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Active stresses can cause instabilities in contractile gels and living tissues. Here we provide a generic
hydrodynamic theory that treats these systems as a mixture of two phases of varying activity and different
mechanical properties. We find that differential activity between the phases causes a uniform mixture to
undergo a demixing instability. We follow the nonlinear evolution of the instability and characterize a phase
diagram of the resulting patterns. Our study complements other instability mechanisms in mixtures driven
by differential adhesion, differential diffusion, differential growth, and differential motion.
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Biological systems are distinguished by the presence of
active stresses that affect their properties and alter their
stability. For example, active stresses give rise to collec-
tively moving streaks [1] and clusters [2—4], rotating ring,
swirl or asterlike patterns [5—10], or the remodeling of cell-
to-cell junctions in living tissues [11]. These systems are
typically described as a single phase with active stresses
that drive the assembly of the constituents, and the proper-
ties of the phases are typically assumed to be similar to
liquids [12—14] or even gases [15-18].

However, many active materials cannot be treated as
fluids. Examples include cartilage, bone, tissues in early
development, and superprecipitated systems, such as net-
works of filaments connected by cross-links and molecular
motors. The presence of activity in these systems drives the
macroscopic contraction of gels [9,10,19], the compaction
of cells during the condensation of cartilage [20], the
formation of osteoblast networks [21], and the formation of
furrows and tubes in tissues [22,23], and even cytoplasmic
contactility in cells [24,25]. All these systems are com-
posed of multiple phases with different rheological proper-
ties and are subject to multiple types of active forcing. This
differential activity can cause instabilities in a variety of
systems, such as chromosome positioning [26], and demix-
ing in polydisperse and polythermal colloidal mixtures
[27,28,29]. Thus, we need to go beyond one-component
descriptions used to describe isotropic active gels [12,23—
25] and include a more general biphasic description
[30,31]. While recent work has included activity in a
poroelastic description [32,33], the material was assumed
to be homogeneous and stable despite active stress gen-
eration in one of the phases. Here we relax this assumption
of the stability of an active mixture composed of two phases
with different activity and different mechanical properties,
and determine the physical conditions under which an
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active poroelastic material might contract (condense) or
disintegrate (fragment).

We start with a consideration of isotropic active systems
composed of two immiscible phases, i =1, 2. These
systems can be described by a hydrodynamic theory similar
to descriptions used for fluidlike biphasic matter [34,35] or
elastic [36] and viscoelastic gels [37,38]. This theory is
valid on length scales above the characteristic pore size of
the solidlike phase. At the simplest level, activity in our
biphasic system is described as an isotropic active stress
that acts on each phase that responds to this stress
according to its passive mechanical properties, which are
either fluid or solidlike, respectively. Each phase (i) is

described by the hydrodynamic variables: velocity vff),

volume fraction ¢(i>, and displacement u((,') with 8,u((,i) =
v, The overall system is assumed to be incompressible
and fully occupied by the two phases, ie., ¢ = p(!) =
1 — ¢, The fractions of each phase i are conserved, so
that 9,0 = -8, (pVvl! + ;) where ;¥

relative flux between the phases with j&l) =- j,(lz) =t g4
This relative flux can, for example, stem from rare
unbinding events of components that belong to one of
the phases. The resulting unbound components can diffuse
and thereby cause an effective diffusive flux of the bound
components (see Supplemental Material [39], Sec. I). For
simplicity, we write j, = —D0J,¢, where D denotes the
diffusion constant. The two mass conservation laws can
then be equivalently expressed by one transport equation
and an incompressibility condition,

denotes a

81 = —04(pv") + D29, (1a)

0= [0l + (1= ). (1b)
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FIG. 1. (a),(b) Stability diagrams as a function of volume fraction ¢ and nondimensional constant differential activity A obtained from
the linear stability analysis of Eqgs. (3), for different choices of diffusivity (a) D = 0 and (b) D = 0.1. The colored regions depict
M (w,) > 0. Red indicates an instability where J(w;) = 0, corresponding to exponential growth, while dark (light) blue corresponds to
J(wy) # 0 for all wave numbers (for a finite band of wave numbers). (c) Illustration of the instability mechanism driven by differential
activity A(¢). Small perturbations in volume fraction ¢y — ¢y + ¢ are amplified since differential activity causes a drift velocity v = i
that points toward the maximum of a local inhomogeneity of volume fraction. To lowest order in ¢, this velocity (red horizontal arrows)
scales as v «x A(¢)0,¢p [Eq. (5)], further increasing the initial perturbation as indicated by vertical black lines.

