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We describe a minimal realization of reversibly programmable
matter in the form of a featureless smooth elastic plate that
has the capacity to store information in a Braille-like format as
a sequence of stable discrete dimples. Simple experiments with
cylindrical and spherical shells show that we can control the num-
ber, location, and the temporal order of these dimples, which can
be written and erased at will. Theoretical analysis of the govern-
ing equations in a specialized setting and numerical simulations
of the complete equations allow us to characterize the phase dia-
gram for the formation of these localized elastic states, elastic bits
(e-bits), consistent with our observations. Given that the inherent
bistability and hysteresis in these low-dimensional systems arise
exclusively due to the geometrical-scale separation, independent
of material properties or absolute scale, our results might serve as
alternate approaches to small-scale mechanical memories.

programmable matter | elastic shell | Braille | mechanical memory |
multistability

The main requirement for memory is a dynamical system
with multiple metastable states. This is usually realized using

biochemical means in nature and electromagnetic means in tech-
nology. Memories are typically discrete and thus, impose certain
requirements on the substrate on which they are stored, fore-
most among them being the presence of a lattice-like structure
at each site of which the system has access to multiple config-
urations. For example, in biological systems, discrete chemical
bonds (e.g., DNA) or synapses (e.g., neurons) encode memory at
molecular and cellular scales (1), while in technological systems,
analogs arise as dips and flats in CDs, discrete spins in magnetic
memories and other electromagnetic storage devices, multistable
mechanical memory elements in cantilever or biomorph arrays,
and phase-changing materials in memristors (2–5). All of these
systems have a discrete set of possible states as required by any
memory. In a spatial setting, this raises the question of whether
the presence of a lattice is essential for the spatial encoding of
information. Theoretical work on localized patterns in spatially
extended dynamical systems (6–9) suggests that this is not the
case, but there is a paucity of examples of how this might be actu-
ally realized in a practical setting. The advantages of a lattice-free
physical memory are that they allow for a realization of pro-
grammable matter that requires little in terms of infrastructure
and yet, is capable of storing high density memories. Addition-
ally, if it is possible to erase these memories easily, the added
benefit of read–write memories is obvious.

Here, we show that a thin curved elastic shell can be used to
realize a programmable read–write memory that is analogous to
lattice-free Braille. Our starting point is the observation that an
elastic shell is well-known to exhibit bistability in certain geome-
tries and under certain loading conditions (10): for example,
one-half of a tennis ball can be stable in its rest state as well as
in a partially everted state as can mechanical toys, such as a snap
bracelet (11, 12). By considering spatially extended versions of
these toys, we show that a qualitatively distinct feature arises:
the potential for the presence of localized elastic dimples that
can form almost anywhere in the system (away from a boundary)
in the absence of any underlying discrete lattice. This allows us
to encode programmable elastic bits akin to lattice-free Braille

that naturally serve as a mechanical memory in an otherwise
featureless substrate.

Experiments
A common realization of this is shown in Fig. 1; when a fruit
bowl made of plastic is pushed transiently with a finger along its
curved rim, the shell pops locally and forms a stable localized
dimple that can be maintained without any external forces. Dif-
ferent configurations consisting of interacting and noninteracting
localized dimples can be shaped by indenting the fruit bowl in
different locations along its periphery, and the dimples can be
easily made to disappear by unpopping them. Thus, we see that
it is possible to have localized structures with number and posi-
tion that are controllable on an otherwise featureless continuum.
These “bits” are the basis for a reprogrammable spatial memory
in a medium without an underlying lattice. While the simplicity of
the process is beguiling, the complex geometry of the fruit bowl
raises the challenge of whether it is possible to simplify things
still further.

Since elastic bistability occurs only in curved shells, the sim-
plest exemplar of which is a cylindrical shell, we created a
segment of one by constraining a long strip of relatively thin
elastic sheet (length L, width a , and thickness t ; L� a� t)
between two parallel guide rails that are gently brought together
as shown in Fig. 2A to create a shallow cylindrical arch (Materi-
als and Methods has details). Under certain loading conditions,
this long, weakly curved cylindrical shell can exhibit two stable
states (Fig. 2B). When the arch is pushed gently with an indenter,
the shell deforms over a length comparable with its width, rela-
tively locally, but the shell recovers its original shape when the
force is released, as shown in Fig. 2C (i.e., the system does not
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Fig. 1. Localized dimples in a doubly curved shell. (A) A single dimple
formed by poking an inverted plastic fruit bowl at the location of dimple
formation. The fruit bowl is 0.5-mm thick, and it has a diameter of 22 cm and
a height of 8 cm. (B) Two dimples formed by poking the bowl at two points
that are far from each other relative to the dimple width (wavelength). If
the points are close, the poking leads to formation of a single or double dim-
ple. (C) Two single dimples and one double dimple. The dimple wavelength
and amplitude are ∼5 and 1 cm, respectively.

