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Competing failure modes in finite adhesive padsf

Tal Cohen,?°° Chon U Chan #? and L. Mahadevan () *39¢

Thin adhesive pads used to attach objects to each other often fail catastrophically. Here we consider the
nature of failure of such a pad under loading parallel to the adhesive substrate. To determine the modes
of failure of the pad and to understand what limits its load bearing capacity, we conduct experiments
with finite pads composed of a soft adhesive layer with a stiff backing and load them parallel to the
surface of adhesion. We find that two different peeling mechanisms emerge as a function of the
slenderness of the adhesive pad: an interfacial peeling mechanism that starts close to the pulling end for
very long pads, and an unstable curling mechanism that starts at the opposite end for relatively short
pads. A minimal theoretical framework allows us to explain our observations and reveals the adhesive
bond stiffness as a dominant parameter in defining the peeling mode. A phase diagram that delineates
the different regimes of peeling modes brings our experiments and theory together. Our results suggest
that unstable peeling by curling may be more common than previously thought, and could perhaps
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1 Introduction

Failure of the common adhesive pad - a layer of soft adhesive
on a stiff backing - is a recurring nuisance that we have all had
direct experience with. Although much ingenuity has been
devoted to optimize their design for reuse in such instances
as the Post-it note,§ in all artificial settings there is an inevitable
compromise pitting reversible use and load bearing capacity.
However, that compromise does not seem to transcend into the
natural world. In the animal kingdom several species of insects
and lizards have developed load-bearing capabilities using dry
adhesive pads that perform reversibly at high switching rates.'
To mimic this, numerous studies have attempted to identify and
explain the role of hierarchical features in natural adhesives in
such examples as gecko feet.'® The small scale hierarchical
features observed on natural dry adhesives have been explained
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occur naturally in such examples as the gecko foot.

to affect the strength of the adhesive bond by providing increased
conformability to the substrate™™* as well as directionality™*™”
and the reversibility'®>" of the attachment.

Here, we complement these studies by considering an additional
effect, bond stiffness, which we show plays a significant role in
the macro-scale peeling response of finite adhesive pads. Our
work is inspired by a series of studies that suggest that the load
bearing capacity of adhesive pads is a function of their long-
itudinal compliance.**”>* This notion was further substantiated
by the development of bio-inspired adhesive pads that can
perform reversibly on multiple surfaces and with load bearing
capacities scalable to those of natural systems.”” In these
studies, the adhesive layer was stiffened longitudinally by the
attachment of a stiff backing to the soft adhesive layer, but to
date only scaling arguments have been provided to explain why
the load bearing capacity of the bi-layer composite is higher than
that of a mono-layer with equivalent longitudinal stiffness.q
Earlier studies on the failure of laminate composites***” investi-
gated the steady propagation of a crack-like peeling front,”®>°
and consider infinitely long adhesive layers being pulled off the
substrate at a prescribed angle. More recent investigations
considered initiation of peeling®®*' and have shown that
fingering patters form at the peeling front, as a flexible plate
is lifted off an elastic film. These patterns are associated with
the appearance of interfacial cavities that act as precursors to
the propagation of the peeling front, thus resembling the

9 Available theories do not account for the finite length of the composite layer or
the different dimensions and properties of the adhesive layer and the stiff backing,
and consider a crack-like peeling front that propagate from the pulling end.
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mechanism of fracture initiation in ductile metals.
the load bearing capacity of an adhesive layer is maximal when
the peeling angle vanishes,**** to determine the ultimate failure
mechanism we focus on finite adhesive layers that are loaded
parallel to the direction of the substrate. This allows us to
account for both the dimensions of the composite adhesive
layers that are composed of a soft adhesive with a stiff backing,
and the stiffness of the adhesive bond at the interface.

In Section 2 we begin by describing the problem setting and
our experimental observations of the different modes of peeling
that are highly dependent upon the layer dimensions. In Section 3
we present a theoretical model that captures and explains those
modes, and we study their sensitivity to design parameters of the
composite layer. Based on a set of four dimensionless model
parameters that naturally emerge from the formulation, we explore
the deformation patterns and identify three distinct peeling
modes. We find that debonding can be triggered either near the
pulling end as an interfacial cavity, at the opposite end generating
a peeling front that propagates towards the pulling end while
visibly exhibiting curling of the free end, or by a combination of
both. Our results yield a phase diagram which shows that the
transition between different modes occurs for layers of realistic
aspect ratios (length/thickness) and is highly dependent on the
bond stiffness. In Section 4 we show that the transition between
the peeling modes can be quantitatively captured via experiments
and compares well with the analytical predictions. We conclude

(a) (b) I/t = 3.6
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in Section 5 with a discussion of the possible manipulation
of the unstable peeling mode to enable rapid adhesion-based
locomotion, as well as the possible design of adhesives that can
arrest cavitation while promoting a sequence of curling instabilities.

