equivalent to changing
the metric of the constituent layers. While the experimental real-
ization of bilayers is easy using additive manufacturing, achiev-
ing general orthotropic growth is currently more challenging.
An existing technique for orthotropic growth relies on locally
embedding fibrils in an isotropically growing base material, pro-
viding control over the angle between two fixed orthotropic
swelling factors through the print direction (12). To also vary the
other two degrees of freedom would require further control over

either the density of the fibrils in two orthogonal directions, or
the density in one direction together with the isotropic growth
factor of the base material, for each point in each layer. Alter-
natively, one could consider discrete lattice or origami-type sur-
faces that approximate the features of a continuous surface at a
larger scale. This simplifies the problem by replacing the exact
local control of growth by approximate control of an appropri-
ate nonlocal average and is likely to be the first to be realizable
experimentally.
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S1 Geometry and elasticity
This section accompanies the ‘Geometry and elasticity’ section of the main text. Starting with
the geometric setting of the problem, we will derive in detail the the monolayer energy, the
bilayer energy, and the equivalence between the two for equal and unequal layer thicknesses and
Young’s moduli.

We parameterize the midsurface of a shell using curvilinear coordinates (x, y) in a domain
U of the plane, and define its embedding in space by a map ~m : U → R3. Each point ~m(x, y)
on the midsurface is characterized by its tangent vectors ∂ ~m/∂x and ∂ ~m/∂y, and a normal unit
vector ~n = (∂ ~m/∂x× ∂ ~m/∂y) /‖∂ ~m/∂x× ∂ ~m/∂y‖, as shown in figure 1 of the main text. Using
the Kirchhoff-Love assumption, we can extend ~m to an immersion ~s of U × [−h/2, h/2], where h
is the thickness of the shell. This extension dictates that any material point inside the volume
of the shell can be written as a normal offset from the midsurface:

~s(x, y, z) = ~m(x, y) + z~n(x, y),

where z ∈ [−h/2, h/2], and the normal field ~n is defined by

~n = (∂ ~m/∂x× ∂ ~m/∂y) /‖∂ ~m/∂x× ∂ ~m/∂y‖.

This map gives rise to a metric G on the volume U × [−h/2, h/2]

G(x, y, z) = (d~s)T d~s

=

(
d~m+ zd~n)T (d~m+ zd~n) 0

0 ~nT~n

)

=

(
gc(x, y, z) 0

0 1

)
,

where d denotes the differential operator1. The 2 × 2 tensor gc can be understood as a metric
on offset surfaces from the mid-surface. In other words, when extruding a distance z in normal
direction from the point (x, y) on the mid-surface, we arrive at an offset surface with metric
gc(x, y, z). We can expand gc as follows

gc(x, y, z) = (d~m+ zd~n)T (d~m+ zd~n)

= (d~m)
T d~m+ z((d~m)

T d~n+ (d~n)
T d~m) + z2 (d~n)

T d~n

= ac(x, y)− 2zbc(x, y) + z2cc(x, y)

where ac = (d~m)
T d~m, bc = − 1

2 ((d~m)
T d~n+(d~n)

T d~m), and cc = (d~n)
T d~n, are the first, second

and third fundamental forms of the midsurface in the current configuration. It is a standard
result that (d~m)

T d~n is symmetric, so that

bc = − (d~m)
T d~n = − (d~n)

T d~m =

[
~mxx · ~n ~mxy · ~n
~mxy · ~n ~myy · ~n

]

Similar to the current configuration, we can define a rest (unstrained) metric gr to each
location in the shell, which can be written as

gr(x, y, z) = ar(x, y)− 2zbr(x, y) + z2cr.

1We use the lower-case d as differential operator, so that if a function f : Rn → Rm, the differential df is a
m× n matrix where the ith column consists of (∂f/∂xi).
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As noted in [1], this metric does not need to correspond to any embedding ~mr of a midsurface
in R3, but can rather be abstract (for instance, originating from growth on top of an initially
planar structure).

The local, directional Green strain given a point p and vector ~w parallel to the xy plane (by
the Kirchhoff-Love assumptions we ignore strain in the thickness direction) is given by

ε(p, ~w) =
1

2

~wTgc(p)~w − ~wTgr ~w

~wTgr ~w
,

and uniformity and isotropy of the shell material implies that the shell energy must be a sym-
metric function of the eigenvalues of

ε =
1

2
g−1r (gc − gr). (S1.1)

Since the elastic energy E is required to be zero and at a local minimum when both eigenvalues
are 0, E cannot have any constant term or linear terms in the eigenvalues. A St. Venant-
Kirchhoff material model assumes there are no terms higher than quadratic, which leads to an
expression for the total energy of the shell,

E =
1

2

∫

U

∫ h/2

−h/2

(
αTr2(ε) + 2β Tr

(
ε2
))√

det gr dz dx dy,

where α and β are plane-stress Lamé parameters, which can be written in terms of the Young’s
modulus Y and the Poisson’s ratio ν

α =
Y ν

1− ν2 , β =
Y

2(1 + ν)
.

We define the elastic energy norm as [2]

‖A‖2e = αTr2(A) + 2β Tr(A2), (S1.2)

so the total energy of the shell can be written simply as

E =
1

2

∫

U

∫ h/2

−h/2
‖ε‖2e

√
det gr dz dx dy. (S1.3)

S1.1 Elastic energy of a curved monolayer
In this section we will derive the final form of the energy for a thin elastic monolayer, following
roughly the derivation of [2]. To simplify notation, we define an elastic energy inner product

〈A, B〉e = αTr(A) Tr(B) + 2β Tr(AB),

which obeys the following identities

〈A, A〉e = ‖A‖2e
〈λA, B〉e = 〈A, λB〉e = λ 〈A, B〉e
〈A, B〉e = 〈B, A〉e

〈A + B, C〉e = 〈A, C〉e + 〈B, C〉e

3



S1.1.1 Energy derivation

We can expand g−1r as follows:

g−1r = (ar − 2zbr + z2cr)−1

= a−1r + 2za−1r bra
−1
r + z2

(
−a−1r cra

−1
r + 4a−1r bra

−1
r bra

−1
r

)
+O(z3).

We can therefore write for the strain:

2ε = g−1r (gc − gr) = g−1r gc − I

=
[
a−1r + 2za−1r bra

−1
r + z2

(
−a−1r cra

−1
r + 4a−1r bra

−1
r bra

−1
r

)
+O(z3)

] [
ac − 2zbc + z2cc

]
− I

= (a−1r ac − I)− (2a−1r [bc − bra
−1
r ac])z +

[
4a−1r bra

−1
r (bra

−1
r ac − bc) + a−1r (cc − cra

−1
r ac)

]
z2 +O(z3)

Now we neglect the terms of order O(z2) and higher. For the first order term, we further assume
that ‖a−1r ac − I‖∞ ≤ h so that

za−1r [bc − bra
−1
r ac] ≈ za−1r (bc − br) +O(h)

We then get

ε =
1

2
(a−1r ac − I)− za−1r (bc − br) +O(z2)

We can now compute ‖ε‖2e:

‖ε‖2e = 〈ε, ε〉e
=

〈
1

2
(a−1r ac − I)− za−1r (bc − br),

1

2
(a−1r ac − I)− za−1r (bc − br)

〉

e

=
1

4

∥∥a−1r ac − I
∥∥2
e

+ z2
∥∥a−1r (bc − br)

∥∥2
e
− z

〈
(a−1r ac − I), a−1r (bc − br)

〉
e

The area factor can be expanded as

√
det gr =

√
det ar

(
1− Tr(a−1r br)z +

(
1

2
Tr(a−1r cr) +

1

2
Tr2(a−1r br)− Tr

[(
a−1r br

)2]
)
z2 +O(z3)

)
.

Plugging these results into equation (S1.3) and integrating over z, gives the final expression
for the monolayer energy

EML =
1

2

∫

U

∫ h/2

−h/2
‖ε‖2e

√
det gr dz dx dy

=
1

2

∫

U

[
h

4

∥∥a−1r ac − I
∥∥2
e

+
h3

12

∥∥a−1r (bc − br)
∥∥2
e

]√
det ar dx dy +O(h4)

=
1

2

∫

U

EML
√

det ar dx dy +O(h4),

where we have defined the energy density

EML =
h

4

∥∥a−1r ac − I
∥∥2
e

+
h3

12

∥∥a−1r (bc − br)
∥∥2
e
.

4



S1.1.2 Föppl-Von Karman energy for elastic plates

To put the energy formulation used in this work into context, here we derive from it the more
familiar Föppl-Von Karman energy for the case of a deformed elastic plate.

To define a point on the plate, we use the Cartesian coordinate system on the plane (x, y) to
express the midsurface, and define the rest configuration by

~mr(x, y) = (x, y, 0) .

We deform the rest configuration according to a displacement field (u, v, w), leading to the
following deformed configuration

~mc(x, y) = (x+ u(x, y), y + v(x, y), w(x, y))

For this case, discarding all terms of higher order than quadratic in the deflection, we can
write down the Föppl-Von Karman energy as [3, p. 201]

EFvK =
Eh

2(1− ν2)

∫∫ [
(ε11 + ε22)

2 − 2(1− ν)
(
ε11ε22 − ε212

)]
dx dy

+
Eh3

24(1− ν2)

∫∫ [(
∂2w

∂x2
+
∂2w

∂y2

)2

− 2(1− ν)

(
∂2w

∂x2
∂2w

∂y2
−
(
∂2w

∂x∂y

)2
)]

dx dy

where

ε11 =
∂u

∂x
+

1

2

(
∂w

∂x

)2

ε12 =
1

2

(
∂u

∂y
+
∂v

∂x

)
+

1

2

∂w

∂x

∂w

∂y

ε22 =
∂v

∂y
+

1

2

(
∂w

∂y

)2

.