. . N . | 5
Neglecting osmotic effects and inertia, force balance in 0=20 /3(450&/;) +(1- 4,)6&[}) — 8apD)s (3a)
each phase implies

! 1). ¢ 2),
0= aﬂ(¢6£zﬁ)) — @Oup — Fq. (2a) 0= a/i(d)ar(z/;’) P) - ma/ﬁ((l - ¢)6{(lﬂ> ")
2) _ ()

0=08,((1- ¢)0(($) —(1=$)0up + Fa.  (2b) + (va’ = v )Top + PA($)0., (3b)

(i) . o ) where we define
where o, is the additional stress (beyond the pressure) in
each phase, and we have assumed, as in mixture theory A 4@ d
[44-46], that this stress is weighted by the respective A(p) = <7+ 1 _¢+@(A(') —A(z))> (3¢)

volume fraction [47]. The pressure p acts as a Lagrange
multiplier that ensures the incompressibility condition (1). ) ) o o o
Momentum transfer between the phases is described by a 5 the “differential activity.” The derivatives of the activity
friction force density . To leading order F is proportional A with respect to ¢ appear because gradients of stress
to the relative velocity of the phases, F, — I'(¢}) (v((ll)_ enter the force balance Eqs. (2a) and (2b), while the

(@) where [(4) — Tudb(1 i< the fricti fFici dependencies on the activity A?) are a consequence of
E” ), W e;e l(1¢) N ,Oﬁ(r —¢)ist eTl?Ct(lion C(Zje 1c1en; treating the system as a biphasic mixture, i.e., weighting the

etwe.en. the p ases with Lo constant.. ¢ dependence o stress contributions by the respective volume fractions; see
the friction coefficient on volume fraction is a consequence

¢ th dition that hvdrod ) . transf Supplemental Material [39], Sec. III for more details on
of the condition that hydrodynamic momentum transfer . A
vanishes if one of the phases is absent, i.c., F — 0 for ¢ — Eq. (3¢c). The specific form of the activities A" depends on

. .. ! h m of interest.
0 or ¢ = 1. Finally, we additively decompose the stress into the system of interest o
(i)p To complete our description, we have to select con-

the passive stress o,;" and the isotropic activity Al stitutive equations for the passive stress of each phase.
Depending on the type of multiphasic system, such as

5&2 = 6512’9 + A0S . (2c)  physical or chemical gels, tissue mixtures or mixtures

composed of active colloids, we may consider solid, fluid,
or viscoelastic stress-strain or stress-strain-rate relation-

: - ships. However, to illustrate the generic but multiphase
properties of each phase. In general, the activity depends on specific dynamic properties, we restrict ourselves to a

all hydrodynamic variables. For simplicity, we fOCUSA on  simple example of a one-dimensional, biphasic mixture
activities that depend on the volume fraction ¢, AY) =  composed of a (Kelvin) viscoelastic solid (s) and a fluid
A(i)(qﬁ). Egs. (2) can be rewritten as phase (f), with the constitutive equations

where the passive stress ofjlg’p characterizes the mechanical
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6P = 20u + {0, v, (4a)
o/P =0, (4b)

where the one-dimensional solid displacement and velocity
are u and v = du/dt = i; the fluid velocity is given by
—v¢p/(1 — ¢). In Eq. (4a), 4 denotes the Lamé coefficient
and ¢ is the bulk solid viscosity. The viscous stress in the
fluid phase can be approximated to zero since fluid strains
are negligible relative to solid strains on length scales above
the pore size, and in the systems of interest, the solid
viscosity typically exceeds the fluid viscosity by several
orders in magnitude [48]. Moreover, an additional fluid
viscosity does not affect the occurrence of an instability.
Since diffusive transport of constituents in this solid-fluid
mixture is expected to be slow compared to solid momen-
tum transport, we consider the limit of small diffusivities
and use rescalings of length and timescales not containing
the diffusion constant. Specifically, we rescale time and
length as t — ({/A)t and x — ¢x with £ = \/{ /T, so that
velocities v — v£4/{ and the scaled equations read