2 Observations

Our composite adhesive pads of length [ are composed of two
elastomeric layers of thickness ¢ and ¢, and Young’s modulus E
and Ey,, as illustrated in Fig. 1(a) (preparation and characterization
protocols of the elastomer are detailed in Appendix A). To observe
the peeling mechanism, we attach the layer to a smooth glass
plate and apply a horizontal displacement (Az) to the edge
of the adhered layer that is increased at a constant rate of
5-10 [mm min '] using a universal material tester (Instron 5566),
as elaborated in Section 4. The experiment is synchronized with a
high-speed camera (Phantom v9.1) to record the load-extension
curve as well as the side and bottom views of the elastomer in
contact with the glass. Fig. 1(b)-(d) show snapshots taken from
the high-speed movies of three representative layers of different
lengths in their initial state (first image on the left), and during
peeling (second and third images), where darker regions show
lost contact with the glass substrate.

Examining the peeling behavior for the shortest pads
(Fig. 1(b)) we notice that the peeling front propagates from
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Fig. 1 Problem setting and experimental observations. (a) Illustration of the layer including dimensions, material parameters and the coordinate system
(x.y.2). A schematic of the deformed configuration induced by a displacement Az applied at the leading edge along the longitudinal direction. In this case
both cavitation and curling appear. (b—d) Snapshots of high-speed movies (Movies S1-S3, ESIt) capturing the peeling events with increasing applied
displacement (Az) from left to right. The first image on the left shows the undeformed state. Samples of the pad with three different aspect ratios are
shown, with I/t = 3.6, 6.5, 11 respectively. For all samples the elastic moduli and thickness of the adhesive layer and the backing are E = 0.17 [MPal],
t=8.3[mm] and E, = 2 [MPal, t, = 2.4 [mm], respectively. Side views of the layers are shown on the top. The bottom view of the layer through the glass
substrate is also shown below — the darker regions correspond to areas that have detached from the substrate. (e) Load-extension curves corresponding
to the three peeling tests. The arrows indicate onset of curling.
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the end that is opposite from the pulling end. We refer to this
mode of peeling as the curling mode, since it involves curling of
the far end of the layer as it lifts off of the surface. For inter-
mediate length pads, as seen in Fig. 1(c) curling is accompanied
by a debonding event that is initiated as an interfacial cavity near
the pulling end. Finally for very long adhesive pads, as shown in
Fig. 1(d), the interfacial cavity grows to a nearly constant length
until curling is triggered suddenly just before the onset of failure.
For long adhesive pads, this cavity appears much earlier and is
followed by dynamic shedding events wherein smaller cavities
detach from the main cavity and subsequently disappear (see
ESIt for movies).

In Fig. 1(e), we complement our qualitative observations
of peeling by measuring the force-displacement curves that
correspond to the three peeling tests in Fig. 1(b)-(d). We find
that in all cases curling (indicated by an arrow) is followed by a
significant reduction in the load until complete detachment
and failure. Although the force displacement curve for the
shortest layer is smooth, for the larger aspect ratio specimens,
cavitation events result in a slight drop in load (see ESIt for
movies). Thus, in a force-controlled loading scenario we expect
to see dynamic instabilities, although in all cases, the ultimate
failure mode occurs via curling. We note that nonuniform
deformations that resemble fingering instabilities in the transverse
direction are sometimes observed,*”™” but we will not focus on
these here.

Overall, these observations suggest that the mode of peeling
is highly dependent upon the dimensions of the layer and that
the different peeling mechanisms can appear simultaneously.
Nevertheless, what ultimately limits the load bearing capacity
of the layer is determined by the onset of curling at the far end.
Therefore, we turn to understanding this peeling mechanism and
its sensitivity to the geometry and stiffness of the composite layer.

