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The statistical shape of geometric 
reasoning
Yuval Hart1, Moira R. Dillon  2, Andrew Marantan3, Anna L. Cardenas1, Elizabeth Spelke4,5 & 
L. Mahadevan  1,3,5,6,7

Geometric reasoning has an inherent dissonance: its abstract axioms and propositions refer to perfect, 
idealized entities, whereas its use in the physical world relies on dynamic perception of objects. How do 
abstract Euclidean concepts, dynamics, and statistics come together to support our intuitive geometric 
reasoning? Here, we address this question using a simple geometric task – planar triangle completion. 
An analysis of the distribution of participants’ errors in localizing a fragmented triangle’s missing corner 
reveals scale-dependent deviations from a deterministic Euclidean representation of planar triangles. 
By considering the statistical physics of the process characterized via a correlated random walk with 
a natural length scale, we explain these results and further predict participants’ estimates of the 
missing angle, measured in a second task. Our model also predicts the results of a categorical reasoning 
task about changes in the triangle size and shape even when such completion strategies need not be 
invoked. Taken together, our findings suggest a critical role for noisy physical processes in our reasoning 
about elementary Euclidean geometry.

Euclidean geometry lies at the foundation of domains such as mathematics, art, and architecture, and its origins 
have been debated for millennia. Philosophers from Plato1 to Descartes2 to Kant3, have argued that idealized, 
abstract geometric entities exist innately in all humans. In contrast, scientists like Helmholtz4 and Poincaré5 have 
argued that noisy perceptual experience may instead shape geometric reasoning (for a broader socio-historical 
account of the development of mathematical reasoning, see Lakatos6). These two perspectives reflect an inherent 
tension in the domain of geometry itself: While geometry’s propositions rely on abstract entities like dimension-
less points and infinitely long lines, the points and lines of our physical world are dimensional and finite. When 
faced with a novel geometric problem, how much do we rely on reasoning rooted in physical representations?

Growing research in the cognitive sciences suggests that simulations of the physical world underlie our 
intuitive reasoning7, even in domains like physics, where formal reasoning is abundant and has a long history. 
Reasoning by simulation has the benefit of predicting future states of the simulated system in situations where 
spatial or temporal information is missing or when the current state of the system is uncertain8–15.

Given the variability in the environments, experiences, and formal education of individuals across human 
cultures, recent work has also investigated the universality of the processes that might guide geometric reason-
ing16–18. For example, Izard and colleagues17 presented a variety of fragmented planar triangles to individuals 
from a remote Amazonian group, who receive no formal education in geometry and who have no specialized 
geometric vocabulary. The researchers asked the participants to point to the location of a triangle’s missing corner 
and to generate its angle using their hands or a goniometer. The Amazonian adults produced responses that were 
similar to those of formally educated adults in the U.S. and France and that roughly reflected Euclid’s proposi-
tion 32, which states that the internal angles of a triangle sum to a constant, regardless of the triangle’s overall 
size. Nevertheless, 6–7-year old U.S. children given the same task produced responses that appeared to depend 
on the implied triangle’s overall size, which runs contrary to Euclid’s proposition19. In these experiments, only a 
limited range of triangle sizes was tested (with triangle side length varying by less than 3-fold), and the number 
of Amazonian participants was necessarily small. Prior work also investigated the effects of extrapolating lines 
on angle misperception. Weintraub and Virsu20,21 show that the intersection of two extrapolated line segments 
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deviates from expectations causing an overestimation of the missing angle (with an exception for small angles 
which are slightly underestimated). Later, Mitrani and Yakimoff 22 suggested a theoretical model that studies the 
effect of variation in base angles. Notably, they discuss the importance of going beyond the mean and to account 
for higher moments such as the variance of responses. Their model elegantly describes the process of extending 
straight lines and accounted for the distribution of estimates of the missing vertex20,21. However, the size of the 
base in their experiments varied by only 8 fold, and therefore their model may not be sensitive to changes in the 
scaling of the distribution with increasing distances. All together, both the experiments with both children and 
adults from various backgrounds, and the theoretical framework still leaves open the question whether such 
geometric responses to questions of triangle completion might depend on a dynamic visual routine23 or mental 
simulation8,9,12 and how they change developmentally.

