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The worm-like chain model is a simple continuum model for the statistical mechanics of a flexible

polymer subject to an external force. We offer a tutorial introduction to it using three approaches.

First, we use a mesoscopic view, treating a long polymer (in two dimensions) as though it were

made of many groups of correlated links or “clinks,” allowing us to calculate its average extension

as a function of the external force via scaling arguments. We then provide a standard statistical

mechanics approach, obtaining the average extension by two different means: the equipartition

theorem and the partition function. Finally, we work in a probabilistic framework, taking

advantage of the Gaussian properties of the chain in the large-force limit to improve upon the

previous calculations of the average extension. VC 2018 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.5003376]

I. INTRODUCTION

Polymers are critical players in the mechanochemical
framework of cellular life; from DNA to the cytoskeletal
structures in our cells to the adhesive fibers used in cellular
locomotion, these slender molecules are critical to the infor-
mation storage, structural scaffolding, and dynamical motifs
necessary for life. The 1970s and 1980s saw the advent of
various advanced biochemical methods for manipulating sin-
gle molecules—optical tweezers1–5 and atomic-force micros-
copy6–9 in particular—giving scientists unprecedented tools
to investigate the mechanical behavior of these important
polymers. With these tools, scientists began to pull on
strands of DNA,10–12 proteins,13,14 and even complicated
polymeric complexes15 in an effort to study their response to
mechanical forces. These experimental endeavors showed
that DNA strands act like entropic springs under tension,
though this behavior was not entirely unexpected; physicists
and chemists had earlier observed similar behavior in more
industrial applications,16,17 studying, for example, the long
polymer chains in plastics. Their early attempts to under-
stand this restoring force focused on modeling the polymer
as a random walk, in which each “link” in the chain repre-
sents a single step. The “springiness” of the polymer is then
attributed to the larger probability for it to be found in a
folded up configuration than a perfectly straight line. This
simple model, often referred to as the freely jointed chain
(FJC), sufficed to describe the polymer under small forces
but failed under larger loads. However, a variant now known
as the worm-like chain model (first introduced in 1949 by
Kratky and Porod18), which incorporates the polymer’s
bending stiffness, correctly predicts the large-force behavior
including the large-force behavior of DNA.19,20

This tutorial utilizes a variety of mathematical and physi-
cal approaches in an effort to explain the mechanical and
probabilistic aspects of the worm-like chain and its mecha-
nochemical predictions. It begins in Sec. II by introducing
the statistical and mechanical assumptions that constitute the
worm-like chain model. Each of the following sections offers
different methods by which to understand the predictions of
the model and calculate the average extension of the polymer

[Eq. (10)]. Section III offers a pictorial/scaling view in which
we treat the polymer as a series of connected “clinks” whose
behavior we can describe in the large-force limit.21,22 By
understanding how the size of these clinks scales with the
applied force, we are able to deduce the behavior of the poly-
mer at large. Following this heuristic treatment, Sec. IV cov-
ers two statistical mechanics approaches to calculating the
average extension: by means of the equipartition theorem
(Sec. IV A) and through the partition function (Sec. IV B).
Finally, Sec. V makes use of the probabilistic framework of
Gaussian processes to calculate the average extension and
partially extend our calculation beyond the large-force limit.

II. STATISTICS AND MECHANICS OF THE

WORM-LIKE CHAIN MODEL

The worm-like chain (WLC) model is fundamentally a
continuum description of a chain of length L described (in
two dimensions) by the local tangent angle to the chain, h(s),
where s 2 ½0; L� denotes the distance along the chain (see
Fig. 1). Under the assumption of thermodynamic equilib-
rium, the probability for the chain to be in any configuration
h(s) is

P h sð Þ½ � / exp �E h sð Þ½ �
kBT

� �
; (1)

where T is the temperature of the system, kB is Boltzmann’s
constant, and E[h(s)] is the energy of the chain in configura-
tion h(s). Unless otherwise stated, throughout this tutorial we
assume that the ends of the chain are fixed at h(0)¼ h(L)¼ 0.
We do this in an attempt to model the physical setup in
which the ends of the chain are anchored perpendicular to
glass beads held in a pair of optical tweezers (Fig. 1).