3 Theory

Although many studies of peeling generally assume a rigid
adhesive bond up to loss of contact, in soft systems with weak
bonding, bond deformations are non-negligible and the bond
stiffness can significantly influence the peeling response as it
allows for the redistribution of stresses within the layer prior to
detachment. To evaluate the regime in which the bond stiffness
becomes non-negligible, we consider a scenario where a normal
stress ¢ is applied on the top face of a segment of the soft
adhesive layer (without the backing, for simplicity). If the bond
is rigid, this will generate a displacement u = ¢t/E. Otherwise,
an additional displacement will arise due to bond deformation
and u = ot/E + o/k where k represents the bond stiffness per unit
area.| Bond stiffness can be neglected if kt/E > 1. However, for
soft interfaces, the bond stiffness (k) is dictated by the density
of bonds per unit area, and dependent on the features of the
interface and on the method of attachment, and it can even

|| Note the difference between the ‘bond stiffness’ (k) which refers to the stiffness
(per unit area) of the adhesive bond at the interface, and the ‘adhesive modulus’
(E) which refers to the elastic modulus of the adhesive layer.
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vary over time.*®**° Accounting for a finite bond stiffness
captures the local increase in compliance that can be induced,
for example, by hierarchical features of the bonding interface or
by the distribution of molecular bonds. Hence, to capture the
critical state at which debonding is triggered as a response to
horizontal displacement (Az), we model the attachment of the
adhesive pad to the substrate via a homogeneous distribution
of springs at the interface with a maximum allowable displacement
from the substrate. We note that the bond stiffness considered
herein is not merely an alternative representation of the more
commonly used adhesion energy, since it does not represent
the critical debonding state. Considering adhesives for which
small-strains are sufficient to generate detachment, a linearly
elastic material response can be assumed and the deformation
pattern at the onset of debonding is independent of the magnitude
of the applied displacement. According to this framework,
debonding will occur where the normal displacement from
the substrate is maximal.

There are a few dimensionless model parameters that
characterize our system given by

_

ty Euty
=—, = — 1
a=l ! )

o PR T
which, together with the aspect ratio I/t of the pad, fully define
the problem. Here « is the thickness ratio of the backing to the
adhesive layer, f represents the ratio of longitudinal stiffnesses,**
and 7y is a dimensionless measure of the bond stiffness. We note
the difference between the dimensionless bond stiffness y, and the
elasto-capillary number n = t/(Ef), where t represents the surface
tension.’® The later is associated with the in-plane properties of
the interface, and the former with the out of-plane response.

3.1 Mathematical formulation

We consider an elastic adhesive that, in its undeformed state,
occupies theregion 0 < x <t,—o <y < c0,and0 <z < [, as
shown on Fig. 1(a). One face of the adhesive, at x = 0, is attached
to a rigid substrate, while the other, at x = ¢, is perfectly bonded
to an elastic backing of thickness (¢,). To peel the adhesive, we
apply a displacement (Az) by pulling the backing along the
longitudinal axis at z = /. Assuming plane-strain conditions, this
results in the displacement fields

u=u(xz), v=0, w=wx,z) 2)

along the (x,y,z) directions, respectively (Fig. 1(a)). The non-zero
strain components are thus

u ow 1/0u Ow
&y = & = Exs ( + ) 3)

YTox Tz 7t 2\02 T o

Kinematic constraints. We make two assumptions on the
deformation field. First, we assume the adhesive layer to be
incompressible, so that

ou Ow
CESE=0, (e =0) @

** Notice also that o®ff represents the ratio of bending stiffnesses between the two
layers.
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Secondly, we assume that, in the adhesive layer, planes that are
initially normal to the longitudinal axis remain planar upon
deformation. Both these assumptions may be justified for the
case of thin elastomers. The longitudinal deformation (2)* can
now be specialized to

w = wy(z) (1 — ;) + w,(z)é (5)
where wy(z) = w(0,2) and w(z) = w(t,2) represents the displacement
of the top and bottom surfaces of the adhesive layer, respectively.
Combining the above kinematic constraints (4) and (5), and
integrating the result yields a relation for the normal displacement
(2)! of the form

u=up(z) — g(wé(z) (2 - i:) + w,’(z)%) (6)

where uy(z) = 4(0,2), and the superposed prime denotes differ-
entiation along the longitudinal coordinate (-) = d(-)/d(z2).