0ip = ~0,(¢it) + D, (5a)

¢
1—¢

There are two dimensionless parameters in Eqgs. (5),
measuring the strength of differential activity, A = A/4,
and diffusivity, D = DI'y/A.

To understand the stability of a homogenous base state
given by u=uy, =0, and ¢ = ¢y, we perturb the
volume fraction of the phases and the displacement
and expand the perturbation in terms of Fourier modes
of the form o e”’*4* and linearize the equations above.
Calculating the largest growing mode to linear order in
diffusivity D and to the fourth order in the wave number ¢
gives

2 D 4
o) =D =1+ Ago(1- 2 )| -2 g - )
(©

for ¢ € [0,1] and Agy > 1, and where B = 1/(1 — ¢by).
We see that there is a long wavelength instability with
Mlw,(q)] > 0 leading to growth of the homogeneous state
on length scales >#/+/B (see Supplemental Material [39],
Sec. II). The instability is driven by differential activity A,
which competes with frictional momentum transfer
between the phases, and diffusion of displacement, veloc-
ity, and volume fraction. At the onset of the instability
where spatial inhomogeneities in strain are negligible, long
wavelength perturbations in volume fraction are amplified
because differential activity causes a solid drift velocity

that points toward the maximum of a local inhomogeneity
of volume fraction [Fig. 1(c)]. This drift scales as & « A(’)xqb
to lowest order in g [Eq. (5b)]. If A > 0, the velocity is
parallel to the gradient in the solid fraction and thus leads a
local increase in the solid volume fraction, while it is zero
at the local maximum of the inhomogeneity (0,¢ = 0).
This velocity profile, together with the volume fraction
dependent differential activity A(¢) [Eq. (3¢)], may cause
the emergence of spikes in the volume fraction around
the initial inhomogeneity where O,¢ is largest. These
spikes can move inward due to diffusion and amplify
the initial perturbation (see videos in Supplemental
Material [39], Sec. VI).

When the diffusivity vanishes, i.e., D =0, the instability
occurs for A > A, with A, = 1/¢y denoting the critical
activity (in real units, A, = A/¢y). It is asymmetric with
respect to volume fraction and the instability vanishes for
¢o — 0 [Fig. 1(a)]. The origin of this asymmetry arises
from the difference in passive properties of the two phases
[Egs. (4)]. Symmetry in volume fraction can, for example,
be restored if both phases are treated as fluids or as
viscoelastic material with equal transport coefficients.
The growth rate of the largest growing mode w,(q) is
real for all wave numbers if D = 0, which indicates a
nonoscillatory growth of modes [see Supplemental
Material [39], Sec. IV, for plots of w;(q)].

For nonzero diffusivity, the critical activity increases
[Eq. (6) and Fig. 2(c) black line]. The term B = 1/(1 — ¢)
connected to viscous transport causes the instability to
vanish also at large volume fraction [Fig. 1(b)]. In addition,
for D # 0, the growth rate w;(q) can have a nonzero
imaginary part. At the transition boundary between the
stable and unstable regions, the growth rate is complex for
all wave numbers [dark blue (dark gray) in Fig. 1(b)].
However, deep in the unstable regime, the growth rate
becomes real for small ¢, but there remains a complex and
unstable band of wave numbers [light blue (light gray) in
Fig. 1(b)]. The width of these bands of wave numbers
decreases to zero as the diffusivity approaches zero (see
Supplemental Material [39], Sec. IV).