The energy functional for this polymer chain is of the
familiar form E[h(s)]¼U[h(s)]þW[h(s)]. Here U[h(s)] rep-
resents the internal energy stored in the bending of the chain
and W[h(s)] represents the external work done on the chain
by an external force of magnitude F pulling on one of its
ends. In our 2D setting, the bending energy is given by
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U h sð Þ½ � ¼
1

2
B

ðL

0

ds
dh
ds

� �2

; (2)

where B is the bending stiffness (units of energy times
length), and the work term (assuming the force is applied
along the x-axis) is given by

W hðsÞ½ � ¼ �F

ðL

0

ds cos hðsÞ: (3)

Combining Eqs. (2) and (3) yields the chain energy

E h sð Þ½ � ¼
B

2

ðL

0

ds
dh
ds

� �2

� F

ðL

0

ds cos h sð Þ: (4)

Dividing E[h(s)] by kBT, we can write the normalized energy
of the polymer as

E h sð Þ½ �
kBT

¼ lp

2

ðL

0

ds
dh
ds

� �2

� f

ðL

0

ds cos h sð Þ; (5)

where we define two new parameters

f ¼ F

kBT
and lp ¼

B

kBT
; (6)

with f representing the scaled force (with units of inverse
length) and lp representing the persistence length of the

polymer.23 (N.B. It may be easier to understand the physical
consequences of lp via its effect on the chain’s correlation
length n [Eq. (47)], as the correlation length has a familiar
meaning.) The worm-like chain distribution is then

P h sð Þ½ � / exp � lp
2

ðL

0

ds
dh
ds

� �2

þ f

ðL

0

ds cos h sð Þ

" #
:

(7)

While the statistical mechanical underpinnings of the
WLC model may be familiar—assigning probabilities
according to the energies of given configurations—the idea
of assigning probabilities to functions rather than a finite set
of variables (like the positions and momenta of a set of par-
ticles) may not, and not every intuition from the discrete
case carries over to the continuum version. However, the
statement P½hðsÞ� > P½h0ðsÞ� still means that the model pre-
dicts configuration h(s) to be more likely than configuration
h0ðsÞ. In any case, our primary interest is in using the WLC
to calculate the average value of a single variable, the poly-
mer extension R, given by

R ¼
ðL

0

ds cos hðsÞ: (8)

Nevertheless, the average hRi still requires us to average
over all chain configurations h(s), which we formally denote
by an integral over all configurations or a path integral

hRi ¼
ð
D hðsÞ½ �R hðsÞ½ �P hðsÞ½ �; (9)

where
Ð
D½hðsÞ� represents the statement that we are integrat-

ing over all configurations or paths. We treat this operation
in detail in Sec. IV B. For notational convenience, we con-
tinue to use the angle bracket notation even in this contin-
uum case so that we may write

hRi ¼
ðL

0

ds h cos hðsÞi: (10)

Since integration is a linear operator, we can exchange the
average and the integral.

Alternatively, we can avoid some of the delicate issues
relating to the calculation of probabilities for functions and
path integration by considering the WLC model as the con-
tinuum limit of a discrete-link model. Although there is no
unique choice for this discrete description, we can start with
the freely jointed chain (FJC) model, which assumes the
chain is made of N links of length L/N free to rotate about
their joints [Fig. 1(b)], and then add a bending energy. The
chain is then described by a set of N angles h ¼ ðh1;…; hNÞ,
the probability for which is governed by another Gibbs
distribution

P hð Þ / exp �EN hð Þ
kBT

� �
; (11)

with an associated normalized energy

EN hð Þ
kBT

¼ lp

2

XN�1

n¼1

L

N

hnþ1 � hn

L=N

� �2

� f
XN

n¼1

L

N
cos hn: (12)

Fig. 1. (Color online) Parameterization of the worm-like chain in two

dimensions under (a) the standard continuum description and (b) under a dis-

crete formulation. In (a), we describe the chain by specifying the angle h(s)

of its tangent vector at every point s on the chain (where s is an arclength

parameter running along the length L of the polymer). Each end of the chain

is attached perpendicular to a glass bead held by a pair of optical tweezers,

keeping h(0)¼ h(L)¼ 0. By confining the beads, the tweezers provide an

external force of magnitude F on the chain, which we assume to be in the x-

direction (we assume no force is applied in the y-direction). The total exten-

sion of the polymer is then given by R ¼
Ð

ds cos hðsÞ. In the discrete formu-

lation (b), the chain is modeled by a set of N links of length L/N and h(s) is

replaced by N angles h1;…; hN , where hn describes the orientation of the nth

link in the chain. The extension is then described by a sum, R ¼ L
N

P
cos hn.
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In the limit as N !1, the differences between neighboring
angles become curvatures, limN!1ðhnþ1 � hnÞ=ðL=NÞ
¼ dh=ds, the sums turn into integrals, limN!1

PN
n¼1 L=N !Ð L

0
ds; and so the discrete system energy ENðhÞ limits to the

WLC energy from Eq. (4). As for the chain extension, in this
discrete setting R is defined by

R ¼ L

N

XN

n¼1

cos hn: (13)

Since the angles h1;…; hN are ordinary variables, the aver-
age extension has the usual meaning. This formulation is
useful when it comes to numerically simulating the behavior
of worm-like chains. To derive the average extension in the
continuum setting, we can first compute hRi in this discrete
formulation and then take N !1 (Sec. V).