The deformation field is now fully defined by a set of three
functions (u#o,wo,w;) that vary along the longitudinal coordinate
(2). For further reference, we can write the normal displacement
of the top surface u, = u(t,z) as

t
u; = uy — E(wé +w/) (7)
and the strain components (3) now read

x
& = —& = (w)— w[’)? —w
(8)

P l(ué — (wo — wt)l —wix+ (wf — w,")ﬁ)
2 t 2t

Elastic energy. We now proceed to write the elastic energy

absorbed by the composite layer for a given deformation.

The longitudinal strain energy density is composed of three

contributions; &, — the energy of the adhesive layer, &5 - the

energy of the backing, and &¢ - the energy associated with the

compliance of the adhesive bonds. For the adhesive layer, given

the plane-strain conditions, the longitudinal strain energy
density in the adhesive layer is

o2 2
Ep = §EJ0 (8.\» + &ys )dx 9)

where E is the elastic modulus. Inserting the strain components
(8) into the above expression then yields

E I
Ea = 187 {(8w6’2 +9wiwr + 3»11,"2)% —uff 2wg + wi)e

+ (wo — w)) 2wl + wih i

(wo — w,)(2wg + wy') (10)
+ (3u62 + 4wl + dwhw! + 4w,’2)t2
— 6ug(wo — w)t + 3(wo — w,)z}

Now, we turn to consider the elastic energy in the backing
which we assume to be sufficiently thin such that it can be

Soft Matter
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modeled as an isotropic incompressible elastic plate that stores
energy in tension and bending, allowing us to write

2Ebtb )

3
Eblb )

Wy
3

&g = 13 u; (11)

The last remaining contribution to the elastic potential is that
of the adhesive bond which depends on the bond stiffness k
and on the displacements at the adhesive interface (uo,wy).
Defining k as the stiffness of the interface, we write the energy
stored at the adhesive interface as

Ec = %k (u()2 + W()z) (12)

With the three contributions given in (10)-(12), the elastic
energy density, & = &, + &g + &¢, can be written in terms of
three independent functions (u,w,w,), or equivalently in terms
of the dimensionless generalized set q = (¢1,42,93), and its
derivatives up to the third order. One possible set, that we
use here for analytical compactness is

g1(0) = w(tl)/t
32(0) = (wo(t0) + w(t))/t
75(0) = ultO)1t (13)

that are functions of the dimensionless longitudinal coordinate
z

(=2 (19)

The total elastic energy (per unit width in the out of plane
direction) is then given by

!
¢:[(5A+53+éﬂc)dz (15)
JOo

and may be written in general form as
1/t
¢ = J & (a9, q%,q)rdg (16)
0

For completeness we write the strain energy density contributions
65 6 and &g, in terms of q and its derivatives (represented by
the superscript (7)), in eqn (B1)-(B3) of Appendix B. Extremizing
the energy yields a governing system of three fourth-order
linear ordinary differential equations that depend on a single
independent field variable ({)

4gt? + 3¢5 + 2045 — 80(1 + 64)g + 100¢ + 2404
+120(4 + 3y)g; — 120(2 + 37)g2 = 0 (17)
3¢t + 65" + 2045 + 100 — 10(20 + 9y)g?) — 60(2 + 37)g5"
—120(2 + 39)g; + 120(1 + 37)g, = 0 (18)

2028g5) — ¢ — ¢ — 6 — 124t + 3(2 + 3y)gtY + 18yg; = 0
(19)

As observed, the three dimensionless model parameters defined
in (1) emerge naturally within the formulation. This is a 12th
order system that requires 12 boundary conditions.

Boundary conditions. Since the bonding to the rigid sub-
strate involves displacements of the bottom surface (x = 0) that

This journal is © The Royal Society of Chemistry 2018
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are penalized by accumulation of elastic energy in the adhesive
bonds, the only boundary constraint imposed on the layer is
the displacement at the pulling end, namely

(u(t,)),w(t,l)) = (0,A2) (20)
which can be translated to dimensionless terms as
q:(lt) = Azjt, qs(l/t)=0 (21)

Additionally the natural boundary conditions that emerge from
the Euler-Lagrange derivation are

4g® + 3¢5 + 2042 — 1201 + 4p)gt) + 60gY =0 (22)

3¢ + 645 + 20¢P + 120¢1Y — 90(2 + 7)g5”) — 180y¢; = 0

(23)

20°Bg—qP—q% — 68" — 12q1 + 69, =0 (24)
4g? +3¢2 + 2045 + 40g, — 20g, = 0 (25)
3¢ + 6% + 2045 + 40q;, — 20q, =0 (26)
g’ =0 (27)

To solve the system for a finite layer we must employ boundary
conditions at both ends, i.e. { =0 and at { = //t. At { = 0 we adopt
the natural boundary conditions (22)-(27) and at { = I/t we
employ the two conditions in (21) with (24)-(27).