In the present study, we address this question using a computational model of a statistical physical process 
that might guide intuitive geometric reasoning. To do so, we present large samples of educated adults in the U.S. 
with fragmented triangles and measure the changes in the distribution of responses with changes to the size of 
the triangle. Tasks presented triangle stimuli either as projections on a large screen, which allowed us to test the 
variation in participants’ responses over large variations in the size of the stimuli, or as images on a computer 
screen, get large from many participants. Experiments 1–3 investigated the characteristics of participants’ esti-
mates of vertex localization. Importantly, we focus on the statistics of error propagation24–27 through an analysis 
of the probability distribution of vertex estimates over a large range of triangle sizes (varying over 75-fold in size, 
Experiment 1). We interpreted these results in terms of a dynamic model based on a correlated random walk. To 
test the model’s validity, we predicted the response of missing angle, and in Experiment 4, tested this against the 
participants’ estimates of the missing angle. In Experiment 5, we go beyond visual completion tasks to geometric 
reasoning: We asked a new group of participants to make explicit verbal judgments about the location and angle 
size of a triangle’s missing corner after verbal descriptions of changes to the other two corners (e.g., “What hap-
pens to the angle size of the third corner of a triangle when the other two angles get smaller? Does the third corner 
angle size get bigger, get smaller, or stay the same?”). Participants could have responded to these questions either 
using a mental completion process, in which the answers are read off of an imagined, complete triangle or by a 
general rule about the properties of triangles. Finally, we evaluated whether the model that was fit to the locali-
zation data also explained the pattern of categorical responses that we observe in the verbal response task, again 
aiming to shed light on the role of physical simulation-based mental processes on intuitive geometric reasoning.

Results
In Experiment 1, we asked educated U.S. adults (N = 40) to indicate the location of the missing vertex of 15 
different fragmented isosceles triangles (each presented 10 times, all with the base on the x-axis) projected on a 
large screen (1.07 m × 1.37 m). The side lengths of these triangles varied by 75-fold. With such large variation 
in triangle size, we were able to analyze the effects of size on the mean and standard deviation of the localization 
response distribution (Fig. 1A,B).

We found that the y-coordinate localization estimates for the third vertex were biased toward the base of the 
triangle and that this bias increased linearly with the triangle side-length (Fig. 1C). Strikingly, the standard devi-
ation of the y-coordinate location estimates scaled sub-linearly with side length, σ ∼ .L0 77 (median exponent: 
0.77, 95% CI = [0.73, 0.82], Fig. 1D and Fig. S1). Additionally, while the distribution of the x-coordinate localiza-
tion estimates also showed a sub-linear scaling of its standard deviation, the errors were 4-fold smaller in magni-
tude, and while there was a small directional bias at large triangle side length, there was no systematic directional 
bias up to a 46-fold increase in triangle side length (SI, Fig. S2). We further analyzed response times for the trian-
gle completion task and found that judgments about the localization of the third vertex for smaller triangles were 
more rapid than for larger triangles (Spearman correlation, r = 0.53, p < 0.005, see SI, Fig. S3). Thus, processing 
time in this task is related to the (missing) spatial extent traversed, as is the case for spatial simulation-based 
processes9,11.

To understand these results, we consider various different scenarios. First, if participants are completing tri-
angles using perfectly straight, planar lines (one from each of the two base angles) with no curvature (as on the 
Euclidean plane), and base angles have a fixed size, then Gaussian noise around the estimated location would 
show a symmetrical distribution of errors, with the position of the missing vertex averaging to its true location 
with no bias. Second, if participants are using perfectly straight lines with no curvature, but their assessment of 
the base angles’ size is fluctuating (as in the Mitrani and Yakimoff model22), then we would observe a downward 
bias towards the base of the triangle. However, since angle variance does not introduce another length scale in 
the system, this model has no length scale other than triangle side length. Therefore, in a straight line model with 
variance in the base angles22, the standard deviation of the estimates (which has units of length) can scale only 
linearly with triangle side length. Even if one introduces noise in angle size which is dependent solely on the size 
of the triangle, the only length scale present would be that of the triangle side length and the scaling of standard 
deviation will remain linear.

Importantly, any mental simulation process guided by a representation of straight lines, even with added noise 
from perception and/or action, would result in a standard deviation that scales linearly or super-linearly with the 
triangle side length (i.e. σ ∝ ≥L n, 1n , where σ is the standard deviation, L is the triangle side length and n is the 
scaling power law). The observed sub-linear scaling of the standard deviation with length precludes the use of 
Euclidean, straight lines in the localization task (see SI, sections S6, S7 and S15 for more details).

In Experiment 2, we replicated these findings on a large scale with a group of educated adult participants using 
Amazon Mechanical Turk (N = 100, SI, Fig. S4). Although this replication task differed from the original task in 
that it only presented triangles differing in side-length size by 25-fold (because stimuli were presented on partic-
ipants’ own computer screens rather than on our large screen), we observed a similar y-coordinate localization 
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bias toward the base of the triangle and a sub-linear scaling of its standard deviation, L0 65σ ∼ .  (SI, Fig. S4). Again, 
participants’ distribution of x-coordinate localizations showed no systematic directional bias, but did show a 
sub-linear scaling of its standard deviation. Experiment 3 served as a second replication, but presented a rotated 
version of the task (with the triangle base at the y-axis) to participants on Mechanical Turk (N = 29). This exper-
iment found similar results to the prior two experiments in which the base of the triangle was located on the 
x-axis (SI, Fig. S5). Thus, our findings cannot be explained by biases in judging the vertical properties of an 
upright planar shape.