Unfortunately, the presence of cos hðsÞ in both the WLC
energy [Eq. (5)] and in the definition of the extension [Eq. (8)]
makes it rather difficult to exactly compute hRi analytically.
However, by making a key approximation in the large-force
limit (Sec. II A), we enable the use of a variety of calcula-
tional techniques (Secs. III–V).

A. The large-force limit

In the limit of small forces and a length much larger than
the persistence length (L� lp), the worm-like chain behaves
like a Gaussian chain, with the extension being proportional
to the force. However, as the extension approaches the full
length of the chain, we expect the force to increase nonli-
nearly and eventually diverge as hRi=L! 1. This is a conse-
quence of our not allowing the chain to break or stretch: no
amount of force can make hRi > L. So what approximations
can we make in this large-force limit (f lp � 1)? As we pull
harder and harder on our polymer, we expect it to straighten
out in the direction of the force (the x-direction). In other
words, we expect the local tangent angle h(s) to be nearly
zero all along the polymer. Thus, in this large-force limit, we
can approximate cos hðsÞ � 1� h2ðsÞ=2, allowing us to sim-
plify Eq. (5) to

E h sð Þ½ �
kBT

� lp

2

ðL

0

ds
dh
ds

� �2

þ f

2

ðL

0

ds h2 sð Þ � f L: (14)

The distribution for h(s) [Eq. (7)] in the large-force limit
then becomes

P h sð Þ½ � / exp � lp

2

ðL

0

ds
dh
ds

� �2

� f

2

ðL

0

dsh2 sð Þ

" #
; (15)

where we have absorbed the constant f L term into the pro-
portionality sign.

Moreover, we can use the small-angle approximation to
simplify the cosine term in Eq. (10), giving

hRi � L� 1

2

ðL

0

ds hh2 sð Þi: (16)

The benefit of this is that hh2ðsÞi is much easier to calculate
than h cos hðsÞi. However, as we show in Sec. V A, it is pos-
sible to calculate the average extension using the exact
expression [Eq. (10)] under the assumption that the

distribution for h(s) is still described by the large-force limit
[Eq. (15)].

Exercises for Sec. II:

(1) While Eq. (8) defines the extension R of the chain in the
direction of the force, we might also consider the exten-
sion perpendicular to the direction of the force, R?,
defined by

R? ¼
ðL

0

ds sin hðsÞ: (17)

Using symmetry arguments, show that hR?i¼ 0.
(2) In reality, optical tweezers also confine the beads along

the y-axis. Thus, it is more accurate to say that the actual
positions of the ends of the chain are fixed. Assuming
the beads are fixed at the same y-position, this then pla-
ces an additional constraint on the chain, namely, thatÐ L

0
ds sin hðsÞ ¼ 0. This global constraint is difficult to

enforce. How might one change the chain energy [Eq.
(4)] in order to approximately enforce this constraint?

III. SCALING APPROACH

Having seen that the average extension is a function of the
average projection of each link in the chain, we now turn to a
simple scaling approach to capture the essence of the result
before moving on to increasingly sophisticated methods. When
a worm-like chain that is much longer than its persistence
length is extended weakly by an external force, it behaves like
a Gaussian chain, with a force that is proportional to the end-to-
end extension. However, as we increase the force, we expect
more and more of the chain to align with the direction of the
external force and hence for the average extension to increase.
We show this scenario in Fig. 2. On very short length scales,
comparable to the persistence length, the polymer is straight
but not oriented with the external force; on intermediate length
scales, the polymer’s bending resistance induces the links of the
polymer to group into a series of correlated links, or clinks,
each of which is partially straightened out by the external force;
and on large length scales, these polymer clinks are approxi-
mately oriented with the external force.

To characterize the length of a clink n (i.e., the correlation
length), we will consider how the external work and the
bending energy balance with thermal effects on the order of
kBT. The key idea here is that any given clink is able to bow
out by some distance h, reducing the effective end-to-end
length to n� D (Fig. 2).