support multiple states and is monostable). However, when the
cylindrical arch is sufficiently compressed axially and the same
experiment is carried out again, we see a qualitatively distinct
behavior (Fig. 2D). Now, although in the absence of any indenta-
tion force, the cylindrical feature remains uniform axially, when
compressed sufficiently, a localized dimple forms that persists
even when the force is removed (i.e., we have bistability).

The location of the dimple can be controlled by the location
of the indenter, and furthermore, we can write multiple bits
that are separate and noninteracting as shown in Fig. 2E, Left.
As the axial compressive strain is increased, we also see that
other configurations such as dimple doublets (much like those
on the fruit bowl in Fig. 1C) and those with an even larger num-
ber of conjoined dimple configurations can be created (Fig. 2E,
Right). The range over which these different configurations of
dimples persist is determined by bounds on the axial strain on
the cylindrical arch and suggests a simple mechanism to tune
the spatial persistence of these dimples that are reminiscent of
Braille but with an important qualitative difference—-they do
not require a template lattice. Furthermore, the patterns are all
erasable by simply relieving the axial compressive strain (Fig.
2D, Left), showing that, although the system is nonlinear, it
is geometrically controlled—-material nonlinearities are irrele-
vant for the observed behavior. Our qualitative experiments with
singly and doubly curved shells clearly show that it is possible
to have reprogrammable mechanical memories with the sim-
plest of ingredients—-a thin elastic sheet that is preloaded and
geometrically curved.

Analysis
Theory. To understand our results, we start with the equations
of equilibrium for a thin long plate (thickness t , width W , and
length L; t/W � 1,W /L� 1) that are given by (10):

B∇4w = p + [w ,φ]

1

S
∇4φ=−1

2
[w ,w ]

. [1]

Here, w =w(x , y) is the deflection of the shell relative to its
rest state; φ=φ(x , y) is the Airy stress function (with deriva-
tives that yield the components of the depth-integrated in-plane
stresses); B =Et3/12(1−σ2) and S =Et are the bending and

stretching stiffness of the curved surface made of material with
Young’s modulus E and Poisson ratio σ, respectively; p is the
applied transverse pressure; and [f (x , y), g(x , y)] = f,xxg,yy −
f,xyg,xy where A,b = ∂A/∂b, etc. The first equation corresponds
to the balance of forces transverse to the shell (generalizing
Laplace’s law), while the second one enforces strain compatibil-
ity in the tangent plane (and is the mechanical equivalent of the
Gauss–Codazzi compatibility relations for a surface).

One can formally write Eq. 1 as a single nonlocal equation
by integrating the second equation and substituting into the first

equation, so that B∇4w = p− S
2

[
w ,∇−4

(
[w ,w ]

)]
, where we

see the presence of a cubic nonlinearity that arises purely from
geometric considerations. To formalize this further in the context
of a long narrow plate as described in our experiments, we assume
that, in the lateral direction, the plate is deformed into a shallow
cylinder with an axis parallel to the y axis with boundary con-
ditions w(0, y) = 0 =w(W , y)−∆;w,xx (0, y) =w,xx (W, y). This
immediately leads to the form of the shell given by a simple cylin-
drical deformation of the form w(x , y) = f (y) sin kx , where k =
π/W . We note that there are boundary layers near the longitu-
dinal ends of the shell of size (tW 3/2∆−1/2)1/2, which we can
ignore if they are small compared with the length of the plate
L. Then, following (13), we may write the thickness-averaged
lateral compressive stress as φ,yy =Et [−∆/W + (f 2k2/4)(1 +
cos 2kx )], which on substituting into the first equation in Eq. 1,
multiplying by sin kx , and integrating across the width of the
plate W , yields a width-averaged Galerkin approximation to the
coupled partial differential equations (Eq. 1) that reads (13)

Bf,yyyy − 2Bk2f,yy + k4f =−Sk2(∆/W + f 2k2/4)f +P , [2]

where P(y) =
∫W

0
p(x , y) sin kx dx . As noted before, this equa-

tion is the time-independent Swift–Hohenberg (S-H) equa-
tion (14):