It is useful to look at a couple of different limits of the above
equations:

Vanishing adhesive stiffness. If the longitudinal stiffness of
the adhesive layer is significantly smaller than that of the
backing then § > 1 and (assuming finite values of o*f and 7)
eqn (22) reads ¢ = 0 and thus the longitudinal displacement
of the top layer (w, = g;¢) must be a linear function. Then,
employing boundary condition (22), which reads ¢{ = o,
implies that the longitudinal displacement of the backing is
constant g, = Az/t. This result intuitively suggests a simple shear
scenario, in which no normal displacement occurs (g, = gz = 0).
However, for finite bond stiffness, the moment induced by the
pulling force can only be equilibrated by an asymmetric deformation
field. It will be shown in the next section that this asymmetric
response leads to curling.

Infinite bond stiffness. If the bonding between the adhesive
layer and the substrate is rigid (y - o0), then no displacement
occurs at x = 0 and u, = wy = 0. In terms of the dimensionless
variables this implies that ¢, = ¢, = g and g3 = —¢'/2 = p.
Applying these constraints in the Euler-Lagrange formulation
is equivalent to adding the first two eqn (17) and (18), to the
derivative of the third eqn (19), and after some algebra yields
the single equation 6th order equation

562pp® — 3p@ + 20(5 + 128)p® —60p =0  (28)

Although the rigid bonding constraint leads to a reduced form of
the governing eqn (17)-(19), the absence of interface compliance
restricts the distribution of stress within the layer and leads to
localization of the deformation near the pulling end (this will be
shown from the integration results in the next section). Hence,
this form can only be applied to study failure mechanisms that

This journal is © The Royal Society of Chemistry 2018
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initiate near the pulling end, thus emphasizing the need for the
higher order description.

Vanishing backing thickness. The thickness of an isotropic
backing material influences both its extensibility and bending
stiffness. Nonetheless, for o « 1 and finite f, the first term in
(19) can be neglected, reducing the order of the system. However,
this does not significantly reduce the complexity of its solution
nor the results.

3.2 Results

For a finite layer, if the model parameters (o,f3,y,//t) are finite,
no further simplification of the analytical representation is
possible and boundary conditions must be applied at both ends
of the layer. The roots of the characteristic equation associated with
the governing system of eqn (17)-(19) are obtained numerically, and
the solution obtained by employing six boundary conditions at each
end of the finite layer, as explained in the previous section.

In Fig. 2a, we show representative results for the normal
displacement of the bottom surface (u,/Az) for layers of varying
aspect ratios, with o = 0.1, f = 1.5 and y = 0.03, debonding
will initiate where the normal displacement is maximal. It is
observed that for sufficiently long and thin layers (I/¢ = 30), the
deformation is concentrated near the pulling end (z = [), where
the maximum lift off of the substrate appears in the form of an
interfacial cavity. In this situation, since the deformation is
localized, debonding at the cavity will spread the deformation
to effect a larger region. However it will not necessarily lead to
failure, implying that a new stable configuration is plausible.
From here on, we refer to peeling that initiates by formation of
a cavity as cavitation dominated, which in Fig. 2a is observed
for aspect ratios in the range I/t > 19. The nucleation of
interfacial cavities as a precursor to the formation of a peeling
front has been previously indicated for infinitely long layers
and shown to appear at a load much higher than that required
to propagate it.*>*! This behavior is also observed in Fig. 1(e),
where cavitation events result in only a slight drop in load
whereas, in all cases, failure ultimately occurs by curling which
is followed by a significant reduction of load.