These two different characteristics in the growth rate
obtained from the linear stability analysis indicate that
nonlinear evolution of the patterns might also differ in these
regimes. To investigate the pattern dynamics, we numeri-
cally solved the nonlinear equations in one and two
dimensions; see Supplemental Material [39], Secs. IIL, V,
and VI, for definitions of the used activity functions, details
on the numerics, and videos. In one dimension and the limit
of zero diffusion, we find that the volume fraction and
displacement steadily grow—a behavior that is consistent
with a real dispersion relation. In the regime of a purely
complex dispersion relation, domains of high and low
volume fraction exhibit a tendency to synchronously
oscillate with a frequency that is roughly determined by
the time to diffuse the size of a domain. On longer
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FIG. 2. Patterns and phase diagram in two dimensions obtained from numerically solving Egs. (3) (see Supplemental Material [39],
Secs. Vand VI, for details). (a),(b) Two representative snapshots of patterns observed in our active poroelastic model. Black bar depicts
the unit length # = \/C/T,. Parameters ¢, = 0.5, and (a) D = 0.4, Ay = 6, (b) D = 0.005, Ay = 10. The black lines depict the
displacements of the solid phase. For lower diffusivity, as expected, we see sharper boundaries as activity-driven demixing progresses.
(c) Phase diagram as a function of nondimensional diffusivity D and activity amplitude A,. Squares indicate parameters where the
numerical solution shows the emergence of spatial-temporal patterns. Blue and red squares correspond to pattern morphologies shown in
(a) and (b). The black lines depict the result from the linear stability analysis for Poisson ratio v = 0.5. Parameters above the black curve
are linearly unstable; the phase space between the black and blue dashed lines correspond to oscillatory modes for all unstable wave
numbers. In the numerics, we considered a specific choice of the activity function (Supplemental Material [39], Sec. III) to confine the
range of volume fraction ¢ (color bar). This choice ensures the approximate validity of linear elasticity.

timescales, this oscillating state can spontaneously break
the left-right symmetry and the domains collectively move
in one direction, reminiscent of traveling fronts found in
fluid-fluid biphasic matter in the presence of osmotic forces
[49]. In contrast, in the mixed case, where the dispersion
relation is real and complex, the domains of high and low
volume fraction separated by sharp interfaces seem to drift
while they undergo fusion and breakup events.

In two dimensions, we observe similar dynamics. For
parameters closer to the transition line, where all unstable
modes are oscillatory, the system shows a pulsatory type of
pattern [Fig. 2(a)]. Deep in the unstable regime of the
stability diagram (e.g., low D and high activity amplitude
Ap), domains with sharp and roughened interfaces drift,
split, and fuse [Fig. 2(b)]. The onset of the instability and the
two pattern morphologies determined numerically match the
results obtained via linear stability [Fig. 2(c)]. However, in
two dimensions, we do not observe a collectively moving
state. The interphase diffusion destabilizes segregated
domains on long timescales leading to oscillatory patterns.
In systems with low diffusivities, the spatial standard
deviation of displacement and volume fraction steadily
increases and saturates once the system reaches its quasista-
tionary state, while the velocity becomes vanishingly small.

Our Letter shows how differential activity between the
solid and fluid phases that constitute an initially homogene-
neous poroelastic medium can drive a mechanical insta-
bility. It thus complements instabilities driven by differential
size [50], differential shape [51], differential diffusion [52],
and differential adhesion [53-55]. More specifically, it
generalizes one-component active fluid approaches (e.g.,
[12]) to two phases that can segregate due to the presence of
active stress [32,33]. Activity and the interactions between

the phases can cause an instability leading to patches where
solid or fluid matter is enriched. Though we have illustrated
the instability for a specific set of constitutive equations
[Egs. (4)], the existence of the instability is generic; i.e., it
can occur for any combination of passive mechanical
properties of the phases. Furthermore, it predicts that,
depending on the rate and ability of transport of material
and stress in the biphasic material, there will be pulsatile
instabilities leading to the assembly, disassembly, and drift
of solidlike clusters that undergo fusion and fission. These
might play an essential role in cell sorting in tissues,
disintegration, and macroscopic contractions in superpreci-
pitated systems [9,10,19] and patterns in the cellular cortex
or the cytoplasm [27,28]. We close with the hope that
concrete experimental realizations with definite forms of
differential activity and material rheology can test the ideas
put forward here.
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I. ORIGIN OF DIFFUSION IN BIPHASIC MATTER
In our model for biphasic active matter we introduced a relative diffusive flux j(()}) = — j((f) =: jo in the transport