Here we start with our energy formulation

EML =
1

2

∫

U

[
h

4

∥∥a−1r ac − I
∥∥2
e

+
h3

12

∥∥a−1r (bc − br)
∥∥2
e

]√
det ar dx dy,

and note immediately that for this particular rest configuration we can compute ar = I and
br = 0.

For the deformed configuration, we find the coefficients of the first fundamental form ac as

(ac)11 =
∂ ~mc

∂x
· ∂ ~mc

∂x
=

(
1 +

∂u

∂x

)2

+

(
∂v

∂x

)2

+

(
∂w

∂x

)2

(ac)12 =
∂ ~mc

∂x
· ∂ ~mc

∂y
=

(
1 +

∂u

∂x

)
∂u

∂y
+
∂v

∂x

(
1 +

∂v

∂y

)
+
∂w

∂x

∂w

∂y

(ac)22 =
∂ ~mc

∂y
· ∂ ~mc

∂y
=

(
∂u

∂y

)2

+

(
1 +

∂v

∂y

)2

+

(
∂w

∂y

)2

,
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Applying the assumptions of the Föppl-Von Karman approach, we can simplify this to

(ac)11 = 1 + 2
∂u

∂x
+

(
∂w

∂x

)2

= 1 + 2ε11

(ac)12 =
∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y
= 2ε12

(ac)22 = 1 + 2
∂v

∂y
+

(
∂w

∂y

)2

= 1 + 2ε22.

We can use the immersion ~mc to define the normal vector field as

~n(x, y) =

(
∂ ~mc

∂x
× ∂ ~mc

∂y

)
/

∥∥∥∥
∂ ~mc

∂x
× ∂ ~mc

∂y

∥∥∥∥

For the second fundamental form coefficients, the energy density is multiplied by O(h3), and so
we the highest order terms:

(bc)11 = −∂
2 ~mc

∂x2
· ~n = −∂

2w

∂x2

(bc)12 = −∂
2 ~mc

∂x∂y
· ~n = − ∂2w

∂x∂y

(bc)22 = −∂
2 ~mc

∂y2
· ~n = −∂

2w

∂y2

Now we can compute the stretching and bending contributions according to the given energy
formulation. For the stretching contribution we have

∥∥a−1r ac − I
∥∥2
e

= ‖ac − I‖2e =

∥∥∥∥2

(
ε11 ε12
ε12 ε22

)∥∥∥∥
2

e

= 4

[
Eν

1− ν2 (ε11 + ε22)
2

+
E

1 + ν

(
ε211 + 2ε212 + ε222

)]

=
4E

1− ν2
[
(ε11 + ε22)

2 − 2(1− ν)
(
ε11ε22 − ε212

)]

For the bending contribution, we obtain

∥∥a−1r bc

∥∥2
e

= ‖bc‖2e =

∥∥∥∥−
(

∂2w/∂x2 ∂2w/(∂x∂y)
∂2w/(∂x∂y) ∂2w/∂y2

)∥∥∥∥
2

e

=
Eν

1− ν2
(
∂2w

∂x2
+
∂2w

∂y2

)2

+
E

1 + ν

((
∂2w

∂x2

)2

+ 2

(
∂2w

∂x∂y

)2

+

(
∂2w

∂y2

)2
)

=
E

1− ν2

[(
∂2w

∂x2
+
∂2w

∂y2

)2

− 2(1− ν)

(
∂2w

∂x2
∂2w

∂y2
−
(
∂2w

∂x∂y

)2
)]

Now we can write down the full energy

EML =
1

2

∫

U

[
h

4

∥∥a−1r ac − I
∥∥2
e

+
h3

12

∥∥a−1r (bc − br)
∥∥2
e

]√
det ar dx dy

=
Eh

2(1− ν2)

∫

U

[
(ε11 + ε22)

2 − 2(1− ν)
(
ε11ε22 − ε212

)]
dx dy

+
Eh3

24(1− ν2)

∫

U

[(
∂2w

∂x2
+
∂2w

∂y2

)2

− 2(1− ν)

(
∂2w

∂x2
∂2w

∂y2
−
(
∂2w

∂x∂y

)2
)]

dx dy,
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which is identical to the FvK energy.
In case we grow the plate, our strain field gets corrected through a multiplicative decom-

position of the strain tensor. Applying orthotropic growth to the initial reference metric I, we
assume every material line has grown by a factor s1 along the direction given by an angle θ with
respect to the x coordinate, and by a factor s2 in the orthogonal direction. We can then write
the final, grown metric ar through its spectral decomposition as

ar = RTΛR ≡
(

cos θ sin θ
− sin θ cos θ

)T (
(1 + s1)2 0

0 (1 + s2)2

)(
cos θ sin θ
− sin θ cos θ

)

≈
(

cos θ sin θ
− sin θ cos θ

)T (
1 + 2s1 0

0 1 + 2s2

)(
cos θ sin θ
− sin θ cos θ

)

= I + 2RT

(
s1 0
0 s2

)
R

≡ I + 2εg,

where the second step follows from a linearization for small growth factors, and in the last step
we introduced the definition of the growth strain εg.

Taking the inverse, we can write

a−1r = (I + 2εg)
−1 ≈ I− 2εg,

where we used ‖εg‖ < 1. The stretching contribution to the energy then becomes

∥∥a−1r ac − I
∥∥2
e
≈ ‖(I− 2εg) ac − I‖2e
= ‖(I− 2εg) (2ε+ I)− I‖2e
≈ ‖2(ε− εg)‖2e

where the last step follows if both the strains, and the relative growth factors are small. Further-
more, the correction from the a−1r term in the bending strain can be neglected using the same
reasoning. This shows how the multiplicative decomposition for growth simplifies to an additive
strain contribution after linearization, as exploited by, for instance, [4]. A substantially more
in-depth treatment of these different approaches is presented in [5, 6].

S1.2 Elastic energy of a bilayer
The bilayer is formed by two layers of constant thickness h/2 each, which share the same mid-
surface located at z = 0. The top layer is the part of the bilayer for which z > 0, so that the
midsurface normals point into this layer, and the bottom layer is at z < 0. Each layer is pre-
scribed its own, independent metric that is constant throughout its respective thickness, denoted
as gr1 = ar1 for the bottom, and gr2 = ar2 for the top layer. Any immersion of the bilayer in
R3 can be described by the immersion of the midsurface, defined by ~m, and giving rise to a first
fundamental form ac, and a second fundamental form bc, similar to the monolayer.

To derive the elastic energy of the bilayer, we start from equation (S1.3) and specialize
it for the bilayer case by splitting the integral over the thickness into two components, one

7



corresponding to each layer:

EBL =
1

2

∫

U

∫ 0

−h/2
‖ε1‖2e

√
det ar1 dz dx dy +

1

2

∫

U

∫ h/2

0

‖ε2‖2e
√

det ar2 dz dx dy (S1.4)

=
1

2

∫

U

∫ 0

−h/2

[
1

4

∥∥a−1r1 ac − I
∥∥2
e

+ z2
∥∥a−1r1 bc

∥∥2
e
− z

〈
(a−1r1 ac − I), a−1r1 bc

〉
e

]√
det ar1 dx dy

+
1

2

∫

U

∫ h/2

0

[
1

4

∥∥a−1r2 ac − I
∥∥2
e

+ z2
∥∥a−1r2 bc

∥∥2
e
− z

〈
(a−1r2 ac − I), a−1r2 bc

〉
e

]√
det ar2 dx dy

=
1

2

∫

U

[
h

8

∥∥a−1r1 ac − I
∥∥2
e

+
h3

24

∥∥a−1r1 bc

∥∥2
e

+
h2

8

〈
(a−1r1 ac − I), a−1r1 bc

〉
e

]√
det ar1 dx dy

+
1

2

∫

U

[
h

8

∥∥a−1r2 ac − I
∥∥2
e

+
h3

24

∥∥a−1r2 bc

∥∥2
e
− h2

8

〈
(a−1r2 ac − I), a−1r2 bc

〉
e

]√
det ar2 dx dy.

Note: if ar1 = ar2 we recover the monolayer formulation.

S1.3 Energy equivalence between mono- and bilayers
Here we show the energy equivalence between monolayers and bilayers, first for the case where
the two layers have equal thickness, and then for the more general case where the layers have
different thicknesses.

S1.3.1 Equal layer thicknesses

As described in the main text, in order to show the energetic equivalence between a curved
monolayer and a bilayer, we start by making the ansatz

ar = (ar1 + ar2)/2 (S1.5)
br = ζ(ar1 − ar2)/h. (S1.6)

We can rewrite those assumptions as

ar1 = ar +
h

2ζ
br = ar + δar (S1.7)

ar2 = ar −
h

2ζ
br = ar − δar, (S1.8)

where δar = 1
2 (ar1 − ar2) = h/(2ζ)br.