As I/t becomes smaller, an additional region of localization
emerges at the other end of the layer (z = 0) and becomes
dominant as the maximum lift off is equal at both fronts (//t ~ 19),
as shown in Fig. 2(a). In this state, debonding may be triggered
simultaneously at both ends, and for even smaller aspect ratios it
will be triggered at the far end (z = 0). This leads to a redistribution
of stresses on a smaller adhesion area, and in turn intensifies the
stresses at the interface that will lead to further debonding. Then,
rather than having a peeling front that propagates backward from
the pulling end, a curling mode in which the peeling front
propagates forward from the opposite end is seen. This curling
dominated regime is thus defined for situations in which both
curling and cavitation are apparent but with peeling initiation at
the free end (z = 0), and is seen when 8 < I/t < 19. Finally, for
even smaller aspect ratios (I//t < 8), the cavitation maximum near
the leading edge is no longer apparent and thus we refer to this
regime as the curling only regime. We note that as the aspect
ratio further decreases below I/t ~ 3 the curvature of the backing
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Fig. 2 Normal displacement of the bottom surface (ug/Az) for layers of different properties and dimensions. (a) Sensitivity to aspect ratio: patterns are

shown for layers with aspect ratios in the range 3 < I/t < 30, and with o = 0.1,

p =15, and y = 0.03. Three distinct regimes of response are observed and

the transition between them indicated by thick black curves. (b) Sensitivity to model parameters: patterns are shown for o = 0.01, 0.1, 1. Different colored
curves distinguish between three sets of parameters with two different values of f = 2, 10 and two different values of y = 0.1, 10, while all curves are

calculated with (/t = 10.

decreases and the layer detaches by a mode that is akin to rigid
body rotation.

To investigate the effect of the system properties on the
different modes of failure, we follow the dependence of the
solution on the system parameters. In Fig. 2(b), we examine
the variation of the deformation response on o, and do not see
much sensitivity for values in the range 0.01 < o < 1 (thus
implying insensitivity also to scaled bending stiffness ratios
that are shown in the range 2 x 10™* < o < 10). However,
varying the scaled longitudinal compliance f# does change the
response curves significantly, in agreement with the scaling argu-
ment given in ref. 22; as f§ increases for the same values of 7, there
is a transition to curling-dominated failure (blue and green curves).
Finally, varying the scaled bond stiffness y, we see that there is a
significant effect due to this parameter as well; as y increases for
the same value of f3, there is a transition to cavitation-dominated
failure associated with more strongly localized deformations (as
shown by the green and red curves in Fig. 2(b)).

To obtain a better understanding on the effect of model
parameters in dictating the peeling mode, and considering the
insensitivity to o, we use the dimensionless parameters (f,y,//t)
as a basis to examine the sensitivity and construct phase
diagrams in Fig. 3, from which it becomes apparent that the
curling mode dominants as f increases. Additionally, in it is
observed that reducing the scaled bond stiffness y further
increases the range in which curling is dominant. Overall,
peeling by cavitation is dominant only for large aspect ratio
specimens that either have small stiffness ratios (f) or high
bonding stiffness (7). As the layer becomes longer, the deformation
localizes at its ends and available theories that consider infinitely
long layers become valid. Most importantly, our results show that
the scaled bond stiffness (y) significantly influences the peeling
mode, so that the theories that assume infinite bond stiffness
(y > oo) are limited to high aspect-ratio specimens.

In view of Fig. 3 we can consider two limiting cases in which
classical theories breakdown. First, theories that consider

Hcurling only  Ocurling dominated ~ Mcavitation dominated ~ Omodel limit
| J |
B 10 ;‘ 00 0/ 10f]
L | i
| ‘ | | |
5 : 5 5 50
L . | i J‘
> e | u
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

I/t 1/t

Fig. 3 Phase diagrams in the scaled stiffness 8 aspect ratio [/t plane, shown

I/t 1/t

for four different scaled bond stiffness 7 values and calculated with scaled

thickness a = 0.2. The three peeling modes that are illustrated for a specific set of model parameters in Fig. 2, are distinguished by the different shades of blue.

Soft Matter

This journal is © The Royal Society of Chemistry 2018


http://dx.doi.org/10.1039/c7sm02378b

Published on 05 February 2018. Downloaded by Harvard University on 06/02/2018 02:48:50.