equations of volume fraction, 0;¢(") = —d, ((b(i)v((f) + j((f)), though the velocity v((f ) already captures the movement

of each phase. Below we will discuss one possible mechanism for how such a diffusive flux can emerge and that it can
be written as j, = —DJd,¢, where D denotes the diffusion constant.

This relative flux can for example stem from unbinding events of components that belong to one of the phases. Here,
a bound state refers to filaments connected to other filaments by crosslinks and/or molecular motors, or active cells
in a tissues connected by integrins for example. Unbinding here means that the constituents loose their connections
to neighboring filaments or cells and can thus diffuse more or less freely. We introduce ¢ as the volume fraction of
the bound solid-like components (filaments, cells, ...) and ¢.¢ as the subpopulation of the corresponding unbound
components diffusing with a diffusion constant D,g. We consider that bound plus unbound components are conserved.
For simplicity, we assume a local relationship between these components that can be written as ¢og(¢) = G(¢).
Moreover, unbinding occurs with a rate v5, while binding happens with a rate ;. The corresponding equations are:

Ottt = DoV Goft — V1ot + 720 , (S1)
0 =V - (ovW) + 71601 — 720 (82)
Assuming a fast binding dynamics, 0;¢og =~ 0,
00 =V - (ov')) + DoV - (G(9)'V9) . (83)
Say G(¢) ~ Go + G1¢, the flux j in 99 = —V - j, has the from of Fick’s law: j = —DV¢ with a constant diffusion
coefficient D = DygG1.

II. CRITICAL WAVENUMBER

Eq. (6) in the main text can used to estimate the critical wavenumber below which the long wave length instability
occurs. R(ws) = 0 yields ¢ = 0 (due to the conservation of the fraction of each phase), and

BAg,

max =~ | B 1D(A¢0_1)2

(S4)
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The instability occurs for ®(w4) > 0 and ¢ < @gmax- Note that Eq. (S4) is only valid for small diffusivities, D <1,
as R(w,) given in Eq. (6) (main text) stems from a Taylor expansion for small diffusivities D. Thus, there is no
actual sign change of gmax as D is increased. However, increasing the diffusivity shifts the occurrence of the instability
to lager length scales. This trend is reasonable as diffusion flattens volume fraction inhomogeneities. For negligible
diffusivity, an initially homogenous state must be perturbed with a wavenumber ¢ < gmax =~ V' B which corresponds
to a length scale larger than 1/v/B. In real units this critical length scale reads

l
—_—, S5
VB (85)
where ¢ = /(¢ /Ty with ¢ and Ty as the solid viscosity and the friction between the phases. Thus, the length used to
rescale our dynamic equations, ¢, is the fundamental length scale for the occurrence of the long wave length instability.

III. PROPERTIES AND POSSIBLE CHOICES OF DIFFERENTIAL ACTIVITY
A. Properties of differential activity

Differential activity is the driver for the instability discussed in our letter. In this section we discuss some basic
properties of the differential activity function,

A AG) d
(1) (2)
A(g) = 1 ¢+d¢(A A )} (S6)

Equation (S6) implies that differential activity does not vanish for equal activities, A(Y) = A®), However, differential
activity can vanish even for non-zero activity in each phase, A®) £ 0. One possibility is that activities cancel within
the same phase, i.e. AN = Ap1/¢ and AR = Ap2/(1—¢), where Ay, is some constant. The other possibility is that
the activity of one phase cancels the activity of the other phase, i.e. A = FAg¢ and A®) = £A44(1 — ¢), with Ag
denoting some constant.

In the main text we discuss the case of constant differential activity. The differential activity A can be constant
and non-zero for A = +A4p,1¢ and A®) = +A02(1 — @), or AW = A = Agp(1 — ¢).