The bending energy of the clink should depend on the
square of the curvature of the clink. Assuming the clink
bends into a circular segment and D is small, the curvature is
approximately j � h=n2 and so the total bending energy is

Uclink ¼
1

2

ðn

0

ds B j2 � B
h2

n3
: (18)

At equilibrium, the average of Uclink must be comparable to
kBT, which implies that hh2i � n3 kBT=B � n3=lp. Assuming
that the WLC is well approximated as an inextensible fila-
ment, this deviation from straightness leads to an effective
end-to-end shrinkage D � hh2i=n � n2=lp (which follows
from an application of Pythagoras’ theorem, see Fig. 2).
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The work done by the external force serves to iron out this
shrinkage of D and so the total work scales as FD, i.e., the
force applied over the distance D. Balancing with thermal
fluctuations at equilibrium then implies Fn2=lp � kBT and
n � ðkBTlp=FÞ1=2

. Using our definition of the extrinsic
inverse length scale f ¼ F=kBT, we see that the characteristic
“clink size” n � ðlp=f Þ1=2

demarcates the transition from ran-
dom to oriented states; on scales smaller than n, the filament
is not oriented on average with the external force. Our scal-
ing theory also provides an estimate for the shrinkage per
clink D � n2=lp. As the force increases the clink size
decreases and the filament gets increasingly oriented with
the external force.

With these simple results, we can now estimate the aver-
age extension of a filament of length L. The number of clinks
of size n is given by L=n with each having shrunk an amount
D, so that the average end-to-end extension of the WLC is
hRi � L� DðL=nÞ, which yields

hRi � L 1� 1

4
ffiffiffiffiffiffiffi
f lp

p
 !

: (19)

Note that we have included the factor of 4 to match the more
accurate computations in Secs. III–V; the scaling approach
does not provide us a way to get it. This expression for the
force-extension curve matches what is seen experimentally,
for example, in stretching DNA using optical tweezers,10 as
shown in Fig. 3, and was the first direct evidence that the
worm-like chain is an excellent model for the mechanical
response of DNA.

IV. STATISTICAL MECHANICS APPROACH

There are several ways to use the tools of statistical
mechanics to calculate hRi in the large-force limit. Here, we
discuss two methods: the first applies the equipartition theo-
rem and the second makes use of the partition function.

The partition function method allows us to derive the aver-
age extension, average energy, average bending, and aver-
ages of other physical quantities; however, calculating the
partition function requires functional (path) integration. The
equipartition method, on the other hand, relies only on the
validity of the equipartition theorem and allows us to avoid
the topic of path integration, but applies more specifically to
the average extension.

A. Via the equipartition theorem

Although we have the (approximate) formula for the aver-
age extension in Eq. (16), it is not necessarily obvious how
to interpret the expected value of an integral over a random
function. In this first approach, we sidestep the questions of
distributions for functions by rewriting the function h(s) in
terms of variables that we know how to manipulate. Thus,
instead of dealing with h(s) itself, we can work with its
Fourier coefficients.

In a finite domain (s 2 ½0; L�), we can describe all (square-
integrable) functions h(s) by a Fourier series. Assuming that
both ends of the polymer are fixed at h(0)¼ h(L)¼ 0, we can
write

h sð Þ ¼
X1
n¼1

an sin
nps

L

� �
; (20)

and so by direct integration we can convert the integral in
Eq. (16) to a sum

ðL

0

ds h2 sð Þ ¼ L

2

X1
n¼1

a2
n: (21)

Fig. 2. (Color online) Parameterization of the “clink” used in the scaling

approach of Sec. III A clink is a group of correlated links of the polymer

over which it is nearly straight. On average, we expect the length of a clink

to be given by the correlation length n. The slight bending of a clink leads to

a deviation of size h from a straight line of length n and, since the polymer

is inextensible, also reduces the end-to-end length by D. Given the statistical

nature of the problem, the leading order measure of bending is hh2i, not hhi,
as hhi ¼ 0 by symmetry.

Fig. 3. The squares are experimental force versus extension data for 97 kb k-

DNA dimers from Fig. 3 of Smith et al. (Ref. 25), while the solid line is a fit

of the entropic force required to extend a worm-like polymer. The fit param-

eters are the DNA length (L¼ 32.80 6 0.10 lm) and the persistence length

(lp¼ 53.4 6 2.3 nm). Shown for comparison (dashed curve) is the freely

jointed chain model (Ref. 25) with L¼ 32.7 lm and a segment length

b¼ 100 nm chosen to fit the small-force data. Reprinted with permission

from Bustamante et al., Science 265, 1599–1600 (1994). Copyright 1994,

American Association for the Advancement of Science.
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Thus we can write the average extension in terms of the sec-
ond moments of the Fourier coefficients

hRi � L� L

4

X1
n¼1

ha2
ni; (22)

and use statistical mechanics to calculate them.
We begin by rewriting the normalized energy [Eq. (14)] in

terms of the Fourier coefficients

E

kBT
¼ 1

4

X1
n¼1

a2
n f Lþ lp

L
p2 n2

� �
: (23)