Experiments 1–3 indicate a vertex bias towards the base of the triangle, which is supported by previous 
research showing a similar error in the judgment of the intersection of two line segments20,21. This bias is scale 
dependent and grows linearly with the size of the triangle. This result could be explained by a mental representa-
tion that uses straight lines with noise in the base angles (and thus consistent with a Euclidean representation of 
space). However, the sub-linear scaling of the standard deviation with triangle side length indicates the existence 
of another length scale. The additional length scale is at odds with a Euclidean representation of a flat plane.

To understand how the standard deviation shows sub-linear scaling with triangle side length (and thus a 
curved representation of space), we created a model for how the fragmented triangle may be completed, inspired 
by the dynamics of a correlated random walk28,29. In this model, participants’ extrapolation of the missing sides 
of a triangle is described by a set of short concatenated line segments that start at the bottom two vertices, with a 
given local orientation, and continue until they intersect (Fig. 2A), with repeated corrections to the overall orien-
tation occurring over a time scale ξ. The dynamical equations for this process that describe the location of the tip 
of the line (x(t), y(t)) that makes an angle θ(t) with the horizontal are (see Fig. 2A):
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Figure 1. Statistics of the localization of a missing vertex in a triangle completion experiment do not follow 
Euclidean geometry. (A) In the localization task, participants are shown two corners of a fragmented triangle 
and are asked to position a red dot in the location of the missing third vertex. (B) We measured the distribution 
of participants’ responses to the location of a triangle’s missing vertex over exemplars that varied by ~75 fold in 
triangle side-length. Side-length values ranged from 44 pixels to 2687 pixels (see Methods) and angle values 
were 30°, 36°, and 45°. (C) The mean deviation (δ) from the true y-coordinate location of the missing vertex to 
the mean of participants’ responses as a function of triangle side-length. Participants’ estimates are biased 
downwards toward the triangle’s base and scale linearly with triangle side length. (D) The standard deviation of 
participants’ distribution of responses (σ) as a function of side length. Inset (log transformed): this standard 
deviation scales sub-linearly with the side length (σ ∼ .L0 77, Min-Max values: 0.65–1.04, median exponent: 
0.77, 95% CI = [0.73, 0.82]).
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θ=dx
dt

v cos (2)p

θ=dy
dt

v sin (3)p

where the parameters of the model are: τ, an inertial relaxation time scale for local smoothness, vp, a characteristic 
speed, ξ, a time scale for the global error-correction based on the bottom two angles, and η(t), a noise term with 
noise amplitude D, ( t t D t t( ) ( ) ( )η η δ′ = − ′ ). In addition, the model has a threshold for the x-coordinate dis-
tance between the two extrapolated lines, � , which once crossed, ends the process (SI, Figs S6–S8). The right and 
left extrapolation events are taken to be independent and not symmetrical (symmetry may arise if the triangles 
are symmetrical rather than from the process itself, see sections S6–S7 in the SI).

While this dynamic approach provides an appealing picture for the mental process of triangle completion, it 
depends on four different parameters. To reduce the number of parameters, we use the fact that participants were 
given unlimited time to respond and consider next an equivalent statistical model that ignores time. Repeated imple-
mentations of the dynamic model produce a probability distribution for the local angles along the extrapolated line. 
This statistical approach conveys the benefit of having just one dominant parameter and is described below.

Just as in the dynamical model, the statistical model considers the statistics of a line-like object that is built 
from small segments that reflect the two competing processes described above – maintaining local motion along 
a smooth curve and correcting the global extrapolation’s direction given a base angle size. Together, these two 

Figure 2. A correlated random walk model captures the results in the triangle completion localization task. (A) 
The schematics of the dynamic model of the triangle completion task based on a correlated random walk. In this 
model, the local angle evolves with accompanying noise as the line is extrapolated. The model parameters are: vp,  
a characteristic speed with which the coordinates progress, ξ, a time scale for global error-correction (illustrated  
as number of segments between error-correction events), and η(t), a noise term with noise amplitude D 
( η η δ′ = − ′t t D t t( ) ( ) ( )), not shown in the figure. The stopping threshold is denoted, � , and the base angle is 
denoted by θ0. The right and left extrapolation events are simulated independently and are not necessarily 
symmetrical. The dynamic model converges over many iterations to the statistical model (see SI for further details). 
(B) The schematics of the statistical model. Estimate for the location of the missing vertex arises from balancing 
noisy estimates of local orientation with a global error-correction mechanism based on the size of the base angles. 
The model parameters are: lp the persistence length that penalizes local angle deviations, and f that penalizes global 
orientation deviations from the base angle θ0, yielding a correlation length, l f/pξ = , as a fitting parameter. (C) 
The results of a statistical model of triangle completion based on a dynamic random walk show that y-coordinate 
location estimates have a bias toward the base of the triangle that increases linearly with the triangle side length. 
Here, we use ξ = 2 times the smallest side length, angle noise level V0 = (lpf)−0.5 = 0.26 and side length varies 
between 1–100 (see Methods and SI). (D) Using the same parameters as in A), the model also shows that the 
standard deviation of the y-coordinate location estimate varies sub-linearly with side length, σ ∼ .L0 77.
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processes yield the following probability for the angle of each segment of the extrapolated curve, φ(s), with s char-
acterizing location along the curve, relative to the initial base angle θ0 (see Fig. 2B):
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Thus, trajectories with higher dimensionless energy (denoted E) are exponentially less probable. The form of E is 
exactly the Hamiltonian for a model describing semi-flexible polymers30–32, and it has also been used to explain 
properties of animal navigation33–35. We note that in the statistical model, the restriction on a line’s length is 
directly set by the length parameter, L, which sets the upper limit of the range of the integral. This model balances 
the competition between local and global orientational order. Indeed, the first term reflects the penalty associated 
with high curvature with a weight known as the persistence length lp, which defines the magnitude of the local 
noise in the angle judgment at each segment. The second term reflects the penalty for angle deviations from the 
initial base angle θ0, with a weight f, which acts as a global error-correction mechanism. The model effectively has 
one parameter, a correlation length l f/pξ = , which balances the two competing effects (and which is propor-
tional to the time scale of the dynamic model (1) up to a factor of the speed vp). The correlation length quantifies 
the typical length of the trajectory continuing in a certain direction before the error correction resets the angle of 
the extrapolation to the base angle value.