We proceed by expressing the two determinant factors
√

det ar1 and
√

det ar2 in terms of ar

and br. Expanding the determinants in h, we can write up to O(h3)

√
det ar1 =

√
det ar

(
1 +

h

4ζ
Tr
[
a−1r br

]
+ h2

{
1

32ζ2
Tr2

[
a−1r br

]
− 1

16ζ2
Tr
[(

a−1r br

)2]
})

,

and similar for the other layer. We see that up to first order in h, we can write
√

det ar1 ≈√
det ar2 ≈

√
det ar.

Next, we look for an expression for the inverse of the layer metrics. We can write

a−1r1 = (ar + δar)−1 = a−1r − a−1r (δar)a−1r + a−1r

(
(δar)a−1r

)2 − . . .
a−1r2 = (ar − δar)−1 = a−1r + a−1r (δar)a−1r + a−1r

(
(δar)a−1r

)2
+ . . .

8



We can show that ‖ ± δar(ar)−1‖ < 1:

‖δar(ar)−1‖ = ‖(ar2 − ar1)(ar2 + ar1)−1‖ =
2h

ζ
‖br(ar)−1‖ =

2h

ζ
‖a−1r br‖ < 1,

where the latter is true because principal curvatures are much smaller than h−1, and h� 1. We
therefore discard terms of

(
(δar)a−1r

)2 and higher, we can substitute our ansatz in the expression
for EBL. We will proceed by considering each of the terms in the energy density, as identified by
its order in h.

First-order term We can plug in the definitions for the bottom layer

h

8

∥∥a−1r1 ac − I
∥∥2
e

=
h

8

∥∥(a−1r − a−1r (δar)a−1r )ac − I
∥∥2
e

=
h

8

∥∥a−1r ac − I
∥∥2
e

+
h

8

∥∥a−1r (δar)a−1r ac

∥∥2
e
− h

4

〈
a−1r ac − I, a−1r (δar)a−1r ac

〉
e

=
h

8

∥∥a−1r ac − I
∥∥2
e

+
h3

32ζ2
∥∥a−1r bra

−1
r ac

∥∥2
e
− h2

8ζ

〈
a−1r ac − I, a−1r bra

−1
r ac

〉
e

=
h

8

∥∥a−1r ac − I
∥∥2
e

+
h3

32ζ2
∥∥a−1r br

∥∥2
e
− h2

8ζ

〈
a−1r ac − I, a−1r br

〉
e

+O(h4),

where we used a−1r ac = I +O(h).
Similarly, for the top layer we have

h

8

∥∥a−1r2 ac − I
∥∥2
e

=
h

8

∥∥(a−1r + a−1r (δar)a−1r )ac − I
∥∥2
e

=
h

8

∥∥a−1r ac − I
∥∥2
e

+
h3

32ζ2
∥∥a−1r br

∥∥2
e

+
h2

8ζ

〈
a−1r ac − I, a−1r br

〉
e

+O(h4).

Multiplying by the area factors, summing, and discarding terms of O(h4) and higher gives

h

8

(∥∥a−1r1 ac − I
∥∥2
e

√
det ar1 +

∥∥a−1r2 ac − I
∥∥2
e

√
det ar2

)
=

(
h

4

∥∥a−1r ac − I
∥∥2
e

+
h3

16ζ2
∥∥a−1r br

∥∥2
e

)√
det ar

Second-order term For the second-order term, we have for the bottom layer

h2

8

〈
(a−1r1 ac − I), a−1r1 bc

〉
e

=
h2

8

〈(
a−1r − a−1r (δar)a−1r

)
ac − I),

(
a−1r − a−1r (δar)a−1r

)
bc

〉
e

=
h2

8

〈
(a−1r ac − I), a−1r bc

〉
e

+
h2

8

〈
a−1r (δar)a−1r ac, a−1r (δar)a−1r bc

〉
e

− h2

8

〈
(a−1r ac − I), a−1r (δar)a−1r bc

〉
e
− h2

8

〈
a−1r (δar)a−1r ac, a−1r bc

〉
e

=
h2

8

〈
(a−1r ac − I), a−1r bc

〉
e

+
h4

32ζ2
〈
a−1r bra

−1
r ac, a−1r bra

−1
r bc

〉
e

− h3

16ζ

〈
(a−1r ac − I), a−1r bra

−1
r bc

〉
e
− h3

16ζ

〈
a−1r bra

−1
r ac, a−1r bc

〉
e

=
h2

8

〈
(a−1r ac − I), a−1r bc

〉
e
− h3

16ζ

〈
a−1r br, a−1r bc

〉
e

+O(h4)
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Similarly, for the top layer:

h2

8

〈
(a−1r2 ac − I), a−1r2 bc

〉
e

=
h2

8

〈
(a−1r ac − I), a−1r bc

〉
e

+
h3

16ζ

〈
a−1r br, a−1r bc

〉
e

+O(h4)

Multiplying by the area factors, summing, and discarding terms of O(h4) and higher gives

h2

8

(〈
(a−1r1 ac − I), a−1r1 bc

〉
e

√
det ar1 −

〈
(a−1r2 ac − I), a−1r2 bc

〉
e

√
det ar2

)
= −h

3

8ζ

〈
a−1r br, a−1r bc

〉
e

√
det ar

Third-order term For the bottom layer we have

h3

24

∥∥a−1r1 bc

∥∥2
e

=
h3

24

∥∥(a−1r − a−1r (δar)a−1r

)
b
∥∥2
e

=
h3

24

∥∥a−1r bc

∥∥2
e

+
h3

24

∥∥a−1r (δar)a−1r bc

∥∥2
e
− h3

12

〈
a−1r bc, a−1r (δar)a−1r bc

〉
e

=
h3

24

∥∥a−1r bc

∥∥2
e

+
h5

96ζ2
∥∥a−1r bra

−1
r bc

∥∥2
e
− h4

24ζ

〈
a−1r bc, a−1r bra

−1
r bc

〉
e

=
h3

24

∥∥a−1r bc

∥∥2
e

+O(h4)

For the top layer similarly:

h3

24

∥∥a−1r2 bc

∥∥2
e

=
h3

24

∥∥a−1r bc

∥∥2
e

+O(h4)

Multiplying by the area factors, summing, and discarding terms of O(h4) and higher gives

h3

24

(∥∥a−1r1 bc

∥∥2
e

√
det ar1 +

∥∥a−1r2 bc

∥∥2
e

√
det ar2

)
=
h3

12

∥∥a−1r bc

∥∥2
e

√
det ar

Combining all terms We can now combine all results for the different terms in equation (S1.4):

EBL =
1

2

∫

U

∫ 0

−h/2
‖ε1‖2e

√
det ar1 dz dx dy +

1

2

∫

U

∫ h/2

0

‖ε2‖2e
√

det ar2 dz dx dy

=
1

2

∫

U

h

8

(∥∥a−1r1 ac − I
∥∥2
e

√
det ar1 +

∥∥a−1r2 ac − I
∥∥2
e

√
det ar2

)
dx dy

+
1

2

∫

U

h3

24

(∥∥a−1r1 bc

∥∥2
e

√
det ar1 +

∥∥a−1r2 bc

∥∥2
e

√
det ar2

)
dx dy

+
1

2

∫

U

h2

8

(〈
(a−1r1 ac − I), a−1r1 bc

〉
e

√
det ar1 −

〈
(a−1r2 ac − I), a−1r2 bc

〉
e

√
det ar2

)
dx dy

=
1

2

∫

U

(
h

4

∥∥a−1r ac − I
∥∥2
e

+
h3

16ζ2
∥∥a−1r br

∥∥2
e

+
h3

12

∥∥a−1r bc

∥∥2
e
− h3

8ζ

〈
a−1r br, a−1r bc

〉
e

)√
det ar dx dy.

Now we readily see that if we choose ζ = 3/4, this expression can be rewritten as

EBL =
1

2

∫

U

(
h

4

∥∥a−1r ac − I
∥∥2
e

+
h3

12

(
4

3

∥∥a−1r br

∥∥2
e

+
∥∥a−1r bc

∥∥2
e
− 2

〈
a−1r br, a−1r bc

〉
e

))√
det ar dx dy

=
1

2

∫

U

(
h

4

∥∥a−1r ac − I
∥∥2
e

+
h3

12

∥∥a−1r (bc − br)
∥∥2
e

+
h3

36

∥∥a−1r br

∥∥2
e

)√
det ar dx dy

= EML +

∫

U

h3

72

∥∥a−1r br

∥∥2
e

√
det ar dx dy.
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This completes the proof of the energetic equivalence between a bilayer, defined by layer
metrics ar1 and ar2, and a curved monolayer, defined by midsurface quadratic forms ar and br,
sharing the same midsurface embedding characterized by ac and bc, whenever

ar =
1

2
(ar1 + ar2),

br =
3

4h
(ar1 − ar2),

(S1.9)

up to an energy factor that does not depend on the embedding. Or, inversely,

ar1 = ar +
2h

3
br,

ar2 = ar −
2h

3
br.