Taking the expectation of Eq. (23) and multiplying through
by kBT, we can write the average energy as the sum of the
average energy in each Fourier mode, hEi ¼

P1
n¼1hEni,

where En is given by

En ¼
1

2
kBT

� �
1

2
f Lþ lp

L
p2 n2

� �� �
a2

n: (24)

The mode energy En depends quadratically on the nth
Fourier coefficient; thus, the equipartition theorem implies
that each mode should contribute an average energy

hEni ¼
1

2
kBT; (25)

to the overall average hEi so that Eq. (24) implies

ha2
ni ¼

2

f Lþ lp=L
	 


p2 n2
: (26)

Putting Eq. (26) back into our expression for the average
extension [Eq. (22)], we find

hRi � L� 1

2f

X1
n¼1

1þ lp
f L2

p2 n2

� ��1

: (27)

Recognizing the sum as the Taylor series of the coth func-
tion, we find that the average extension is given by

hRi � L 1� 1

4
ffiffiffiffiffiffiffi
f lp

p coth
L

lp

ffiffiffiffiffiffiffi
f lp

p� �
þ 1

4 f lp

lp

L

" #
: (28)

Note that the average extension only depends on two combi-
nations of parameters: f lp, the amount of work done over the
persistence length of the polymer relative to the thermal
energy, and lp/L, the ratio of the persistence length to the
overall length of the chain.

In the large-force limit, cothððL=lpÞ
ffiffiffiffiffiffiffi
f lp

p
Þ ! 1, so to lead-

ing order in f (ignoring the term that scales as 1/f lp) we
obtain the same large-force approximation that we found in
Sec. III [Eq. (19)].

B. Via the partition function

In this approach, we do not directly compute the average
extension hRi via Eq. (16); instead, we first calculate a more
universal object—the partition function Z—which is the
normalization constant for Eq. (15)

P h sð Þ½ � ¼
1

Z exp �E h sð Þ½ �
kBT

� �
; (29)

and so we should be able to calculate Z by integrating over
h(s). However, h(s) is a function, not a simple variable, and
so we instead have to integrate over all possible configura-
tions of h(s)

Z ¼
ð
D h sð Þ½ �exp �E h sð Þ½ �

kBT

� �
: (30)

Before delving into the details of path integration, let us
first justify the effort by showing how Z relates to hRi. First
note that we can formally write the expectation in Eq. (16)
as an integral over the distribution for h(s) [Eq. (29)]

�
1

2

ðL

0

ds h2 sð Þ
�
¼ 1

Z

ð
D h sð Þ½ � 1

2

ðL

0

ds h2 sð Þ

 !

� exp �E h sð Þ½ �
kBT

� �
: (31)

Then, given the form of the normalized energy [Eq. (14)], it
follows that taking the derivative of expð�E=kBTÞ with
respect to f yields

@

@f
exp �E h sð Þ½ �

kBT

� �
¼� 1

2

ðL

0

dsh2 sð Þ

 !
exp �E h sð Þ½ �

kBT

� �
:

(32)

Hence we can rewrite Eq. (31) in terms of this derivative�
1

2

ðL

0

ds h2 sð Þ
�
¼ � 1

Z
@

@f

ð
D h sð Þ½ �exp �E h sð Þ½ �

kBT

� �
;

(33)

where we also pull the derivative outside the integral.
Looking at Eq. (30), we see that the remaining path integral
is just Z, and so we can write the expectation as�

1

2

ðL

0

ds h2 sð Þ
�
¼ � 1

Z
@Z
@f
¼ � @ logZ

@f
: (34)

Putting this expression into Eq. (16), it follows that we can
calculate the average extension directly from the derivative
of the logarithm of the partition function

hRi � Lþ @ logZ
@f

: (35)

Now in order to evaluate Eq. (30), we have to figure out
how to “sum over all paths/configurations.” From a computa-
tional perspective, in order to do this we first need a way in
which to describe all possible functions h(s). As we note in
Sec. IV A, we can write any h(s) in terms of its Fourier repre-
sentation [Eq. (20)], in which case we can interpret the
“summation over all paths” implied by the path integral
operator

Ð
D½hðsÞ� as an integration over all Fourier series

coefficients anð
D hðsÞ½ � ¼

Y1
n¼1

ð1
�1

dan

� �
: (36)
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Having made explicit what we mean by path integration,
we use our simplified expression for the normalized energy
[Eq. (23)] in our expression for Z [Eq. (30)], turning the sum
over modes in the exponential into a product

Z ¼
Y1
n¼1

ð1
�1

dan exp � 1

4
a2

n f Lþ lp

L
p2 n2

� �� �( )
;