(1 + ∂yy)2u − ru + u3− η= 0, [3]

a paradigmatic pattern-forming partial differential equation with
solutions that correspond to spatially localized states (9, 14, 15)
that has served as a model to study how memory and information
may be stored in dynamical systems (7, 8, 16). The homogeneous
counterpart of Eq. 3 can be seen to have two stable solutions,
while the second- and fourth-order diffusion terms associated
allow for complex spatial patterns, and the constant η breaks
the u→−u symmetry. The coexistence of a periodic pattern and
a homogeneous pattern combined with spatial reversibility for
the same value of the parameters implies the presence of a vir-
tual lattice that serves to pin the localized structures (6, 17) that
are the hallmark of memory. Although the generalization of this
argument rigorously to the 2D S-H equation remains an open
question (9), numerical simulations of the 2D S-H equation show
the existence of localized solutions. This suggests that the com-
plete plate (and shell) equations are also capable of nonlinear
localized patterns in addition to the well-known global patterns
associated with wrinkling, folding, and dimpling (18).

Simulations. To quantify the patterns associated with these
loaded elastic shells, we use a numerical model of a long, weakly
curved cylindrical shell implemented using the finite element
method in ABAQUS, a commercial finite element package, with
the following material parameter values: Young’s modulus E =
100 GPa and Poisson ratio σ = 0.3 (Materials and Methods has
details). We assume that the shell is pinned along its long edges
and subject to a weak longitudinal compression and transverse
indentation loading as shown in Fig. 3A in two stages: first, the
shell is compressed uniformly by a finite amount, and second,
a localized transverse indentation load is applied to the shell.
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Fig. 2. Localized dimples in a singly curved shell. (A) Experimental setup. Inset shows an enlarged cross-sectional view of a long weekly curved cylindrical
shell made of elastic sheet. (B–D) A single dimple can be formed by first applying an axial compressive strain ε to the shell and then pressing an indenter
onto the surface under a force F at the location of dimple formation. Two alternative stable states are shown in B: a featureless smooth state (i) and a
dimpled state (ii). (C) If ε is below a critical value εc (≈1% in this case), the shell recovers completely when F is released. (D) Conversely, in the case ε≥ εc,
the localized dimple persists and is stable even after removal of F when F is above a critical level Fc. This stationary dimple can be further erased by relieving
ε. Note that the system is bistable, with no intermediate patterns being observed. Here, h/t is the out-of-plane displacement at the shell center normalized
by the shell thickness, and F/Et2 is the normalized indentation load, with E being the Young’s modulus of the shell material. (E) Localized multiply dimpled
structures. (Left) Multiple noninteracting dimples created by indenting a compressed cylindrical shell at different locations that are widely spaced relative
to the dimple width. (Right) For a large-enough compressive strain, the configuration of the shell allows a stable localized structure with a doublet or
higher-order multiplet dimples.

This results in the formation of a stable dimple that persists
even after the load is removed, such as can be seen in Fig.
3B. Indeed, depending on the applied compressive strain and
the magnitude and distribution of the perturbation, we can get
one or more dimples that are localized spatially. The states with
higher numbers of dimples require a stronger lateral load and
have smaller dimple heights, and beyond a second critical strain,
there is an invasion transition, wherein the entire shell is replete
with localized dimples as shown in Fig. 3C.

In Fig. 4A, we plot the regions of coexistence of multiply
dimpled structures quantified as the normalized height of the
middle dimple as a function of the applied compressive strain
for structures composed of up to four dimples. Below a critical

compressive strain (0.31% in this case), the configuration of the
shell does not allow for a stable localized structure. Above the
threshold strain, multiply dimpled states coexist and form; their
number depends on the applied compressive strain. This is in
qualitative agreement with our experimental results as shown in
Fig. 4B; there are different regimes that show the coexistence of
multiply dimpled states.

For a system with existing localized dimpled structures,
increasing the compressive strain up to a critical limit increases
the amplitude of the existing dimples. Beyond a critical com-
pressive strain, the system evolves dynamically, and additional
stable dimples are formed, while the amplitude of original dim-
ples decreases (Fig. 5A, Upper). This scenario repeats itself as
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Fig. 3. Formation of stable localized dimples. (A) A cylindrical shell with a natural radius of curvature R, thickness t, width a, length L, and Young’s modulus
E. (Inset) Cross-section of the shell and schematic of the edge boundary condition. Two edges of the shell are constrained in the Y direction, while free to
slide in the two other principal directions. In all of the simulations, t/R = 0.01 and a/R = 0.4 if not otherwise mentioned. (B, Upper) Applied compressive
strain and indentation loading. First, a uniform strain ε is induced in the shell by displacing its ends, and second, the shell is perturbed quasistatically using
an indentation load F. (B, Lower) Out-of-plane displacement at the shell center h normalized by the shell thickness t as a function of F. We see that the
localized dimple persists and is stable even after removal of F. Insets show the deformed configuration of the system at different stages of loading (out-of-
plane displacements are magnified by a factor of 25). In this case, ε = 0.337% and F/Et2 (normalized indentation load) = 10−3. (C) The number of localized
dimples depends on the applied ε and the magnitude of F. For a large-enough compressive strain and/or indentation load, the system is fully populated by
stationary localized dimples as shown at the bottom. In this simulation, ε = 0.46% and F/Et2 = 0.56 × 10−3.