The exponent observed in the localization experiment, 0.77, suggests that the global error-correction mecha-
nism plays a more dominant role in participants’ triangle completion (see SI, S7.1). Importantly, this signifies 
better robustness to noise propagation with triangle side length than the linear dependence produced by straight 
lines with noisy angle estimates (σ ∝ ≥L n, 1n ). Taking ξ ∼ 2 times the smallest initial side length and then 
varying the side length over a 100-fold range allows us to capture the mean and standard deviation of the distri-
bution of the observed participants’ localization responses (Fig. 2C,D and SI, Figs S6–S8 for the dynamic model 
and Figs S9–S11 for the statistical model). Our model suggests how a simulation-based process which reflects the 
balance between local straightness (by smooth continuation) and global orientation (by error correction) can 
produce a sub-linear scaling of the standard deviation with triangle side length, inconsistent with a classical deter-
ministic representation of the Euclidean plane.

As an independent test of the model’s fit to processes of triangle completion, we evaluated whether it predicted 
the distribution of a new group of participants’ responses for the magnitude of a triangle’s missing angle. With 
a fixed correlation length of ξ = 2, our statistical model, based on localization judgments alone, predicts both 
that the mean size of the missing angles is overestimated and increases as triangle side-length increases, and also 
that the variance of the distribution of angles decreases as triangle side-length increases (Similar predictions are 
achieved with the dynamic model. See SI, Fig. S13 for the dynamic model and Fig. S14 for the statistical model). 
Indeed, in Experiment 4 (N = 65, SI, Fig. S14), a new group of online participants were asked to use a goniometer 
to estimate the missing angle size of 10 instances of 15 different triangles (as in Experiment 1). Participants over-
estimated the size of the missing angle size, and their overestimations increased with increases in the length of the 
triangle’s sides (at large base angles of 45° and 60°, Fig. S14). The variance of the response distribution decreased 
as triangle side-length increased (Fig. S14). We analyzed the response times of participants’ angle estimates and 
found a significant but weak correlation between response times and triangle side-length (Spearman r = 0.07, 
p < 0.03, see SI, Fig. S15). These results suggest that participants’ angle estimates are also scale dependent, again at 
odds with a Euclidean representation and preclude a possible use of a rule (e.g. Euclid’s proposition 32) to answer 
the missing angle estimates.

In summary, Experiments 1–4 provide evidence that educated adults solve triangle completion problems by 
engaging in a dynamic mental simulation to construct the complete triangle by extrapolating the sides from the 
two visible corners to the third, unseen corner. What role might this simulation process play in more explicit 
reasoning about the general properties of planar triangles? To explore this, in Experiment 5 we presented partici-
pants with a triangle completion task probing their intuitions about the general properties of triangles that could 
be solved without locating any positions or angles in visual space19.

In Experiment 5, we conducted a version of the triangle completion task that required participants to produce 
categorical, verbal judgments about the distance and angle properties of a triangle’s missing corner after changes 
to the bottom two corners. Such judgments could be made entirely based on formal, Euclidean rules, e.g., those 
that describe triangle congruency and similarity. Alternatively, such judgments could also be made by mentally 
simulating the complete triangle and “reading off the answer” from this simulation. We first evaluated the accu-
racy and response times of participants’ responses to adjudicate between these strategies.

For this experiment, a new group of adult participants on Amazon Mechanical Turk (N = 407) were asked in 
two separate blocks: whether a triangle’s vertex would move up, move down, or stay in the same place after the 
other two vertices either moved farther apart, closer together, increased in angle size, or decreased in angle size. 
Participants were also asked whether the associated angle at that third vertex would get bigger, get smaller, or stay 
the same size after those same four transformations (totaling 8 multiple choice questions with chance at 33%; 
Fig. 3A). While the participants saw only a static fragmented triangle on the screen with no accompanying visual 
transformations, they were introduced to the task with visual displays that exemplified each change. We measured 
accuracy and response times of the participants.