(37)

so that the partition function reduces to an infinite product of
Gaussian integrals. Integrating over each an directly yields

Z ¼
Y1
n¼1

1

4p
f Lþ lp

L
p2 n2

� �� ��1
2

: (38)

Substituting this into Eq. (35) and noting that

@ logZ
@f

¼ � 1

2f

X1
n¼1

1þ lp
f L2

p2 n2

� ��1

(39)

conveniently converts the infinite product of Eq. (38) into
the same infinite sum we encountered in the equipartition
approach, so that

@ logZ
@f

¼ L � 1

4
ffiffiffiffiffiffiffi
f lp

p coth
L

lp

ffiffiffiffiffiffiffi
f lp

p� �
þ 1

4f lp

lp
L

" #
:

(40)

Inserting this expression into Eq. (35) yields the same aver-
age extension that we found using the equipartition method
[Eq. (28)] and thus the same large-force approximation
[Eq. (19)].

One might wonder why we went through the trouble of
deriving hRi via both the equipartition and path integral
methods if the answer came out the same. First, the fact that
the answer did come out the same serves as a good check
that we did our calculations correctly. But more importantly,
both methods have their uses in other physical problems and
are thus both worth knowing. With that in mind, Sec. V pro-
vides yet another useful technique that can reproduce Eq.
(28) and even allows us to do better.

Exercises for Sec. IV:

(1) In our treatment of a polymer with fixed ends
[h(0)¼ h(L)¼ 0], we claimed that we could write any
configuration h(s) in a Fourier sine representation [Eq.
(20)]. Why were we able to ignore the cosine terms?

(2) Calculate the average extension under the Neumann
boundary condition h0ð0Þ ¼ h0ðLÞ ¼ 0.

(3) We had an expression for Z in terms of an infinite prod-
uct [Eq. (38)], but we only calculated @ logZ=@f . Show
that this expression for Z (or logZ) does not converge.
Does it matter that Z fails to converge so long as
@ logZ=@f does?

V. GAUSSIAN PROCESS APPROACH

The approximate worm-like chain energy [Eq. (14)]
depends only upon quadratic powers of h(s) and dh=ds, and
so the worm-like chain distribution [Eq. (15)] resembles a
continuum version of a multivariate Gaussian distribution

P hð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det 2pRð Þ

p exp � 1

2
hTR�1h

� �
; (41)

where h is a vector of polymer joint angles and R is their
covariance matrix. We can make this similarity more striking
by applying integration by parts to the derivative term and
integrating over a Dirac delta function, transforming the
argument of the exponential into

� 1

2

ðL

0

ds

ðL

0

ds0 h sð Þ d s� s0ð Þ f � lp
d2

ds02

� �� �
h s0ð Þ:

(42)

In this form, it is clear that the integrals are the continuum
analogue of the sums in Eq. (41),

hTR�1h ¼
XN

m¼1

XN

n¼1

hmðR�1Þmnhn: (43)

Indeed, Eq. (15) is a Gaussian functional distribution for
h(s) and the term between h(s) and hðs0Þ in Eq. (42) is the
inverse correlation function

C�1 s; s0ð Þ ¼ d s� s0ð Þ f � lp
d2

ds02

� �
: (44)

That our distribution for h(s) is Gaussian is a powerful
statement with two particularly useful implications:

(1) The distribution for any finite set of N parameters
h ¼ ðh1;…; hNÞ, where hn ¼ hðsnÞ for some sn 2 ½0; L�,
is multivariate Gaussian with zero mean and covariance
matrix R [Eq. (41)].

(2) The elements of the covariance matrix R are given by
the correlation function

Rm;n ¼ Cðsm; snÞ: (45)

These properties of a Gaussian process allow us to not only
reproduce the results from Secs. III and IV, but also obtain a
better estimate of hRi by using the exact definition of R [Eq.
(13)] in our calculation. Note, however, that we are still
using the large-force approximation to simplify the form of
the energy, and so our calculation of hRi is only improved,
not exact (Fig. 4).

Before continuing with this approach, we must calculate
the correlation function Cðs; s0Þ, i.e., the function satisfyingÐ

ds00 Cðs; s00ÞC�1ðs00; s0Þ ¼ dðs� s0Þ. We leave it to the
reader to derive the result [exercise (2) of Sec. V]

C s; s0ð Þ ¼ C js� s0j
	 


¼ 1

2
ffiffiffiffiffiffiffi
f lp

p exp � js� s0jffiffiffiffiffiffiffiffi
lp=f

p
 !