the applied strain is increased even further. The system always
keeps its initial symmetry, with two evolution paths depending on
whether the number of initial dimples is odd or even. In contrast,
on decreasing the applied compressive strain, all of the dim-
ples disappear simultaneously when the strain decreases below
a critical value, which depends weakly on the number of dimples
(Fig. 5A, Lower). Fig. 5B shows the corresponding experimental
results, which exhibit behavior similar to the theoretical predic-
tions. We see that gradual compression of the existing localized
dimpled structure induces sharp saw tooth-like oscillations in
the height of the original dimple. The sharp height drops are at
critical strain values (Fig. 4B), and at each transition, two neigh-
boring new dimples are formed simultaneously. However, when
the strain is reversed, the dimple height decreases monotoni-
cally, thus revealing a pronounced hysteresis between loading
and unloading paths.

To understand the dynamical evolution of the localized dim-
ples, we also varied the applied body force for a system with
existing localized dimpled structure (SI Appendix, Fig. S1A).
When the body force is less than a critical limit, the system behav-

ior is insensitive to the magnitude of body force. As the body
force is increased beyond this critical limit, the dimpled con-
figuration invades the entire system (i.e., the entire system is
replete with stable localized dimples as shown in Fig. 3C) at a
constant velocity that depends on the applied compressive strain
(SI Appendix, Fig. S1B).

When the lateral extent of the elastic shell is not quasi-1D,
the localized patterns are no longer restricted to line-like Braille
dimples. Instead, one can “write” as on a 2D substrate. As an
example, when we use a wide shell of constant natural radius of
curvature that is clamped along the edges, the localized struc-
tures generated by lateral load can form complex 2D patterns
(SI Appendix, Fig. S2).

Discussion
Our study builds on and complements work in abstract spa-
tial dynamical systems that suggest the possibility for localized
structures (6, 7, 16, 17, 19). While these studies have inspired
the notion that these localized structures could serve as bits for
information storage in lattice-free continuum settings that are
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Fig. 4. Multiply dimpled states. (A) Regions of coexistence of multiply dimpled structures. The height h of a middle dimple (normalized by the shell
thickness t) is plotted as a function of the applied compressive strain ε. The solid and dotted lines correspond to stable and unstable homogeneous
solutions, respectively. (B) Experimental analog to the simulations presented in A, revealing various configurations of multiple noninteracting localized
dimples shaped by indenting a cylindrical shell in different locations along its top surface. The number (N) of stable localized dimples that can form strongly
depends on the applied compressive strain ε. We see that there is a different critical compressive strain value εNc for each number of dimples, below which
the configuration of the shell does not allow stable localized structures with a higher number of dimples. There are also regions of coexistence of multiply
dimpled structures; for example, when ε≥ ε3c, we see that multiply dimpled states (up to three) form and coexist. In this experiment, F/Et2 (normalized
indentation load) ≈ 1.0 × 10−3, ε1c ≈ 1.0%, ε2c ≈ 1.9%, and ε3c ≈ 2.6%.

naturally described as continuum fields (8), there are few exper-
imental systems where this has been directly realized. Using
experiments and computations, we have shown how a feature-
less elastic plate can serve as a substrate for reversible elastic
memories that take the form of Braille-like dimples. Unique
to our system is the role of geometric nonlinearities that drive
pattern formation, making our results fairly robust and easy to
realize. Indeed, since the dimples form in response to a local-
ized indenter in the presence of an applied compressive strain
and a body force, we have shown that reprogrammable Braille
is relatively easy to realize. Since the geometrical nonlinearities
in thin shell-like structures are dependent only on the separa-
tion of scales between the thickness of the structure and the
lateral dimensions, independent of the absolute scale, and the
nature of the material as long as it is linearly elastic, these local-
ized Braille-like structures should be realizable experimentally
on nano-, micro-, meso-, and macroscales and might serve as the
basis for mechanical memories on multiple scales.