Participants performed well above chance in their location judgments when either angle or distance to the 
other two corners is changed (Fig. 3B), and in their angle judgments when the other two angles are changed. 
Nevertheless, their performance was far from perfect, and their angle judgments in response to changes of dis-
tance between the other two corners were no better than chance level, with a bias towards the direction of the 
manipulation (“bigger” for increased distance and “smaller” for decreased distance, Fig. 3B). Erroneous responses 
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to this question were in direct contradiction with Euclid’s proposition 32, which states that the internal angles of 
a triangle sum to a constant (e.g., participants responded that the missing angle got bigger when the other two 
corners maintained their angle measure but moved farther apart; Fig. 3B and Fig. S14). Notably, these error pat-
terns accord with the errors made by children in the previous studies of triangle completion19 and are qualitatively 
similar to the performance of U.S. and Amazonian adults17.

While participants’ incorrect responses, e.g., that a triangle’s third angle should scale with the triangle, indi-
cate that they did not follow the rule that the internal angles of a triangle should always sum to a constant, they 
may have nevertheless used a faulty rule to answer these questions. Evidence against the possibility that partic-
ipants relied on rules at all during this task comes from a comparison of responses to the questions referring to 
transformations that decreased vs. increased the side lengths of the triangle. If participants were using a rule 
(whether accurate or faulty) which is scale invariant, then no such differences should be found. However, if partic-
ipants were making their responses based on simulated triangles, then there might be greater success and shorter 
response times after transformations that decreased the triangle side lengths since the simulation process would 
be shorter and entail less noise accumulation. Our results show that participants responded more accurately and 
in less time after they were asked to make judgments about triangles whose side lengths got shorter vs. longer 
(Accuracy: Mann-Whitney test: t(16282) = 1,264,960, p < 0.01, effect size = 0.05; Response Time: Mann-Whitney 
test: t(16282) = 1,387,910, p < 0.02, effect size = 0.05; Fig. 3C), consistent with a strategy based on imagery which 
is not scale invariant.
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Figure 3. Participants’ responses to a categorical task probing the general properties of triangles. (A) In 
separate blocks of questions, participants were asked to judge the change in the location of the missing vertex 
and the change in the magnitude of the missing angle. (B) Participants’ responses to angle judgments do not 
adhere to Euclidean rules (correct responses are outlined in bold). For example, participants predominantly 
judged that an angle should scale with the overall size of the triangle (last pair of bars). (C) Participants’ 
responses are more accurate and faster when triangles get smaller (the angle sizes or the distance between the 
vertices decreases) vs. larger (the angle sizes or the distance between the vertices increases). Accuracy: Decrease: 
Mean±STE = 57 ± 1%, Increase: Mean ± STE = 53 ± 1%, Mann-Whitney test: t(16282) = 1,264,960, p < 0.01, 
effect size = 0.05; Response times: Decrease: Mean ± STE = 16 ± 1 s, Increase: Mean±STE = 18 ± 1 s, Mann-
Whitney test: t(16282) = 1,387,910, p < 0.02, effect size = 0.05; *p < 0.05, **p < 0.01. (D) The statistical model 
predicts responses similar to participants’ responses in the categorical task shown in (B); chi-squared tests 
with the behavioral data showed values > 0.17. A Bayes factor estimate comparing the model with a model 
of only noise in base angle estimates with similar thresholds showed values of BF > 1010 for most questions 
(with the exception of AID (Angle question with Increasing Distance) BF = 0.08 and ADD (Angle question 
with Decreasing Distance) BF = 3). Model parameters are ξ = 2, V0 = 0.4, ThL = 0.05, ThA = 0.05, all initial base 
angles = 36° and initial side length distance varied between 2–4 (see Methods and SI).
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Our statistical model described above and characterized in Experiments 1–4 relies only on the dynamic prop-
erties of participants’ localization of the missing third vertex of a triangle, given fragmented information about 
the other two corners. Here we ask whether the model can nevertheless capture the results obtained in the cate-
gorical triangle completion task of Experiment 5. For example, for a question asking what happens to the missing 
vertex location after an increase to the distance between the two base vertices, we approximated the distribution 
of the vertex location in the initial distance case by a Gamma distribution with the corresponding model values 
of the mean and variance in estimates and then compared it to a Gamma distribution with parameters taken 
from the increased distance case. Thresholds for the “move up”, “move down”, and “stays the same” categories 
were set according to the ratio of the measured bias and standard deviation of participant location estimates 
from Experiment 1 (where participants localized the third vertex over 75-fold changes in triangle side-length; 
see Methods and SI).