S1.3.2 Unequal layer thicknesses

We consider a structure whose midsurface is located at z = 0, but whose top and bottom surface
extents are no longer −h/2 ≤ z ≤ h/2, but rather some other bounds −h1/2 ≤ z ≤ h2/2, so that
the thickness of the bottom layer is h1/2 and the thickness of the top layer is h2/2. We start
with the following expression for the energy

E =
1

2

∫

U

∫ h2/2

−h1/2

‖ε‖2e
√

det gr dz dx dy. (S1.10)

For a monolayer, we obtain the energy integral

EML =
1

2

∫

U

∫ h2/2

−h1/2

‖ε‖2e
√

det gr dz dx dy

=
1

2

∫

U

[
1

8
(h2 + h1)

∥∥a−1r ac − I
∥∥2
e

+
1

24
(h32 + h31)

∥∥a−1r (bc − br)
∥∥2
e

−1

8
(h22 − h21)

〈
(a−1r ac − I), a−1r (bc − br)

〉
e

]√
det ar dx dy

For the bilayer energy, instead, we find

EBL =
1

2

∫

U

∫ 0

−h1/2

‖ε1‖2e
√

det ar1 dz dx dy +
1

2

∫

U

∫ h2/2

0

‖ε2‖2e
√

det ar2 dz dx dy

=
1

2

∫

U

[
h1
8

∥∥a−1r1 ac − I
∥∥2
e

+
h31
24

∥∥a−1r1 bc

∥∥2
e

+
h21
8

〈
(a−1r1 ac − I), a−1r1 bc

〉
e

]√
det ar1 dx dy

+
1

2

∫

U

[
h2
8

∥∥a−1r2 ac − I
∥∥2
e

+
h32
24

∥∥a−1r2 bc

∥∥2
e
− h22

8

〈
(a−1r2 ac − I), a−1r2 bc

〉
e

]√
det ar2 dx dy.

To mathematically compare these two expressions, we will proceed in the same manner as
above. Our ansatz for the bilayer metrics is that they can be written as

ar1 = ar + α1br

ar2 = ar − α2br,
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so that

ar =
α2ar1 + α1ar2

α1 + α2

br =
ar1 − ar2

α1 + α2
.

We know that α1 ∼ α2 ∼ O(h1) ∼ O(h2) and will use that to simplify.
We need to find an expression for the inverse of the layer metrics. As before, we can write

a−1r1 = (ar + α1br)−1 = a−1r − α1a
−1
r bra

−1
r − . . .

a−1r2 = (ar − α2br)−1 = a−1r + α2a
−1
r bra

−1
r + . . . .

We discard terms of O(α2
1, α

2
2) and higher, and continue by treating each term in the energy

equation separately in the following.

First-order term We can plug in the definitions for the bottom layer

h1
8

∥∥a−1r1 ac − I
∥∥2
e

=
h1
8

∥∥(a−1r − α1a
−1
r bra

−1
r )ac − I

∥∥2
e

=
h1
8

∥∥a−1r ac − I
∥∥2
e

+
h1α

2
1

8

∥∥a−1r bra
−1
r ac

∥∥2
e
− h1

4
α1

〈
a−1r ac − I, a−1r bra

−1
r ac

〉
e

=
h1
8

∥∥a−1r ac − I
∥∥2
e

+
h1α

2
1

8

∥∥a−1r br

∥∥2
e
− h1

4
α1

〈
a−1r ac − I, a−1r br

〉
e

+O(h4),

where we used a−1r ac = I +O(h).
Similarly, for the top layer we have

h2
8

∥∥a−1r2 ac − I
∥∥2
e

=
h2
8

∥∥(a−1r + α2a
−1
r bra

−1
r )ac − I

∥∥2
e

=
h2
8

∥∥a−1r ac − I
∥∥2
e

+
h2α

2
2

8

∥∥a−1r br

∥∥2
e

+
h2
4
α2

〈
a−1r ac − I, a−1r br

〉
e

+O(h4)

Multiplying by the area factors, summing, and discarding terms of O(h4) and higher gives

h1
8

∥∥a−1r1 ac − I
∥∥2
e

√
det ar1 +

h2
8

∥∥a−1r2 ac − I
∥∥2
e

√
det ar2 =

=

(
h1 + h2

8

∥∥a−1r ac − I
∥∥2
e

+
h1α

2
1 + h2α

2
2

8

∥∥a−1r br

∥∥2
e

+
h2α2 − h1α1

4

〈
a−1r ac − I, a−1r br

〉
e

)√
det ar

Second-order term For the second term, we have for the bottom layer

h21
8

〈
(a−1r1 ac − I), a−1r1 bc

〉
e

=
h21
8

〈(
a−1r − α1a

−1
r bra

−1
r

)
ac − I),

(
a−1r − α1a

−1
r bra

−1
r

)
bc

〉
e

=
h21
8

〈
(a−1r ac − I), a−1r bc

〉
e

+
h21α

2
1

8

〈
a−1r bra

−1
r ac, a−1r bra

−1
r bc

〉
e

− h21α1

8

〈
(a−1r ac − I), a−1r bra

−1
r bc

〉
e
− h21α1

8

〈
a−1r bra

−1
r ac, a−1r bc

〉
e

=
h21
8

〈
(a−1r ac − I), a−1r bc

〉
e
− h21α1

8

〈
a−1r bra

−1
r ac, a−1r bc

〉
e

+O(h4)

=
h21
8

〈
(a−1r ac − I), a−1r bc

〉
e
− h21α1

8

〈
a−1r br, a−1r bc

〉
e

+O(h4)
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Similarly, for the top layer:

h22
8

〈
(a−1r2 ac − I), a−1r2 bc

〉
e

=
h22
8

〈
(a−1r ac − I), a−1r bc

〉
e

+
h22α2

8

〈
a−1r br, a−1r bc

〉
e

+O(h4)

Multiplying by the area factors, subtracting the top-layer term from the bottom-layer term,
and discarding terms of O(h4) and higher gives

h21
8

〈
(a−1r1 ac − I), a−1r1 bc

〉
e

√
det ar1 −

h22
8

〈
(a−1r2 ac − I), a−1r2 bc

〉
e

√
det ar2 =

=

[(
h21 − h22

8

)〈
(a−1r ac − I), a−1r bc

〉
e
− h21α1 + h22α2

8

〈
a−1r br, a−1r bc

〉
e

]√
det ar

Third-order term For the bottom layer we have

h31
24

∥∥a−1r1 bc

∥∥2
e

=
h31
24

∥∥(a−1r − α1a
−1
r bra

−1
r

)
b
∥∥2
e

=
h31
24

∥∥a−1r bc

∥∥2
e

+
h31α

2
1

24

∥∥a−1r bra
−1
r bc

∥∥2
e
− h3α1

12

〈
a−1r bc, a−1r bra

−1
r bc

〉
e

=
h31
24

∥∥a−1r bc

∥∥2
e

+O(h4)

For the top layer similarly:

h32
24

∥∥a−1r2 bc

∥∥2
e

=
h32
24

∥∥a−1r bc

∥∥2
e

+O(h4)

Multiplying by the area factors, summing, and discarding terms of O(h4) and higher gives

h31
24

∥∥a−1r1 bc

∥∥2
e

√
det ar1 +

h32
24

∥∥a−1r2 bc

∥∥2
e

√
det ar2 =

h31 + h32
24

∥∥a−1r bc

∥∥2
e

√
det ar

Combining all terms Recalling the energy density definition for the unequal-thickness bilayer,
we can now plug in the above results:

EBL =
h1 + h2

8

∥∥a−1r ac − I
∥∥2
e

+
h1α

2
1 + h2α

2
2

8

∥∥a−1r br

∥∥2
e

+
h2α2 − h1α1

4

〈
a−1r ac − I, a−1r br

〉
e

+

(
h21 − h22

8

)〈
(a−1r ac − I), a−1r bc

〉
e
− h21α1 + h22α2

8

〈
a−1r br, a−1r bc

〉
e

+
h31 + h32

24

∥∥a−1r bc

∥∥2
e

For reference, the unequal-thickness monolayer energy density is

EML =
1

8
(h2+h1)

∥∥a−1r ac − I
∥∥2
e
+

1

24
(h32+h31)

∥∥a−1r (bc − br)
∥∥2
e
−1

8
(h22−h21)

〈
(a−1r ac − I), a−1r (bc − br)

〉
e
.

To equate them, the following equations have to be satisfied:

h1α
2
1 + h2α

2
2

8
=

1

24
(h32 + h31) + c (S1.11)

h2α2 − h1α1

4
=

1

8
(h22 − h21) (S1.12)

h21α1 + h22α2

8
=

1

12
(h32 + h31). (S1.13)
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Here c represents an additional scalar constant that multiplies
∥∥a−1r br

∥∥2
e
, and therefore does

not change the equilibrium configuration but closes the system of equations. We solve the last
two equations for α2 and α1, and then plug the solution into the first to compute c. We then
find

α1 =
4h21 − h1h2 + h22

6h1

α2 =
4h22 − h1h2 + h21

6h2

c =
(h1 + h2)3(h22 − h1h2 + h21)

288h1h2

Plugging this into our ansatz gives

ar1 = ar +

(
4h21 − h1h2 + h22

6h1

)
br

ar2 = ar −
(

4h22 − h1h2 + h21
6h2

)
br,

and

ar =
h1(4h22 − h1h2 + h21)

(h1 + h2)3
ar1 +

h2(4h21 − h1h2 + h22)

(h1 + h2)3
ar2,

br =
6h1h2

(h1 + h2)3
(ar1 − ar2).

(S1.14)

With these solutions, the final energy equivalence is

EBL = EML +

∫

U

c

2

∥∥a−1r br

∥∥2
e

√
det ar dx dy. (S1.15)

Note: if h1 = h2 = h, we find α1 = α2 = 2h/3, and c = h3/36, consistent with the previous
derivation.