Materials and Methods
A thin sheet of transparent polyester film (3M OHP Transparency Film; thick-
ness t ≈ 130 µm) or stainless steel shim (Trinity Brand Industries, Inc.) was
used to create a long, weakly curved cylindrical shell. The sheet was first cut
into long, narrow strips with length L and width W , where L�W� t, each
of which was then slightly curved along its entire width by mounting it on
a long steel rod of diameter 2R larger than W . In the case of the polyester
film, the mounted strip was subjected to thermal treatment in an oven at
180◦C for about 20 min followed by rapid cooling to room temperature to
form a singly curved thin shallow shell of arch width a and radius of cur-
vature R (t/R ≈ 0.01, a/R ≈ 0.54). In the case of the stainless steel, the

mounted strip was hard pressed to form a cylindrical shell, which has t/R ≈
0.004 and a/R ≈ 0.46.

To constrain the shell along its long edges, a small portion of the edges
was bent slightly outward to form an omega (Ω)-like shape, and each of
these edge portions was sandwiched between two aluminum plates with
just enough gap between them, which serves as a guide rail to let it slide
freely (Fig. 2A). Furthermore, the two parallel identical guide rails were
spaced apart a distance approximately the arch width of the shell. The two
circumferential ends of the shell were mounted on rigid frames attached to
linear translation stages (Newport Corp.), which allow axial displacements
with a precision of a few hundreds of micrometers.

As illustrated in Fig. 2A, the longitudinal strain ε was induced in the shell
by incrementally displacing its ends in the opposing axial direction, and
a localized transverse indentation load was applied by pressing the shell
with a conical tip (tip diameter ≈ 0.7 mm� a) under a dead weight load.
In this study, ε was varied in the range from 0 to 0.08 with an increment
∆ε of ∼0.0036 (compression being taken as positive), while other parame-
ters were kept constant unless otherwise specified. All experimental images
were obtained with a digital camera (Nikon D80) equipped with a zoom lens
(Sigma 105-mm f/2.8 EX DG Macro lens), except for those in Fig. 2B, which
were taken by zoom stereo microscope (Nikon SMZ800). The amplitudes of
the dimples, as shown in Figs. 2 and 5, were measured with a homebuilt
setup that enables the measurement with accuracy within a few tens of
micrometers.

A commercial package, ABAQUS, was used to solve the 3D equations of
elasticity. Four-node quadrilateral thin shell elements with reduced integra-
tion (element type, S4R) and a large deformation formulation were used in
all simulations, with five integration points through the shell thickness. A
mesh sensitivity study was carried out to ensure that the results are mini-
mally sensitive to the element size. The free mesh scheme available in the
ABAQUS software was used in the computational model with no initial
geometric or material imperfection. The local instabilities in the structure
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Fig. 5. Evolution of localized dimples. (A) The dimpled structures evolve with changing applied compressive strains ε. (Upper) Increase in ε initially leads to
an increase in the height h of a single dimple (normalized by the shell thickness t). At a critical value of ε, the shell dynamically evolves as two new dimples
are born; simultaneously, their height decreases. This scenario repeats itself as ε is increased further. Two distinct evolution paths are revealed depending
on whether the number of dimples is even or odd. (Lower) Decrease in ε leads to reduction of the dimple heights followed by the disappearance of one at
a critical limit. Insets show actual results of the simulations. In lateral views shown as Insets, the out-of-plane displacements are scaled up by a factor of 25.
(B) Experimental bifurcation diagram as a function of ε, in qualitative agreement with the simulation results shown in A. The cylindrical shell is compressed
uniaxially up to a strain of ε = 1.3% (above a threshold level, εc ≈ 1%), and a normalized indentation load of F/Et2 ≈ 1.0 × 10−3 is applied to the shell
(1). The load is then released, leading to the formation of a localized stable dimple (2). Subsequently, ε is varied in a stepwise fashion with an interval
of ≈0.36%: first, increasing (compressing) to a certain value at which the dimpled structure is composed of up to five dimples (from 2 to 7) and second,
decreasing (releasing) back to zero (from 7 to 10). Inset shows the dimpled structures corresponding to the numbered labels.

were captured using a stabilizing mechanism based on automatic addition
of volume-proportional damping, which was decreased systematically to
ensure that the response was insensitive to this change. It is worth point-
ing out that these numerical simulations can account for instabilities and
have been validated against experiments to probe the medium-to-large
deformation regime (20, 21).
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