Soft Matter

inextensible layers (f — oo) predict infinite load bearing
capacity.”®** In contrast, our quantitative identification of an
additional peeling mechanism that is dominant in this limit
provides a realistic explanation of the observed response.
Intuitively, when the backing is inextensible and pulled along
the direction of the substrate, the deformation is no longer
localized near the pulling edge (as assumed in classical theories)
and curling of the far end will ultimately lead to failure. Secondly,
in the limit when the adhesive bond is compliant, i.e. y « 1, the
deformation of the adhesive layer cannot localize and interfacial
cavitation is suppressed, in contrast with classical theories which
operate in the limit y » 1.

4 Experiments

To test our theoretical predictions using quantitative experiments
that complement our initial observations, we conducted a systematic
experimental investigation to examine the sensitivity of the peeling
response to specimen dimensions and material properties. Given
the insignificant influence of «ff predicted by the theoretical
analysis, we consider the sensitivity to 3, y and //t. Since the curling
only mode is clearly indicated in the experiments by a smooth
force displacement curve and absence of cavities (see Fig. 1(e)), we
focus on the transition from a curling only response to a curling
dominated response, in which both cavitation and curling are
active.

Although varying the layer dimensions and elastic moduli is
relatively straightforward (see Appendix A for further details on
material preparation), controlling (and measuring) the bond
stiffness per unit area (k) can be more challenging. On the other
hand, to study the influence of the bond stiffness on the peeling
response we vary its dimensionless counterpart y = kt/E. Thus,
by holding k constant and varying E/t we can experimentally
control y. To assure minimal variation in k values we employ a
simple experimental protocol in which the layers are attached to
the substrate by applying ~ 8 [kPa] of normal pressure to
ensure proper bonding for similar lengths of time before the
experiments are carried out. Additionally, we verify that the
force displacement curve is insensitive to changes in applied
normal pressure in the range 2.6-26 [kPa].

We map out the phase boundary experimentally by conducting
a series of experiments with samples made of identical materials
while gradually reducing the aspect ratio (//£), as shown in Fig. 4.
We mark cavitation events by a triangle, and curling modes using a
star. Experiments were carried out using six sets of samples
(Table 1) that can be divided into two groups; group 1 is indicated
in blue and group 2 in red, and are distinguished by an order of
magnitude difference in ¢/E, and thus an order of magnitude
difference in y. To verify repeatability of our results, tests were
performed on three independent samples for each set of para-
meter values. Theoretical predictions of the phase boundary for
varying y values are also shown for comparison via black curves.
We note that there is a good qualitative agreement between the
theoretical and experimental phase boundary curves. Given the

++ The variation of the thickness ratio o in our samples is up to 35%.
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Fig. 4 Phase boundary curves for transition between curling only and
curling dominant modes. Experimental results are indicated by triangles
and stars. Blue markers are for ‘group 1’ layers, and red markers for ‘group
2" layers, as indicated in Table 1. Stars correspond to samples that exhibited
a curling-only response. Triangles correspond to samples in which peeling
involved cavitation. For comparison, analytical curves for varying y values
(with o = 0.2) are shown in black.

Table 1 Dimensionless model parameters (a,f,7) for six sets of samples,
divided into two groups. Since the bond stiffness per unit area k is
unknown, the dimensionless value y = (t/E)k is written with k [MPa
mm™Y as a coefficient of the measured value — t/E [mm MPa~Y. The ratio
in y values of ‘group 1" and ‘group 2" is ~10

Group 1 Group 2
o 0.29 0.39 0.29 0.4 0.36 0.27
p 14 8.1 2.3 4.2 2.2 0.49
y 78k 86k 89k 8.0k 11k 8.6k

observed and calculated dependence of the transition between
the modes of failure, we estimate the bond stiffness to be
k ~ 4 [N mm °]. Assuming the average stiffness of a single
van der Waals interaction is ~ 1 [N m™'], our observed
k corresponds to an areal bond density of ~4 x 10° [mm?].
This yields an indirect measurement of a typical bond-bond
distance ~ 30 um, which would otherwise be difficult to measure.