:

(46)

As we predicted via our clink picture (Sec. III), the correla-
tion length n is given by

n ¼
ffiffiffiffiffiffiffiffi
lp=f

q
: (47)

The correlation length [Eq. (47)] begins to vanish as we
increase f. This seems rather counterintuitive; after all, we
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argued in deriving Eq. (16) that applying a large force should
force the links of the polymer to all line up in the direction of
the force, which seems to suggest that the angles become
highly correlated. On the contrary, the angles end up not being
correlated with each other, but with the direction of the force.

A. Calculating the average extension

In the Gaussian process framework, we can work with the
exact definition of the extension in the discrete formulation
[Eq. (13)]. However, we do have to properly account for the
correlations between the given boundary angles and the inte-
rior angles. It is then useful to define two vectors, hin and hout,
the latter of which contains the given boundary angles hout ¼
ðh1; hNÞ and the former contains all the interior angles
hin ¼ ðh2;…; hN�1Þ. For our calculations here, we take

hout ¼ ð0; 0Þ. Our distribution of interest is thus not
PðhÞ ¼ Pðhin; houtÞ, but the conditional distribution
PðhinjhoutÞ. Likewise, we must calculate not hRi, but hR j houti

hR j houti ¼
L

N

XN�1

n¼2

h cos hn j houti: (48)

Because Pðhin; houtÞ is a zero-mean multivariate Gaussian
distribution and we set hout ¼ hhouti, it follows that the condi-
tional distribution PðhinjhoutÞ is also zero-mean multivariate
Gaussian, PðhinjhoutÞ � N ð0;RinjoutÞ. [N.B. Nðl;RÞ denotes
a (multi)variate Gaussian distribution with mean l and covari-
ance matrix R.] The only tricky part is calculating the condi-
tional covariance matrix Rinjout. To begin, we consider the
form of the joint distribution, Pðhin; houtÞ � N ð0;RÞ, where R
is determined by Eq. (45). We then write R and its inverse in
block form

R¼
Rin;in Rin;out

RT
in;out Rout;out

 !
; R�1¼

R�1
injout P12

PT
12 P22

0
@

1
A; (49)

where Rin;in ¼ hhin hin
Ti; Rout;out ¼ hhout hout

Ti, and Rin;out

¼ hhin hout
Ti. The matrices P12, PT

12, and P22 will not matter
in PðhinjhoutÞ as they end up multiplying hout ¼ 0. We can
thus get an expression for Rinjout by block-inverting R

Rinjout ¼ Rin;in � Rin;out R
�1
out;out R

T
in;out; (50)

which requires us to compute the inverse of the matrix
Rout;out, which in this case is only 2� 2.

Fortunately, for our purposes here we do not have to com-
pute Rinjout for all the interior angles all at once. The reason
is simple: the expectations appearing in our expression for
the average extension [Eq. (48)] each depend on only a sin-
gle interior angle, and so the Gaussianity of PðhinjhoutÞ
implies that these expectations reduce to

h cos hn j houti ¼
ð1
�1

dhn cos hn PðhnjhoutÞ: (51)

where PðhnjhoutÞ � N ð0; r2
njoutÞ. This Gaussian distribution

for hn is simple enough that we can exactly evaluate the inte-
gral in Eq. (51)

h cos hn j houti ¼ exp �
r2

njout

2

 !
: (52)

Now we can focus on calculating the conditional covari-

ance r2
njout. The covariance matrix R for the joint distribution

Pðhn; houtÞ is only a 3� 3 matrix

R¼

C 0ð Þ C
n

N
L

� �
C

N� n

N
L

� �

C
n

N
L

� �
C 0ð Þ C Lð Þ

C
N� n

N
L

� �
C Lð Þ C 0ð Þ

0
BBBBBBB@

1
CCCCCCCA
; (53)

in which C(x) is the correlation function from Eq. (46).
(Note that in principle all the n’s should be ðn� 1Þ’s;

Fig. 4. (Color online) Comparison of theoretical predictions and simulated

values of the relative average extension as a function of f lp (the ratio of the

unbending energy to the thermal energy) for relative persistence lengths

(lp=L) of (a) 0.1 and (b) 0.3. The dashed (red online) curve representing the

large-force approximation [Eq. (19)] is only accurate for f lp � 1 and exhib-

its no dependence on the relative persistence length. The diamond-studded

(purple online) curve represents the prediction we derive via statistical

mechanics [Eq. (28)] by using the large-force approximation of hRi [Eq.