We found that our model produced responses that closely resembled those of the participants in the cate-
gorical task for all 8 questions (Chi squared tests, all ps > 0.17, Fig. 3D vs. Figure 3B). Furthermore, comparing 
the model’s predictions to another model’s prediction, which included only noisy estimates of the base angle 
sizes, yielded better support for our model (Bayes factors36 (BF) for most questions >1010, and AID BF = 0.08 
and ADD BF = 3, see Methods and SI). The largest deviation between the model’s predictions and participants’ 
responses was in those questions where the angle size of the third location was probed after changes to the dis-
tances between the bottom two corners: The model under-predicts the number of accurate responses. The current 
results do not reveal whether the greater number of participants who succeeded in this question did so because of 
less noisy simulation strategies for this pair of questions or because of invoking a rule of some kind. While there 
were too few individuals who responded correctly to these questions to investigate their consistency and reaction 
times compared to the other participants in the study, future work might investigate how differences in accu-
racy and reaction time relate to different responses strategies across individuals. Years of formal schooling, how-
ever did not significantly predict accuracy on the categorical task (Spearman correlation median r = 0.002, 95% 
CI = [0,0.28], see Fig. S16), consistent with the studies comparing educated to uneducated participants in the U.S. 
and the Amazon17. We note that when we vary model’s parameters for each question or add another parameter to 
denote noise in the base angle estimates, the model fits the behavioral results even better (see SI, Figs S17–S20).

Discussion
While previous studies have shown that intuitive geometric reasoning is universal in adults across cultures and 
levels of education17, the mental processes and representations that might guide this reasoning remain unclear. 
Our study provides both behavioral evidence and a computational framework showing how intuitive geometric 
reasoning about planar triangles in adults depends on the mental simulation of locally correlated motion along a 
line segment and the correction of that accumulated motion’s global direction. While our work does not preclude 
the existence of Euclidean geometry considerations in geometric reasoning, it quantifies it in terms of physically 
measurable parameters. For example, the global orientation demand is the dynamic equivalent of the Euclidean 
demand for a globally straight line, while the local smoothness condition is associated with the local definition 
of a straight line. Thus the mental simulation process that balances local smoothness and global orientation leads 
to an intrinsic length scale that controls the nature of geometric reasoning that is a noisy variant of classical 
Euclidean geometry.

Might there be an advantage of such a dynamic strategy for geometric reasoning? While a static Euclidean 
representation like “lines are straight,” or “the internal angles of a polygon sum to a constant” may provide the 
most accurate and rapid response to a question about a planar shape, its perceptual implementation to stimuli 
might be hard to determine, if, for example, the question refers to a shape with noisy, indeterminate properties 
(e.g., a situation in which it is difficult to tell whether the judgment should be about a line vs. a curve embedded 
on a plane or on a sphere). Simulation-based strategies, however, can be more robust to noise, with smaller 
variations in estimates around similar or indeterminate conditions. In the present study, the standard devia-
tion of participants’ localization errors scaled sub-linearly with triangle side-length. This sub-linear dependence 
was smaller than the linear (or higher) dependency that would be expected by the noise accumulating around 
straight lines. As such, relying on one straight line from each base angle actually leads to worse performance than 
the one obtained on the present localization task. Thus, participants’ adoption of a method that balanced local 
smoothness with a global angle correction served as a better strategy to preserve essential shape properties given 
the physical constraints of the problem. Indeed, such a process still produced accurate estimates of the location 
and angle size of fragmented triangles’ missing third corners. The use of mental simulations that lead to robust, 
Euclidean-like estimates to geometric questions in noisy situations may reflect the mature geometric intuitions 
that universally guide our reasoning.

When asked categorical questions about changes to angle size upon increasing or decreasing of the triangle’s 
base length participants performed no better than chance. One may thus ask whether a literal representation of 
Euclid’s proposition 32 is needed to answer this type of question. Drawing from other cognitive processes - we 
note that individuals without training in linguistics do not have a literal representation of phrase structure gram-
mar, but they use it intuitively and automatically in speaking and in understanding the speech of others. Similarly, 
children who judge that one can count on from any number, however high it is, surely do not have a literal rep-
resentation of Peano’s axioms, yet their judgments accord with them37. Thus, we need not assume that people 
would need to have an explicit knowledge of proposition 32 to judge automatically that if the scale of the triangle 
changes, then its shape (and therefore its three angles) remains unchanged. In our experiments, we recorded years 
of education as an indirect measure of mathematical proficiency, which showed no correlation with participants’ 
accuracy. Yet this leaves open the question of whether participants’ mathematical proficiency in different fields 
such as mathematics, the visual arts, and architecture, could account for their judgments.
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Further work is also needed to understand the specific perceptual and neural mechanisms underlying the 
mental simulation process. The simulation process employs line extrapolation with two competing constraints: 
local smoothness and global orientation. On the perceptual level, studies suggest that local smoothness can be 
extracted by curvature measurements by receptive fields38,39. This may reflect the ability of our visual system 
to follow a smooth trajectory locally, similar to the well-known gestalt principle of ‘good continuation’40–46. 
Angle error-correction may reflect a high-level capacity of short term visual memory to represent global ori-
entation28,29,47–50. Connecting developmental work, eye tracking, and brain activity measurements with people’s 
estimates in the triangle completion task, would serve to elucidate the determinants of the correlation length ξ 
that suffices to capture the statistics of our vertex localization task, missing angle estimates, and even categorical 
reasoning.