B. Possible choices of differential activity

The shape and dependencies of the activities depend on the particular system of interest. Next to a constant
differential activity one could consider an asymmetric case where phase 2 is passive (A(®) = 0) and phase 1 is active
with AN = Ay ¢(1 — ¢), leading to a differential activity A = Ag(2 — 3¢) (Eq. (S6)). Here, Ay characterizes
the amplitude of the activity. In this case the generation of active stress vanishes in the absence of phase 1 or 2,
respectively. This asymmetric case is qualitatively motivated by super-precipitated systems and tissues [1-7], where
one phase is passive (intestinal fluid) while the other phase is active (filaments, cells). Moreover, activity requires
a non-zero fraction of active components (A(l) x ¢ ) while there could exit an inhibitory mechanism as the active
components get crowded (A(l) x —¢?). For such an activity function linear stability suggests that an instability
occurs if the activity amplitude Ay is larger than the critical activity AO,C = (¢0(2 — 3¢0))71 (for vanishing diffusivity
D = 0). Interestingly, the instability can occur for both, positive (expansions) and negative (contractions) activity
amplitudes A, (Fig. (S1)). We tested this choice of activities in our one-dimensional numerical studies and found that
the emergence of spatial-temporal patterns is consistent with the results from the linear stability analysis. However,
for parameters deeply in the unstable region of the stability diagram, large local strain, d,u, can build up during the
pattern formation violating the small strain limit of the used Hooke’s law. Thus we considered an activity function
which ensures that domains cannot exhibit porosities below ¢y or above ¢nax. This also restricts the system to
small or moderate strains. The activities thus read

AWM = 4, [(¢ — o) —a(d— o)’ . 57
AD — 0. (S8)

where Ao denotes the activity amplitude (non-dimensional activity amplitude Ay = Ag/A). It sets the scale of
the active stress, but not the fixed points where the activity A(") vanishes to zero. The latter is determined by the
parameter a > 0. Its value restricts the dynamics within the volume fractions ¢umin = ¢o—1/v/a and dmax = do+1/+/a.
In our letter we fix the mean volume fraction to ¢g = 0.5 and a = 20, leading to ¢min ~ 0.276 and ¢pax ~ 0.724.
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FIG. S1.  Stability diagrams indicating the parameter regimes where the homogeneous base state is stable or unstable for
the case of an asymmetric choice of activity, A® = 0 and A®Y = Agpo(1 — ¢o) with Ag = Ag/A, and (a) D = 0 and (b)

D = 0.1. The colored regions depict ®(w+) > 0. Dark and light blue correspond to S(wx) # 0 for all ¢, or for a finite waveband,
respectively.

IV. GROWTH RATES AS A FUNCTION OF WAVENUMBER FOR DIFFERENT PARAMETERS
V. DETAILS OF NUMERICAL IMPLEMENTATION
A. Dynamical equations considered in the numerical studies

For our numerical studies we consider a biphasic mixture of a fluid (f) and solid-like (s) phase. Each phase (i) is
described by the hydrodynamic variables: velocity v((f), volume fraction ¢ and displacement u,(f) with 3tug) = vgf ),
For the numerical integration of the dynamical equations we introduce an inertia term on the left hand side of Egs. (2a)
and (2b) (main text) to make the numerical implementation straightforward (time evolution is easier than the force
balance constraint). However, the quantitative influence on the solutions is expected to be negligible if the mass
density p is small enough [8]. The full non-linear equations for the active biphasic system considered in the numerical
studies read

Ovp = —0a (903) + DO, (S9a)
0="0a[pvs+(1—9¢)vl], (S9b)

Opty, = V5, (S9c)

ppdyvy, = 05 (¢0%5) — pap + Tod(1 — @) (v, — ) (S9d)

p(1 = §)dvg, = 95 (1= ¢)ols) — (1= $)dap — Tod(1 — ) (v5, — v5) (S9%)

where p denotes the pressure ensuring the incompressibility condition Eq. (S9b). The stress tensors of the solid (s)
and fluid (f) phases are