S1.3.3 Unequal layer thicknesses and Young’s moduli

Here we wish to find the monolayer that is energetically equivalent to a bilayer with unequal
layer thicknesses as well as unequal layer Young’s moduli. Here the usage of the term ‘monolayer’
might be misleading, since we are actually calculating the first and second fundamental form of
a curved mid-surface that is surrounded by the same material as the original bilayer. This
means our equivalent ‘monolayer’ does in fact consist of two layers of different material, each
characterized by its own Young’s modulus. The technical difference between the original bilayer
and the equivalent monolayer, is that the former is characterized in terms its two layer metrics,
whereas the latter is characterized by the first and second fundamental form of its midsurface –
allowing us to solve the inverse-problem of growth exactly.

Using this perspective, defining the Young’s modulus of the bottom and top layer by Y1 and
Y2, respectively, we can write the energy of the original bilayer, and the equivalent ‘monolayer’,
as

EBL =
1

2

∫

U

Y1

[
h1
8

∥∥a−1r1 ac − I
∥∥2
e/Y

+
h31
24

∥∥a−1r1 bc

∥∥2
e/Y

+
h21
8

〈
(a−1r1 ac − I), a−1r1 bc

〉
e/Y

]√
det ar1 dx dy

+
1

2

∫

U

Y2

[
h2
8

∥∥a−1r2 ac − I
∥∥2
e/Y

+
h32
24

∥∥a−1r2 bc

∥∥2
e/Y
− h22

8

〈
(a−1r2 ac − I), a−1r2 bc

〉
e/Y

]√
det ar2 dx dy.
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and

EML =
1

2

∫

U

[
1

8
(Y2h2 + Y1h1)

∥∥a−1r ac − I
∥∥2
e/Y

+
1

24
(Y2h

3
2 + Y1h

3
1)
∥∥a−1r (bc − br)

∥∥2
e/Y

−1

8
(Y2h

2
2 − Y1h21)

〈
(a−1r ac − I), a−1r (bc − br)

〉
e/Y

]√
det ar dx dy

where we defined

‖A‖2e/Y =
ν

1− ν2 Tr2(A) +
1

1 + ν
Tr(A2)

〈A, B〉e/Y =
ν

1− ν2 Tr(A) Tr(B) +
1

1 + ν
Tr(AB),

as the elastic energy norm and inner product with the Young’s modulus pulled out.
To compute the equivalence relations, we can directly rewrite equations (S1.11), (S1.12) and

(S1.13) as

Y1h1α
2
1 + Y2h2α

2
2

8
=

1

24
(Y2h

3
2 + Y1h

3
1) + c

Y2h2α2 − Y1h1α1

4
=

1

8
(Y2h

2
2 − Y1h21)

Y1h
2
1α1 + Y2h

2
2α2

8
=

1

12
(Y2h

3
2 + Y1h

3
1).

Solving this for α1, α2, and c gives

α1 =
4h31Y1 + 3h21h2Y1 + h32Y2

6h21Y1 + 6h1h2Y1

α2 =
h31Y1 + 3h1h

2
2Y2 + 4h32Y2

6h1h2Y2 + 6h22Y2

c =

(
h31Y1 + h32Y2

) (
h41Y

2
1 + 2h1h2Y1Y2

(
2h21 + 3h1h2 + 2h22

)
+ h42Y

2
2

)

288h1h2Y1Y2(h1 + h2)2

This allows us to write

ar1 = ar +

(
4h31Y1 + 3h21h2Y1 + h32Y2

6h21Y1 + 6h1h2Y1

)
br

ar2 = ar −
(
h31Y1 + 3h1h

2
2Y2 + 4h32Y2

6h1h2Y2 + 6h22Y2

)
br,

and

ar =

(
h41Y

2
1 + 3h21h

2
2Y1Y2 + 4h1h

3
2Y1Y2

)

h41Y
2
1 + 2h1h2Y1Y2 (2h21 + 3h1h2 + 2h22) + h42Y

2
2

ar1

+

(
4h31h2Y1Y2 + 3h21h

2
2Y1Y2 + h42Y

2
2

)

h41Y
2
1 + 2h1h2Y1Y2 (2h21 + 3h1h2 + 2h22) + h42Y

2
2

ar2,

br =
6h1h2Y1Y2(h1 + h2)

h41Y
2
1 + 2h1h2Y1Y2 (2h21 + 3h1h2 + 2h22) + h42Y

2
2

(ar1 − ar2).

(S1.16)

The full energy equivalence then becomes

EBL = EML +

∫

U

c

2

∥∥a−1r br

∥∥2
e/Y

√
det ar dx dy, (S1.17)

For equal Young’s moduli Y1 = Y2 = Y this reduces to equation (S1.14).
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S2 Forward problem of growth
This section accompanies the ‘Forward problem of growth’ section of the main text. Here we
detail the precise form of the compatibility relations that have to be satisfied for a pair of bilayer
metrics, in order for the energetically equivalent curved monolayer to exist. We also show how,
following our derivation in the main text, the current result relates to the case of the saddle
surface (Fig. 1 in the main text), and the linearized theory for a bimetallic strip [7].

S2.1 Compatibility relations
As mentioned in the main text, when solving the inverse problem we start out with a surface in
R3, and so the compatibility equations are satisfied by definition. However, it is an interesting
exercise to ask what equations the two layer metrics should satisfy, so that the midsurface of
the energetically equivalent monolayer satisfies the compatibility relations. For this, we recall
that the equations that describe compatibility for any surface in R3 are the Gauss and Peterson-
Mainardi-Codazzi equations, which link the entries of first and second fundamental forms [8, 9].
In particular, if the quadratic forms of the grown surface are written as

ac =

(
E F
F G

)
, bc =

(
e f
f g

)
,

then the Gauss equation can be written as

K =
1

(EG− F 2)2





∣∣∣∣∣∣

− 1
2Evv + Fuv − 1

2Guu
1
2Eu Fu − 1

2Ev

Fv − 1
2Gu E F

1
2Gv F G

∣∣∣∣∣∣
−

∣∣∣∣∣∣

0 1
2Ev

1
2Gu

1
2Ev E F
1
2Gu F G

∣∣∣∣∣∣



 , (S2.1)

which defines the Gauss’ curvature K = (eg − f2)/(EG − F 2) as an intrinsic property of the
surface. The Peterson-Mainardi-Codazzi equations complete the compatibility conditions and
are given as

∂e

∂v
− ∂f

∂u
= eΓ1

12 + f
(
Γ2
12 − Γ1

11

)
− gΓ2

11, (S2.2)

∂f

∂v
− ∂g

∂u
= eΓ1

22 + f
(
Γ2
22 − Γ1

12

)
− gΓ2

12, (S2.3)

where the Christoffel symbols are

Γ1
11 =

GEu − 2FFu + FEv

2(EG− F 2)
, Γ2

11 =
2EFu − EEv − FEu

2(EG− F 2)
,

Γ1
12 =

GEv − FGu

2(EG− F 2)
, Γ2

12 =
EGu − FEv

2(EG− F 2)
,

Γ1
22 =

2GFv −GGu − FGv

2(EG− F 2)
, Γ2

22 =
EGv − 2FFv + FGu

2(EG− F 2)
.

The equations (S2.1), (S2.2) and (S2.3) pose three constraints on the surface quadratic forms.
In order to translate these constraints to the metrics of the individual layers, let us define the
entries of each of the layer metrics as

ar1 =

(
E1 F1

F1 G1

)
, ar2 =

(
E2 F2

F2 G2

)
.
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Then we can use equation (S1.9) to substitute

ar =
1

2

(
E1 + E2 F1 + F2

F1 + F2 G1 +G2

)
,

br =
3

4h

(
E1 − E2 F1 − F2

F1 − F2 G1 −G2

)
,

into the above compatibility equations (S2.1), (S2.2) and (S2.3). This expresses the compatibility
equations in terms of the six entries of the bilayer metrics, and its thickness, instead of the first
and second fundamental form of the energetically equivalent monolayer surface.

In summary, equations (S2.1), (S2.2) and (S2.3) provide a way to determine the compatibility
of the entries in any given set of bilayer metrics, even in the presence of non-uniform spatial
thicknesses, and also in the case of unequal layer thicknesses by using the relations (S1.14)
instead of (S1.9). However, the compatibility equations are generally not algebraic, and expose
an additional complexity when the thickness h is considered to be an extra, non-uniform degree
of freedom. In the remainder of this section, we will discuss some very simple examples, but in
general, gaining insight into how these compatibility equations can be interpreted as constraints
on the growth mechanism and/or factors will be non-trivial and is left for future work.