Our work contributes to accumulating evidence that statistical dynamic strategies may underlie foundational 
reasoning capacities that may otherwise appear rule-based and static, especially in domains like physics, in which 
intuitive reasoning relies on models of the world that are unfolding in time7–15. Our model extends previous 
simulation-based models7–15 in two essential ways. First, contrary to simulation models that introduce noise 
as variation in the estimated physical parameters, our model focuses on the propagation of errors and balances 
two competing error-control demands: local smoothness and a global error correction. These two competing 
demands govern the process which guides our judgments of geometry. Second, most simulations consider trans-
formations in space and time on existing representations. In contrast, our simulation model constructs the mental 
representation itself, i.e. the geometric shape. Further work is needed to disentangle the relative role of these 
processes. This becomes particularly apparent in the context of illusions, e.g. Kanizsa triangle, which require 
the reconstruction of geometric shapes. Examining the robustness of the constructed mental representation to 
changes of scale, and inferring the role of errors/deviations in triangle corners’ position and corners’ angle-size, 
can illuminate better the characteristics of geometric completion simulations51–53.

Our model serves as a first approximation to the salient features that might guide geometric completion pro-
cesses. For example, it assumes a robust evaluation and memory of angle sizes, which allow the global error cor-
rection process to dominate. It is possible, however, that throughout the process of line extrapolation, this angle 
size representation is degraded and the error correction mechanism gets noisier. Future models can test for such 
degradation effects, addition of noisy distributions of initial estimates of base angles (see SI for a treatment of 
Gaussian noise in base angles), angle estimates dependence on their orientation (as found in refs20,21), and noisy 
estimates of other model parameters (such as the linear length scale (L), the threshold distance between the two 
extrapolated lines (ε), and the time intervals for error-correction events (ξ)).

Participants’ answers to and response times for the categorical task associated with shape changes suggest that 
they simulated the properties of complete triangles. Though these questions could have been answered easily and 
quickly with Euclidean rules, participants did not invoke these rules. Considering the conditions under which 
participants might invoke geometric or other rules in the presence of additional cues (such as changing the trian-
gle’s orientation, color, or labeling angle sizes), could point to the relative importance of the statistical-dynamics 
of geometric reasoning. More broadly, our study suggests that geometric pedagogy may benefit from relying more 
on simulation-based reasoning and finding conditions under which using geometric rules becomes intuitive to 
improve the learning and application of those rules.

While geometry is often seen as underlying our conception of the physical world, it may also be the case that 
our perception of the physical world underlies our intuitive geometry. An interesting question about the nature of 
the mental simulations we use then arises: Do we aggregate our mental simulations to produce an averaged sta-
tistical representation of geometry used for a variety of question types, or do we employ a dynamic model every 
time we are challenged by a question in geometry? Since psychological mechanisms shared by animals, children, 
and adults allow for perception and navigation in uncertain and imperfectly known environments, how humans 
have succeeded, over time, to convert reproducible strategies for these tasks into mathematical abstractions and 
rules is a natural next question.

Materials and Methods
All experiments in this study adhere to the regulations and guidelines on the use of human subjects. All experi-
mental protocols were approved by the Harvard IRB committee (Committee on the Use of Human Subjects). All 
participants gave their informed consent to participate in the experiments detailed below.

Experiment 1 - Localization of the missing vertex in a triangle completion. In a laboratory experi-
ment, we showed participants 15 different incomplete isosceles triangles 10 times in a random order (for a total of 
150 triangles for each participant). Forty participants, divided randomly into two equal-sized groups, were shown 
triangles of 3 different base angle sizes (30, 36, and 45 degrees) and with 5 different base lengths. Participants in 
group 1 were shown base lengths of 0.02, 0.08, 0.25, 0.5, and 1. Participants in group 2 were shown base lengths 
of 0.04, 0.16, 0.32, 0.64, and 1. In both groups, 1 signifies 1900 pixels and is equivalent to 130 cm. Participants sat 
at a distance of 150 cm from the screen. For each triangle, we asked participants to position a dot in the estimated 
location of the missing vertex. Before the experiment began, participants had one practice trial, in which the 
location of the missing vertex was indicated by a dot of a different color, and they were asked to position their 
dot on the indicated position. We consider the triangle side length as the primary variable in the analysis since 
our model of line extrapolation points to this quantity as the length scale of the computation process. Regression 
analysis of the bias and standard deviation dependence on base angles and base length further indicated a robust 
and significant effect only for the interaction term of base length and base angles (i.e. the side-length, Bias: base 
length p > 0.4, base angle p > 0.75, base length * base angle p < 0.0001, Standard deviation: base length p > 0.47, 
base angle p > 0.53, base length * base angle p < 0.00001).
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Experiment 2 - Localization of the missing vertex in a triangle completion task. In an online 
experiment (Amazon Mechanical Turk), we repeated the same task as in the lab experiment with 100 partici-
pants, divided into two groups. Base angles were set to 3 different angle sizes 30, 45 and 60 degrees – group 1 (50 
participants), and 36, 51, and 66 degrees – group 2 (50 participants), with 5 different base lengths of 0.1, 0.25, 
0.5, 0.75 and 1. Since triangles would have exceeded the size of the screen with the angle sizes presented in group 
2 at the distance scale used in group 1, group 1 saw a y-coordinate length scale of 900 pixels and group 2 saw a 
y-coordinate length scale of 1300 pixels. To match the scales for the two groups we divided the estimates of the 
second group by a ratio of 13/9.