05 =A0apOyty + G (Oaug + Ogtia) (S10)
+X a0} + 11 (9} + 0505) + Ao [ (6 — d0) — a (6~ 00)°| dus
ols=0, (S11)

where A is the first Lamé parameter and G = A\(1 — 2v)/(2v) is the shear modulus, and v denotes the Poisson ratio.
Moreover, ) is the bulk viscosity and 7 is the shear viscosity. The second viscosity ¢ = A + 21/3. We used the choice
of the activity function given in Eq. (S7). For the fluid phase we neglected contributions proportional to velocity
gradients because they are expected to be small on scales above the size of the solid pores. In addition, the solid
viscosities typically exceeds the fluid viscosities by several orders of magnitude.
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FIG. S2.  Growth rate wi(g) as a function of wavenumber for different parameters for our model one-dimensional model

discussed in the main text. Solid lines indicate the real part of the growth rate, R[wi(g)], while the dashed lines correspond
to the imaginary part, Sfwi(g)]. Parameters are ¢ = 0.35 and the remaining parameters are shown on each plot. (a) For
D =0, the growth rate of the largest growing mode, w4 (q) (purple), is real for all wavenumbers indicating a non-oscillatory
growth of modes. (b) As the diffusivity D increases, the growth rate becomes real for large ¢ but there remains a complex
growth rate for a finite waveband at larger wavenumbers (light blue region in the phase diagram, main text, Fig. 2b). (c) Close
to the transition where the instability vanishes (here we have decreased A relative to (b)), the growth rate is complex for all
wavenumbers (dark blue region in the phase diagram, main text, Fig. 2b). (d) However, deeply in the region of the phase
diagram where the instability occurs, the width of the complex waveband (as shown in (b)) decreases to zero as the diffusivity
approaches zero. (e) This behavior is nicely visible in the wavenumber zoom-in corresponding to (d).

We rescale length and time as  — £ -2 with £ = \/A/Ty, and t — (£/vp) - t, and consider a velocity rescaling
vgf) — v(l) - vg. The dimensional pressure and stress are p — p - A and a(l) = o ﬂ - A. After this rescaling
there are five dimensionless parameters in more than one dimension, namely AO = Ao/M\D = D/(fvy), G = G/\,

V = oM/ (M) = v9y/ToA/\, and 7 = Vi/X. In one dimension the two shear parameters (G, 7) do not exist leading
to three parameters. In the main text we considered the special case where the velocity scale V' = 1 leaving us with
two non-dimensional parameters, namely the activity amplitude Ay and the diffusivity D.

The dimensionless equations used for numerical discretization are

Orp = —0a (¢03) + DO, (S12a)

= 0o [0}, + (1= 9)vl] (S12b)

Optig = V5, (S12¢)

ppOyvs = g (60%5) — p0ap + V d(1 — ) (vh, —23) , (S12d)

p(L— @Ol = —(1— ¢)dap — V ¢(1 — ) (v, —v3) | (S12e)

where the dimensionless mass density is p = pv3/\.
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TABLE S1. A list of fixed parameters used to numerically solve Eq. (S16) in two spatial dimensions with the solid stress tensor
given in Eq. (S10). For the numerical results please refer to main text, Fig. 3 and movies Sec. VI.

B. Numerical methods used to solve dynamical equations in two dimensions

In the numerical integration we consider periodic boundary conditions. The two-dimensional simulations are per-
formed with a custom C++ code and use an N x N grid for non-dimensional system size (L/¢) x (L/{), where
¢ = /)Ty is the unit length and L is the system size. The spatial derivatives are discretized using second-order
finite-differences. The time derivatives are discretized by an FEuler scheme with a time increment of At and a discrete
time t = n - At, where n denotes the n-th time step.

In two dimensions, the essential step in the numerical integration is the calculation of the pressure in a way that
the incompressibility holds (Eq. (S12b)). To this end, we apply a variant of Chorin’s projection method as used in
the integration of the incompressible Navier—Stokes equations [9]. This method amounts to splitting the integration
of Egs. (S12d) and (S12e) into three parts. The first part calculates intermediate velocities v%* and v%* by neglecting
the pressure gradient and relaxing the incompressibility constraint. These velocities are then used in the second part
to compute the pressure via solving a Poisson problem. In the final part, the pressure is employed to project the
velocities to satisfy the incompressibility constraint.