S2.2 Specialization for isotropically growing bilayer : spherical sur-
faces

For a simple application of these equations, consider a bilayer where each layer grows isotropically,
so that ar1 = s1I and ar2 = s2I, where s1 and s2 are allowed to change across the surface. The
resulting monolayer surface can then be characterized by

ac =
s1 + s2

2
I, (S2.4)

bc =
3(s1 − s2)

4h
I. (S2.5)

We can see immediately that the only non-planar surfaces that can be expressed using these
quadratic forms have to be spherical, since the principal curvatures (the eigenvalues of the shape
tensor S = a−1c bc) are equal. However, we can still use it as an example to investigate under
what conditions this surface can exist in R3, by examining the Gauss’ and Peterson-Mainardi-
Codazzi equations. Since the first fundamental form is diagonal, we can use a simplified form of
Gauss’ equation [9]

eg

EG
= − 1

2
√
EG

(
∂

∂u

Gu√
EG

+
∂

∂v

Ev√
EG

)
. (S2.6)

With the current first and second fundamental forms, this gives

9

4h2

(
s1 − s2
s2 + s1

)2

= − 1

(s2 + s1)

(
∂

∂u

(s2 + s1)u
s2 + s1

+
∂

∂v

(s2 + s1)v
s2 + s1

)
(S2.7)

= − 1

(s2 + s1)3
[
(s2 + s1) ((s2 + s1)uu + (s2 + s1)vv)− (s2 + s1)2u − (s2 + s1)2v

]

(S2.8)

With uniform non-equal growth factors, this equation can not be satisfied. For non-uniform
growth factors, equation (S2.8) provides a second order partial differential equation that the
growth factors have to satisfy (point-wise) in order for the strain-free surface to exist.
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The Peterson-Mainardi-Codazzi equations simplify as well due to the diagonality of both
quadratic forms, and reduce to

∂e

∂v
=

1

2
Ev

( e
E

+
g

G

)
,

∂g

∂u
=

1

2
Gu

( e
E

+
g

G

)
. (S2.9)

Plugging in our assumptions of isotropic growth, we find for the general case where the thickness
h is a function of the parametric coordinates (u, v):

2h (s1(s2)v − s2(s1)v) + hv(s1 − s2)(s1 + s2)

h(s1 + s2)
= 0 (S2.10)

2h (s1(s2)u − s2(s1)u) + hu(s1 − s2)(s1 + s2)

h(s1 + s2)
= 0 (S2.11)

This shows that, if one of the growth factors as well as the thickness is homogeneous across
the domain, such that for example (s1)u = (s1)v = 0 and hu = hv = 0, this implies directly
that (s2)u = (s2)v = 0, and from the Gauss’ equation we can see that the only solution would
be s1 = s2. This means, for isotropic growth of a bilayer where one layer grows uniformly
throughout the surface, the only compatible, strain-free (up to embedding-independent strain)
solution is a planar scaling of the surface.

Therefore, even for the very simple case of the isotropically growing bilayer, which can only
grow into planar or spherical surfaces, it is non-trivial to find compatible bilayer metrics as this
involves satisfying three partial differential equations for the growth factors and, possibly, the
layer thickness(es).

S2.3 Specialization for orthogonally growing bilayer : saddle surfaces
Figure 1 in the main text concerns the case of linear expansion of each layer in orthogonal
directions, so that

ar1 =

(
1 0
0 (1 + s)2

)

ar2 =

(
(1 + s)2 0

0 1

)
,

where valid solutions are constrained by s > −1. The energetically equivalent monolayer is
defined by equation (S1.9) as

ac =
1 + (1 + s)2

2
I

bc =
3s(s+ 2)

4h

(
−1 0
0 1

)
.

Since neither of the fundamental forms depends on the spatial coordinates, the Peterson-
Mainardi-Codazzi equations (S2.9) are automatically satisfied. For the Gauss curvature, we
obtain for the left-hand-side of equation (S2.6)

K = − 9

4h2

(
s(s+ 2)

s(s+ 2) + 2

)2

which is negative for any valid value of s, i.e. whenever s > −1. However, the right-hand-side of
equation (S2.6) is identically zero, so that Gauss’ equation is never satisfied for this particular
growth configuration.
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S2.4 Specialization for parallel growing bilayer : ‘bimetallic strip’
In this section we specialize the above relations for the case where the two layers grow in parallel
directions along the midsurface, but with different growth factors. The linearized approximation
of this case was treated almost a century ago [7] to show how a bimetallic strip made of two
materials with different coefficients of thermal expansion curves. In that work, it was shown that
the curvature of the strip can be written as

κ =

6(s2 − s1)

(
1 +

(
h1
h2

))2

(h1 + h2)

(
3

(
1 +

h1
h2

)2

+

(
1 +

h1Y1
h2Y2

)((
h1
h2

)2

+
h2Y2
h1Y1

)) , (S2.12)

with si being the linear growth factors, hi the thicknesses, and Yi the Young’s moduli of each
layer. Here we will compare our results for a growing bilayer with this equation, for equal as well
as unequal layer properties.

In our formulation, assuming that each layer expands linearly by a factor si, we can specify
the following first fundamental forms of the two layers in their grown rest configurations

ar1 =

(
1 0
0 (1 + s1)2

)

ar2 =

(
1 0
0 (1 + s2)2

)
.

Here we assumed that the initial configuration of each layer is planar and characterized by first
fundamental form I. From the compatibility relations (see previous section), it is easy to see that
the corresponding curved configuration is embeddable without conflict, and has zero Gaussian
curvature.

In the following we consider the linearized case, assuming small growth factors so that we can
approximate (1 + si)

2 ≈ 1 + 2si. In this case, for a bilayer with equal thicknesses h1 = h2 = h/2,
we find the following quadratic forms for the energetically equivalent curved monolayer

ar =
1

2
(ar1 + ar2) =

(
1 0
0 (1 + s1 + s2)

)
≈ I

br =
3

4h
(ar1 − ar2) =

3

2h

(
0 0
0 (s1 − s2)

)
,

where in the first relation we neglect terms of O(si) compared to the terms O(si/h) in the second
relation. The two principal curvatures, defined as the eigenvalues of the shape tensor S = a−1r br,
are then equal to the diagonal terms of the second fundamental form br. In this case of equal
thicknesses and Young’s moduli, Timoshenko’s theory (S2.12) reduces to

κ =
3

2h
(s2 − s1),

which is exactly what we obtain from our solution for the non-zero principal curvature, up to a
minus sign. The minus sign can be explained by noting that, using the definition of principal
curvatures as the eigenvalues of the shape operator S = a−1r br, the strip normal vectors in [7]
point into layer 1, rather than into layer 2 as assumed in this work, so that the definitions of s1
and s2 are reversed.
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For the case of non-equal layer thicknesses, we can use the relations (S1.14) to find

ar =




1 0

0 1 +
2s1h

3
1 + (8s2 − 2s1)h21h2 + (8s1 − 2s2)h22h1 + 2s2h

3
2

(h1 + h2)3


 ≈ I

br =




0 0

0
12h1h2(s1 − s2)

(h1 + h2)3
,




where we made the same assumption as above to neglect terms of order O(si) in the first fun-
damental form. When evaluating this case in Timoshenko’s theory, we need to keep in mind
that in our energy definition (S1.10), the bottom layer has thickness h1/2 and the top layer has
thickness h2/2, whereas in Timoshenko’s formula (S2.12) the layer thicknesses are simply h1 and
h2. Taking this into account, we obtain from the theory

κ =
12h1h2(s2 − s1)

(h1 + h2)3
,

which again matches the non-zero principal curvature obtained from our analysis, up to the
minus sign as explained above.

Finally, if layer thicknesses and Young’s moduli are different, we find from relation (S1.16)

ar =




1 0

0 1 +
2s1h1Y1

(
h31Y1 + h22Y2(3h1 + 4h2)

)
+ 2s2h2Y2

(
h21Y1(4h1 + 3h2) + h32Y2

)

h41Y
2
1 + 2h1h2Y1Y2 (2h21 + 3h1h2 + 2h22) + h42Y

2
2


 ≈ I

br =




0 0

0
12h1h2Y1Y2(h1 + h2)(s1 − s2)

h41Y
2
1 + 2h1h2Y1Y2 (2h21 + 3h1h2 + 2h22) + h42Y

2
2

,




whereas equation (S2.12) gives, using our definition of h1 and h2 as explained above

κ =
12h1h2Y1Y2(h1 + h2)(s2 − s1)

h41Y
2
1 + 2h1h2Y1Y2 (2h21 + 3h1h2 + 2h22) + h42Y

2
2

,

which is identical to the principal curvature obtained from the second fundamental form.

S3 Inverse problem of growth
This section accompanies the ‘Inverse problem of growth’ section of the main text, where we
show the constraints on the target surface curvatures as a function of the bilayer thickness in
order for the energetically equivalent bilayer metrics to be positive definite. Furthermore, we
expand on the discussion of the growth trajectory obtained by interpolating initial and target
bilayer metrics.

S3.1 Constraint on target surface curvature
Given target shape metrics ac and bc, the energetically equivalent bilayer metrics are defined as

ar1 = ac +
2h

3
bc, ar2 = ac −

2h

3
bc.
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For the metrics ar1 and ar2 to be valid metrics, they have to be symmetric positive definite.
Their symmetry is guaranteed from the symmetry of ac and bc. To satisfy positive definiteness,
we can equivalently impose that a−1c ar1 and a−1c ar2 have to have positive eigenvalues, since ac

is positive definite. This implies that the eigenvalues of I ± (2h/3)S, where S = a−1c bc is the
shape operator, have to be positive. The eigenvalues of S are the principal curvatures κ1 and κ2
of the target surface, and so we find that

max (|κ1|, |κ2|) <
3

2h
, (S3.1)

has to hold for the inverse problem to be solvable. In the case of a bilayer ‘strip’, as discussed in
the previous section, if the non-zero principal curvature becomes 3/(2h), this implies that one of
the growth factors reaches si = −1, in both the linearized and the non-linear case. This would
correspond to a zero-length material element, which is impossible.

Note that based on a spatial self-intersection of the most curved layer in the bilayer, we
would expect the condition |κi| < 2/h for both principal curvatures. Our current constraint of
equation (S3.1) is more conservative, implying that self-intersection can never be achieved.