(16)], while the solid (blue online) curve represents Eq. (56), the prediction

we obtain by treating h(s) as a Gaussian process and using the exact expres-

sion for R [Eq. (13)]. As lp=L increases, the polymer becomes less likely to

bend and thus, in the presence of a force, h(s) becomes more likely to be

small and the approximation in Eq. (16) improves, which explains the con-

vergence of the exact and approximate extension curves in going from

lp=L ¼ 0:1 to lp=L ¼ 0:3. The simulated average extension for each value of

f lp represents 1000 samples of 40-link chains, each drawn from a separate

instance of a slice sampler (with a 1000-sample burn-in period) working

under the exact energy [Eq. (12)].
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however, this will not matter in the large N limit and so we
have purposely ignored this for notational convenience.)
Evidently, in this case, the block matrices are

Rin;in ¼ C 0ð Þ;

Rin;out ¼ C
n

N
L

� �
C

N � n

N
L

� � !
;

Rout;out ¼ C 0ð Þ C Lð Þ
C Lð Þ C 0ð Þ

� �
;

(54)

and so according to Eq. (50) the conditional variance of hn,
denoted by r2

njout ¼ Rinjout, is given by

r2
njout ¼

cosh
L

lp

ffiffiffiffiffiffiffi
f lp

p� �
� cosh

2n� N

N

� �
L

lp

ffiffiffiffiffiffiffi
f lp

p" #

2
ffiffiffiffiffiffiffi
f lp

p
sinh

L

lp

ffiffiffiffiffiffiffi
f lp

p� � :

(55)

Substituting Eq. (55) into Eq. (51) and then plugging that
result into Eq. (48) leads to a very difficult sum, but by taking
the large N limit, we can convert it to an integral expression

hRi
L
¼
ð1

0

dz exp

cosh z
L

lp

ffiffiffiffiffiffiffi
f lp

p� �
� cosh

L

lp

ffiffiffiffiffiffiffi
f lp

p� �

4
ffiffiffiffiffiffiffi
f lp

p
sinh

L

lp

ffiffiffiffiffiffiffi
f lp

p� �
2
6664

3
7775:

(56)

Although the resulting integral still resists analytical evalua-
tion, we can evaluate it numerically, as we do in Fig. 4.
Indeed, Eq. (56) agrees with simulations over at least four
decades of f lp, whereas our large-force approximation [Eq.
(19)] holds only for f lp � 1. Moreover, we can obtain our
previous expressions for the average extension [Eqs. (19) and
(28)] by making the appropriate large-force approximations in
Eq. (56), as you are asked to show in exercise (4) of Sec. V.

Exercises for Sec. V:

(1) Show how to write the argument of the exponential in
Eq. (15) in the form of Eq. (42).

(2) Starting from the definition of an operator inverseÐ
ds00 C�1ðs; s00ÞCðs00; s0Þ ¼ dðs� s0Þ and the inverse cor-

relation function [Eq. (44)], calculate the correlation
function for h(s) [Eq. (46)]. For simplicity, assume the
range of integration spans the whole real line,
s 2 ð�1;1Þ, so that Fourier techniques apply.

(3) Calculate the average extension using its exact definition
[Eq. (48)] in the case where only one end of the polymer
is fixed, hð0Þ ¼ 0.

(4) Derive Eqs. (19) and (28) from Eq. (56) by making the
appropriate large-force approximations. Alternatively,
make a large-force approximation in Eq. (48) and use the
Gaussian process formalism to derive Eq. (28).

VI. DISCUSSION

The basic theoretical model of a polymer is the Gaussian
(entropic) chain, which is analogous to a connected random
walk in space. This model ignores all effects of mechanical
rigidity, statistical correlations, and self-avoidance and yet

has served as a powerful paradigm within which to study the
statics and dynamics of simple polymers.16,17,24 For many
biological applications, the Gaussian chain model is not suf-
ficient to describe the fact that these large macromolecules
are relatively stiff on small length scales and thus resist
bending deformations enthalpically. The natural extension of
the Gaussian chain to account for this effect is the worm-like
chain, the paradigm for semi-flexible polymers. In this tuto-
rial, we have provided a variety of complementary
approaches to study the mechanical response of a single
worm-like chain under the influence of an external force.

Fundamentally, the mechanical response of a worm-like
chain arises from a conflict/compromise between two driving
forces—an internal orientational order that dominates at
short length scales comparable to the persistence length lp,
and an external driver of orientational order that dominates
at long length scales of magnitude f�1 ¼ kBT=F. Together,
these effects yield an effective correlation length that scales

as n ¼ ðlp=f Þ1=2
, the effective size of a clink. As the external

force becomes larger this clink becomes smaller so that the
external force becomes more and more effective at forcing
orientational order even at short length scales. Equivalently,
the force diverges as the average end-to-end extension of the
polymer approaches its natural length. Using this result, it is
possible to derive the mean-field mechanical response of a
cross-linked network of worm-like chains,22 but this is the
subject of another tutorial.
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