The first part of the projection step can thus be written as

PP )10, (b)) +V (1= 6 () (uhm) — () (513a)
I )
5l =2 ) (uf (n) — v m) (513b)

The second step can be derived by writing down the third step of the projection method,

AUy

Af = —0up(n+1), (S14a)
Av(fx n+1)— U&*
p% = —0ap(n+1). (S14b)

The third step requires the knowledge of the pressure p(n + 1) at time step n + 1 and computes the incompressible
velocities v$,(n + 1) and vf (n + 1) at time step n + 1. The pressure is computed in the second step. Since vS,(n + 1)
and vf (n+1) obey the incompressibility condition, multiplying Eq. (S14a) by ¢(n) and Eq. (S14b) by (1 —¢(n)), and
adding up both equations, applying the divergence and using the incompressibility condition for the incompressible
velocities (Eq. (S12b)), we find

Opln +1) = L0 [ol) e + (1= 6 () o] (515)

The equation above represents the second step of the projection step. It is an elliptic problem, and is solved using a
custom C++ implementation of the geometric multigrid method. Solving this equation gives the pressure p(n + 1),
which is required in the third steps as described above.

In summary, given the fields ¢(n), v5(n), v, (n) and uy(n) at time step n, the full projection based algorithm in



time is

P ) — ) 195 (8o () + V(1= 6 () (eh ) = v ) (S16a)

s —vh(n) _ :
PT = —AV B(n) (”tfx(n) - Ua(”)) ) (S16b)
O2p(n+1) = £-0a [o(n) v" + (1= 6 (m) vf'] . (S16¢)
ple U ), (S164)

f f,%
W = —0ap(n+1), (S16e)
Pt D=0 _ o, (omyui () + DOZo(n). (s161)
ua(n+1) —ua(n) _

AL =v5(n). (S16g)

The spatial derivatives are implemented using a second-order finite difference discretization (not shown). Parameters
for the integration in two spatial dimensions are given in Table S1.

C. Numerical solution of dynamical equations in one dimension

In one dimension, the projection steps are not necessary since the incompressibility condition (Eq. (S12b)) implies
a linear relationship between the velocities. With appropriate boundary conditions, v/ = —v*¢/ (1 — ¢). Therefore,
the pressure is determined and can be substituted. For the one-dimensional studies we considered a velocity scale
V =1 for simplicity, leading to

Oy = —0:(¢v) + D29 , (S17a)
Opu=v, (S17b)
ﬁl is ¢3tv = 0z (¢, u) + O (90,v) + S(A/N) O — : f QSUS’ (S17¢)

where we abbreviated v = v® and A(¢) denotes the differential activity (main text, Eq. (3c)). We verified our one-
dimensional results by our implementation as outlined above with the results obtained from a spectral based solver
(XMDS2 [10]) and a finite element solver (Comsol Multiphysics® software [11]). The movies in 1D were rendered
using the Comsol software.

VI. MOVIE DESCRIPTIONS

We have attached two movies for the one-dimensional (1D) equations (S17), and two for the two-dimensional (2D)
equations (S16). If not stated below, parameters are given in Table S1.

(1) 1D: oscillating dynamics and collective motion. D = 0.4, ¢o = 0.5, Ag = 6, duration T' = 500, L/¢ = 50, grid
points N = 500.

(2) 1D: drifting domains undergoing fusion and break-up. D = 0.005, ¢9 = 0.5, Ay = 10, duration T = 250,
L/¢ = 50, grid points N = 500.

(3) 2D: pulsatory-type of dynamics. D = 0.4, ¢o = 0.5, Ag = 6, duration T'= 100, L/¢ = 10, grid points N = 256.

(4) 2D: drifting domains undergoing fusion and break-up. D = 0.005, ¢g = 0.5, Ay = 10, duration T = 100,
L/t =10, grid points N = 256.
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