S3.2 Trajectory of growth
The actual process of growth is considered here through interpolation of bilayer metrics, as
illustrated in figure S1. Specifically, given an initial surface characterized by fundamental forms(
ainit
c ,binit

c

)
, we can obtain the rest metrics of the bilayer such that the global minimum-energy

embedding of its midsurface equals the initial surface (step 1 in the figure). Similarly, we can
obtain the rest metrics of the bilayer whose global minimum-energy configuration corresponds
to a target surface (atarget

c ,btarget
c ) as shown in step 2. Using any possible interpolation scheme

we can then obtain the bilayer metrics of intermediate grown states: in the figure we show linear
interpolation according to a parameter t, where 0 ≤ t ≤ 1 (step 3). Finally, for each of the
intermediate, interpolated bilayer metric pair, we can find the corresponding minimum-energy
embedding by minimizing the bilayer elastic energy given in equation (S1.4), as shown in step 4
of the figure.

As discussed in the main text, the choice of interpolation scheme can be made depending on
the desired characteristics of the interpolated bilayer metrics (ar1(t),ar2(t)). Linear interpolation
ensures positive-definiteness of each intermediate step, whereas log-Euclidean interpolation [10]
guarantees moreover monotonically-varying determinants at any point.

In general, however, the intermediate monolayer rest fundamental forms (ar(t),br(t)) that
have an energetic equivalence to the interpolated bilayer metrics (ar1(t),ar2(t)) are not com-
patible, so that a strain-free embedding in three-dimensional space does not exist. This issue is
similar to that discussed in section S2.1. The question how to interpolate the bilayer metrics
so that the energetically equivalent monolayer rest fundamental forms satisfy the compatibility
equations, is left for future work.

S4 Results
This section accompanies the ‘Results’ section of the main text. We will first derive inverse-
solutions for simple, archetypal geometries of positive and negative Gaussian curvatures. Sub-
sequently, we present details of the numerical method used, and the set-up and results for the
flower and face examples presented in the main text.
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Figure S1: An example of how to grow a disk into a face: by converting the fundamental forms of
both the initial surface (1) and the target surface (2) into bilayer metrics, we have specified these
two states as global energetic minima corresponding to those metrics. To transition from one
state to the other, we can interpolate the two pairs of bilayer metrics, using linear interpolation as
shown here (3), or any other interpolation scheme. For each interpolated pair of bilayer metrics,
we then compute the corresponding minimum-energy embedding to visualize the growth process
(4).

S4.1 Examples for archetypal geometries
Here we show the analytical expressions for ar1 and ar2 for three simple geometric shapes: a
hemisphere, catenoid, and saddle. In all these examples, for simplicity, we choose a parametriza-
tion so that the original midsurface, prior to growth, is characterized by

~mr(x, y) = (x, y, 0),

so that the corresponding first fundamental form prior to growth is equal to the identity matrix
a0
r1 = a0

r2 = I. The growth tensor is defined for each layer as

ar1 = δar1a
0
r1 → δar1 = ar1

(
a0
r1

)−1
= ar1,

ar2 = δar2a
0
r2 → δar2 = ar2

(
a0
r2

)−1
= ar2,

and so we can interpret the final layer metrics as the growth tensors on the initial, ungrown
surface.
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S4.1.1 Hemisphere

Working with a stereographic projection of a hemisphere with unit radius, growing out of a disk
with unit radius, we can write down the parametrization as

~mc(x, y) =
1

1 + x2 + y2
(2x, 2y, x2 + y2 − 1),

where x2 + y2 ≤ 1.
The corresponding quadratic forms of the hemisphere are

ac(x, y) =
4

(x2 + y2 + 1)2
I

bc(x, y) =
4

(x2 + y2 + 1)2
I.

Solving the inverse equations as discussed in the paper provides us with first fundamental forms
of a bilayer that will have its energetic equilibrium immersion equal to the hemisphere:

ar1(x, y) = ac +
2h

3
bc =

4

(x2 + y2 + 1)2

(
1 +

2h

3

)
I

ar2(x, y) = ac −
2h

3
bc =

4

(x2 + y2 + 1)2

(
1− 2h

3

)
I,

which can be interpreted as isotropic inhomogeneous growth of each layer of the original disk.

S4.1.2 Catenoid

For the catenoid, we can work with the following parametrization

~mc(x, y) = (c cosh
(y
c

)
cosx, y, c cosh

(y
c

)
sinx),

where c is the inner radius of the catenoid. Here 0 ≤ x ≤ 2π, and −H/2 ≤ y ≤ H/2, where
H is the catenoid height. When following this parametrization, we are essentially rolling up a
rectangular sheet into a catenoid geometry.

The corresponding quadratic forms of the catenoid are

ac(x, y) = cosh2
(y
c

)(
c2 0
0 1

)

bc(x, y) =

(
c 0
0 − 1

c

)
.

Then the bilayer growth that is needed to grow the rectangular sheet into a catenoid is given
by

ar1(x, y) = ac +
2h

3
bc =

(
c2 cosh2

(
y
c

)
+ 2ch

3 0

0 cosh2
(
y
c

)
− 2h

3c

)

ar2(x, y) = ac −
2h

3
bc =

(
c2 cosh2

(
y
c

)
− 2ch

3 0

0 cosh2
(
y
c

)
+ 2h

3c

)
,

which can be interpreted as orthotropic inhomogeneous growth of each layer of the original
rectangular bilayer. The principal growth directions are the same for each layer, and align with
the parameter vectors on the planar sheet.
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S4.1.3 Hyperbolic paraboloid

As an example of surface with both positive and negative curvature, we consider growing a
hyperbolic paraboloid out of a disk, so that

~mc(x, y) = (x, y, x2 − y2)

where x2 + y2 ≤ 1.
This parametrization gives rise to the following quadratic forms

ac(x, y) =

(
1 + 4x2 −4xy
−4xy 1 + 4y2

)

bc(x, y) =
2√

1 + 4x2 + 4y2

(
1 0
0 −1

)
,

ar1(x, y) = ac +
2h

3
bc =




4x2 + 1 + 4h

3
√

4x2+4y2+1
−4xy

−4xy 4y2 + 1− 4h

3
√

4x2+4y2+1




ar2(x, y) = ac −
2h

3
bc =




4x2 + 1− 4h

3
√

4x2+4y2+1
−4xy

−4xy 4y2 + 1 + 4h

3
√

4x2+4y2+1


 ,

which can be interpreted as general orthotropic inhomogeneous growth of each layer: performing
a spectral decomposition of each matrix reveals the principal growth factors and direction for
each of the two layers of the original disk.

S4.2 Numerical method
As shown above, given a mapping ~m : U → R3 that takes any point (x, y) ∈ U to the three-
dimensional embedding of the midsurface, the first and second fundamental forms of the mid-
surface are, respectively

ac =

(
~mx · ~mx ~mx · ~my

~mx · ~my ~my · ~my

)
,

bc = −
(
~mx · ~nx ~mx · ~ny
~mx · ~ny ~my · ~ny

)
,

where the subscripts x and y denote partial derivatives in those directions, and ~n(x, y) =
~mx(x, y)× ~my(x, y)

‖~mx(x, y)× ~my(x, y)‖ is the normal vector to the midsurface.

Using these conventions, we have derived above the bilayer energy of a shell whose midsurface
is characterized by quadratic forms ac and bc, given the layer metrics ar1 and ar2. Here we will
explain how this expression is discretized and implemented for numerical simulations.

In particular, we rely on a triangle discretization of the midsurface, and compute the quadratic
forms of each triangle separately in order to evaluate the energy integral. Each triangle is defined
by the positions of its three vertices (~v0, ~v1, ~v2), where ~vi ∈ R3. From this we can compute the
edge vectors ~e0 = ~v1 − ~v0, ~e1 = ~v2 − ~v1, and ~e2 = ~v0 − ~v2. Using the edge vectors as tangent
vectors to the local plane spanned by the triangle, we can directly compute the first fundamental
form of triangle T as

aT =

(
~e1 · ~e1 ~e1 · ~e2
~e1 · ~e2 ~e2 · ~e2.

)

24



For the second fundamental form, we follow [11] and introduce an extra degree of freedom, the
unit-length mid-edge normal director defined on each edge of the mesh. In a shear-free setting, as
considered here, this director can be defined by a scalar variable, since it is constrained to move
in the plane spanned by the normal vectors of two adjacent triangles. The directional derivative
of the normal field, as required for the computation of the second fundamental form, is then
obtained using a simple difference of the mid-edge normals between two of the three edges of
each triangle. In particular, if we denote the edge normal by ~ni, where i = 0, 1, 2 is the edge
index, we get the following entries for the discrete second fundamental form:

(bT )11 = −~mx · ~nx ≈ ~e1 · 2 (~n0 − ~n2) ,

(bT )12 = (bT )21 = −~mx · ~ny ≈ ~e1 · 2 (~n1 − ~n0) = −~e1 · 2~n0,
(bT )22 = −~my · ~ny ≈ ~e2 · 2 (~n1 − ~n0) .

With these discrete quadratic forms, we can evaluate the energy density of the bilayer energy
definition for each individual triangle, and sum these over all the triangles in the domain to obtain
the total energy. In the context of finite element methods this numerical method is essentially a
geometric reformulation of the constant-strain triangle (CST) for the membrane energy, and the
Morley triangular element [12] for the bending energy [11, 13].