5 Conclusions

Our study has considered the failure modes of finite dry
adhesive bilayers as they peel away from a substrate when
loaded along the direction of the adhesive interface. Although
theories on peeling regularly consider the propagation of a
steady peeling front following interfacial cavitation near the
pulling end towards the opposite end, our combined analytic
and experimental investigation reveals a second (unstable)
failure mode for finite adhesive layers that is associated with
curling at the far end, and propagates towards the pulling end.
While curling triggers unstable peeling, interfacial cavities do
not necessarily lead to failure. A systematic investigation of the
influence of the model parameters and layer dimensions on the
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peeling response shows that the peeling mode is highly sensitive
to the relative compliances of the adhesive and the backing.
Moreover, although available theories regularly assume the
adhesive bond to be rigid up to loss of contact, our introduction
of the bond stiffness emerges as a key parameter in determining
the peeling mode, thus providing an additional explanation
of the role of hierarchical features observed in natural dry
adhesives. Although our theoretical model can capture the
different peeling modes and provides reasoning for their stable/
unstable nature, a more elaborate theoretical model is needed
to quantify the stability threshold and should be subject for
future work.

A phase diagram that shows the transition between (unstable)
curling and (stable) cavitation peeling modes for varying model
parameters can serve as a set of design rules for adhesive
selection. Navigating through this design space might allow for
the active switching between stable and unstable states, and can
possibly facilitate rapid maneuverability of adhesion-based
locomotion. For example, the rapid peeling capabilities observed
in geckos that have been shown to switch between attached and
detached states within 20 [ms] has been previously attributed to
active muscular control of the observed curling in the direction
normal to adhesive plane.'* Our study suggests an alternative
explanation: by loading the adhesive pad parallel to itself using
tangentially acting muscles, the gecko foot could curl passively
and thus rapidly switch from a stable adhered state to unstable
peeling. Testing this hypothesis by studying EMG recordings
while measuring force-extension curves is a natural next step, as
is the influence of the rate of peeling on the observed phenomena.
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Appendix A - layer fabrication and
surface preparation
Elastic modulus tuning

The elastomeric adhesive layer was fabricated by mixing Sylgard
184 (Dow Corning) with a softer elastomer, Sylgard 527 (Dow
Corning). The two are first mixed individually with the standard
monomer to crosslinker mixing ratios (i.e. 10:1 and 1:1 by
weight), then they are mixed at various mass ratios. The elastic
modulus of the resultant material is measured by a tensile force
tester (Instron 5566) according to the ASTM international
standard test method D638-14. The dependence of the elastic
modulus on the mixing ratio is shown in Fig. 5, and allows us to
fabricate adhesive layers with modulus between 41 to 680 [kPa].
The backing layer is made from Sylgard 184 (Dow Corning)
silicone elastomer with modulus that can be tuned by deviating
from the standard crosslinker mixing ratio (10: 1 by weight). We
find that the reproducibility of the mechanical properties is low
when the mixing ratio deviates too much from the value
recommended by the manufacturer, so that we use two mixing
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Fig. 5 Dependence of the elastic modulus on cross-linking mixing ratios.

ratios 10:1 and 13:1, which leads to elastic moduli of 2.1 and
1.2 [MPa], respectively.

Layer preparation

Silicone elastomers with the targeted mixing ratios are mixed
and degassed with a centrifugal mixer (Thinky AR-100). They
are then poured on polystyrene dishes to the targeted thickness,
and allowed to set still before placing in a carefully leveled oven
at 75° for at least 5 hours. Once the adhesive layer is cured, the
backing layer is poured and cured on top with the same
procedure. To separate two layers at the clamping tongue, a
65 um thick plastic film is attached to the cured adhesive layer
before pouring the backing layer mixture. The fully cured bilayer
elastomer is then engraved by a laser cutter (VersaLaser 30 W)
and diced with a razor blade to the desired dimensions. The
width of the adhesive pads is either 25 or 30 [mm].

Substrate preparation

The substrates are glass plates cleaned in an ultrasonic bath
(sequentially with acetone and isopropanol alcohol) and a
plasma cleaner.

Appendix B — energy densities for the
elastomer, backing and adhesive bonds

The longitudinal energy densities (10)-(12), written in terms of
the dimensionless field variables (13) are

_Et

1
6 = g5 (230148 + 3687°) + el + )

+ 2q1 — q2) (g1 + ¢4 + 6473
(B1)
+ 4((611’)2—(1{(15 + (q£)2> +3(q3)°

+3(2q1 — (12)2>
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. E<12Ebtb< 1,)2 : Eblb3/q§/)2)

B8\ Et Ef
(B2)
_ E n2 2/ 1m\2
= (12600 + 2 (a!)?)
. ktz , ) )
bc = y((qz +2¢3)"+4(q2 — q1) )
(B3)

Et
= §“/((Q2/ + 2q3)2+4(q2 - q1)2>
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