Once the energy can be computed on a given triangular mesh, we need to find the minimum-
energy configuration corresponding to a given combination of (U,ar1,ar2). For this we perform
an iterative, quasi-Newton minimization of the bilayer energy over all vertices and edge director
degrees of freedom. The gradients of the discrete energy with respect to the degrees of freedom
are implemented algebraically [14].

These operations are implemented using the C++ programming language. We rely on the
Eigen library [15] for data representations and numerical algebra computations, and the libigl
library [16] for general operations on the triangle mesh. The energy minimization is performed
using an L-BFGS quasi-Newton iterative solver [17].

S4.3 Snapdragon flower
The snapdragon material model was kindly provided by the group of Prof. Coen [18]. We
smoothed and remeshed the model to obtain a homogeneous triangle distribution of the surface,
resulting in a mesh with 13 500 triangles. The snapdragon mesh was deformed into a cylinder
by performing a conformal mapping onto the plane [19, 20], deforming this planar map into a
disk, and mapping that disk back up into a cylinder. We set the Poisson ratio of the material
to ν = 0.3, and the thickness 0.005R, where R is the radius of the initial cylinder. We use
the log-euclidean approach [10] to interpolate between the metrics, to ensure smoothly varying
symmetric positive-definite tensors with monotonically-varying determinants at any point in the
growth process.

Directly interpolating between initial and target shapes leads to a meta-stable final state
different from the target shape. The reason is the incompatibility between the first and second
fundamental form corresponding to the interpolated bilayer metrics, as explained in the main
text. Since our numerical process uses the last grown state as initial guess for the next growth
step, and since we do not perform a global energy minimization but rather rely on a quasi-
Newton algorithm, the final shape is obtained as a local rather than the global energy minimum.
In particular, the final shape corresponds to an inversion of the three downward-facing petals,
such that they appear on the inside of the flower rather than the outside. Our numerical method
does not penalize self-intersection and so the three petals end up intersecting the flower wall (see
figure S3, right-most image).
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To ensure that the growth process finalizes in the global energy minimum corresponding to
the target shape, we create four anchoring states between the initial and final configurations.
These intermediate states are computed as a simple linear interpolation of the three-dimensional
mesh node positions between the initial and target mesh, and therefore are by construction
embeddable in three-dimensional space. For each of these four states, we then computed the
first and second fundamental forms, which by extension are compatible. This then allowed us
to compute the growth factors required to transition from and to each state according to the
method sketched in the main text. This approach breaks the forward problem up into five stages,
each of which was simulated by interpolating the growth factors from their initial to their final
values, and computing the quasi-static equilibrium configuration for each intermediate growth
factor. In total, we used 100 intermediate stages to visualize the growth process.

The difference between these two approaches can be quantified by measuring the monolayer
component of the energy corresponding to the bilayer metrics. Recalling the equivalence relation
between the energy of bilayers and monolayers described in the main text, we have

EBL = EML +

∫

U

h3

72

∥∥a−1r br

∥∥2
e

√
det ar dx dy, (S4.1)

where

ar =
1

2
(ar1 + ar2), br =

3

4h
(ar1 − ar2). (S4.2)

If the first and second fundamental forms ar and br are compatible, by the Bonnet theory they
uniquely describe a surface in three-dimensional space. This surface, characterized by ac = ar

and bc = br, minimizes the bilayer energy EBL, since the corresponding monolayer component
EML = 0, whereas the second term in the bilayer energy is independent of the embedding.
Conversely, if ar and br are not compatible, the minimum energy embedding of the bilayer
would correspond to a non-zero monolayer energy due to the residual strain in the embedding.
We can therefore use the monolayer energy as a measure of the incompatibility between the
bilayer metrics, in the context of shell elasticity.

For the direct interpolation, leading to the inverted geometry, the monolayer energy increases
almost monotonically during the quasi-static growth process, with a couple of kinks when the
geometry snaps between metastable states (see red line in left panel of figure S2). Whereas
the starting state (the cylinder) has zero monolayer energy, the final state is characterized by
a large monolayer energy, indicating a large residual strain. A visual representation of the
monolayer energy density shown in figure S3, indicates that the largest residual strain occurs on
the ‘knuckles’ of the three petals, which indeed are curved the wrong way compared to the target
shape, resulting in a substantial bending strain.

For the second approach each anchor point corresponds to an embeddable configuration, so
that the build-up of residual strain is limited. In between each anchor point the growth process
is still characterized by some residual strain, and even at some anchor points a meta-stable state
is obtained, but the growth trajectory ultimately leads to the target shape: the residual strain at
the final configuration is zero (see red line in right panel of figure S2). As discussed in the main
text, more work is required to come up with growth trajectories so that metastable states are
avoided, or to control the residual strain in order to achieve different target shapes depending
on the spatiotemporal growth pattern.

To measure the error between the final computed shape and the flower target shape we
computed the Hausdorff distance, a measure of the maximum distance between the two shapes,
which we non-dimensionalize by the square root of the total flower area. This measure is 0.84%,
indicating a very close match between the grown shape and the target shape.
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Figure S2: Total bilayer energy (black) decomposed into an embedding-dependent monolayer
component (red) and the remaining embedding-independent component (dashed blue). For the
case without anchor points (left) the monolayer energy increases significantly, indicating a large
build-up of residual strain, including at the final configuration. When we introduce anchor
points in the growth process (right, the four anchor points are shown as dots on the lines)
the monolayer energy is bounded and the target configuration, characterized by zero monolayer
energy, is reached when the growth process is complete. All energies are non-dimensionalized by
the Young’s modulus and shell volume.

The natural morphogenesis of the snapdragon flower, which is considered in the main text of
this work as an example, has been well-studied [21, 18]. The natural initial state is a cylinder
much shorter than the initial configuration used in this work, and furthermore has five small lobes
arranged around its upper perimeter. Nevertheless, keeping in mind that this difference amounts
roughly to an initial vertical scaling, we can still compare the growth factors and orientations
between our results and the natural growth process. Given our results in figure S4, we see
remarkable similarities to the biological growth factors described in [21]: the largest growth
factors occur at the far end of the lobes, and the directions are mostly consistent, especially on
the three downward-oriented petals. We do observe less dominant vertical growth, and more
pronounced azimuthal growth on the two large upward-oriented petals, presumably because in
our initial tube the corresponding material points are squished together around the perimeter,
whereas in the natural initial state they are already separated into lobes. This change between
the initial conditions is also likely to reduce or remove the large energetic barrier that has to be
overcome in our simulations, which is especially pronounced in the earlier stages of growth.

Follow-up investigations are required to address these differences in more detail, which could
be attributed to differences in the initial state, the dynamic adaptation of the growth factors
of the natural flower, and the possibility that the natural final configuration has significant
deformation-dependent residual strain, as opposed to our solution.

S4.4 Max Planck’s face
The face model was derived from a 3D model of a bust of Max Planck, from which we sliced
off the backward half in order to keep only the face, resulting in a mesh with 35 000 triangles.
The initial condition was created by conformally mapping the face onto the plane, fixing the
boundary vertices along the radius of a disk [19, 20]. The disk was then rescaled to have the
same area as the face. We set the Poisson ratio of the material to ν = 0.3, and the thickness
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Figure S3: Three-dimensional view of the snapdragon growth without anchor points, at inter-
polation factors 0.2, 0.4, 0.6, 0.8 and 1.0. The colors denote the distribution of the monolayer
energy density EML over the surface. The final configuration (right) is characterized by inverted
petals and, consequently, non-zero monolayer energy.

0.01R, where R is the radius of the initial disk. In this case we used 100 intermediate stages
created by interpolating the growth factors from their initial to their final values. The total
growth of tangent vector lengths on the disk varied between −75% and 300%. The Hausdorff
distance between the computed final shape, and the target shape, is 0.91%, where we use the
square root of the total face area to non-dimensionalize the metric.

S4.5 Horseshoe bend
Elevation data of the horseshoe bend, a meander of the Colorado river in Arizona, was obtained
from the National Elevation Dataset of the U.S. Geological Survey. The horseshoe bend was
found in the dataset identified by n37w112, with elevation data available in 1/3 arc-second
resolution. The resulting IMG file was read using the GDAL library [22], and the pure elevation
was extracted. We then sliced the dataset to keep only the horseshoe bend and its immediate
surroundings (an area of approximately two by three kilometers, with elevations ranging from
939 m at the bottom of the river, and 1332 m at the top of the canyon), after which the three-
dimensional target shape was obtained by warping the elevation data in the direction normal to
the plane. The original shape was remeshed using 20 000 triangles, and the planar initial condition
was created by conformally mapping the shape onto the plane, while fixing the coordinates of
the boundary vertices in the original rectangle shape [19, 20]. We set the Poisson ratio of the
material to ν = 0.3, and the thickness H/131, where H is the maximum height of the target
mesh – compared to the real-life dimensions, this would correspond to a thickness of three meters.
Similar to the snapdragon flower, we use anchor points to help guiding the growth trajectory:
the first anchor point was created by rescaling the vertical axis of the final configuration by 75%,
the second by rescaling the vertical axis by 25%. The total number of intermediate steps used
to grow the horseshoe bend is 125. Intermediate metrics were obtained through log-Euclidean
interpolation. The Hausdorff distance between the computed final shape, and the target shape,
is 0.05%, where we use the square root of the total area to non-dimensionalize the metric.
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Figure S4: Final grown state of the snapdragon flower with the principal growth orientation
(thick black lines) and sum of the two growth factors (colors) overlaid, for the top layer (left)
and the bottom layer (right).
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