Experiment 3 - Localization of the missing vertex in a triangle completion task. We repeated 
the same online task of positioning the missing vertex with a rotated isosceles triangle such that the base of the 
triangle was on the vertical axis, on the right side of the screen. Twenty nine participants were shown 3 different 
base angle sizes (30, 45, and 60 degrees), with 5 different base lengths (0.1, 0.25, 0.5, 0.75, and 1), where a base 
length of 1 was set to be 1000 pixels.

Experiment 4 - Estimation of missing angle in a triangle completion task. In an online experi-
ment, we asked participants (N = 65, Amazon mechanical Turk) to estimate the missing angle size in a triangle 
completion task. Participants moved a slider to set the angle size of a fragmented triangle. The slider and angle 
were located at the top right side of the screen, away from the fragmented triangle. Base angles were set to 3 differ-
ent angle sizes 30, 45 and 60 degrees, with 5 different base lengths of 0.1, 0.25, 0.5, 0.75, and 1, where a base length 
of 1 was set to be 1000 pixels.

Experiment 5 - Categorical geometric reasoning experiment. In an online experiment (Amazon 
mechanical Turk) we asked participants to answer 8 randomly ordered categorical questions regarding imagined 
manipulations to triangle size or shape. Participants were presented with the two base corners of an incomplete 
isosceles triangle and were asked what would happen to the location (or angle size) of the missing vertex upon 
an increase (or decrease) of 20% in the distance between (or angle size of) the two bottom corners. Participants 
saw the same drawing of a static, fragmented triangle with each question throughout the experiment. In differ-
ent groups of participants, this accompanying triangle had corners that were either 600 pixels and 240 pixels 
apart and presented either 36 and 60 degree angles. Each experiment started with a demonstration of what the 
indicated manipulations to distance and angles of the base corners looked like on a different example triangle. 
For each imagined manipulation, participants indicated whether the missing corner’s location would move up, 
move down, or stay in the same place. Similarly, they also indicated whether its angle size would get bigger, get 
smaller, or stay the same size. Four-hundred-seven participants completed the experiment: 157 females; 247 
males; and 3 who did not specify a gender. Participants’ age ranged between 18–72 years, with a median of 31 
years. Participants’ years of education ranged between 8–33 years, with a median of 15 years (and see SI, Fig S16).

Analysis of all behavioral data. All data analyses were done using Mathematica 11.0. The mean deviation 
from the true location of the missing vertex or the missing angle size, and the standard deviation were calculated 
for each participant and then averaged across participants. Results in the main text show mean ± std.

Derivation of Y-coordinate mean and variance. In order to model and predict the quantitative results 
for the localization task, we assumed the estimated location (X, Y) was the average intersection of a right and left 
triangle’s side trajectory extrapolations (see Fig. S7). Using the statistical model, we derived analytic expressions 
for the moments of each side extrapolated trajectory by using x s dscos( ( ))L

0∫ φ=  and y s dssin( ( ))L
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calculated the bias in the location estimate by subtracting the true location (ytrue = LSin[θ0]) from the mean 
y-coordinate. The standard deviation was calculated as the square root of the second moment of the distribution 
of the estimated (X,Y) location. The correlation length, ξ = l f/p , is the dominant parameter setting the scaling 
exponent between the vertical location standard deviation and the side length. We found a best-fit to the partici-
pants’ responses at a value of ξ = 2 (where 1 denotes the side-length of the smallest triangle considered), and the 
side length varies across L ∈ [1,100] (a similar range as the experimental setup). A detailed calculation of the 
moments and sensitivity analysis of model parameters are presented in the SI. And see Fig. S21 for the relation 
between base angle and error in the estimated mean location of the missing vertex. We also derived the distribu-
tion of the mean and variance using the dynamic model by simulating Eqn. (1–3), which resulted in similar dis-
tributions (see SI for more details).

Model estimate of the statistics of the missing angle. The magnitude of the missing angle was cal-
culated using estimates of the missing vertex. Given the good fit of the Gamma distribution to participants’ 
y-coordinate estimates in the localization task (see SI, Fig. S12), we approximated in our model the vertical coor-
dinate distribution as a Gamma distribution whose mean and variance were derived from our model’s analytical 
calculations. The x-coordinate was sampled from a Gaussian distribution with a standard deviation derived from 
the same analytical calculations. This produced a set of (X,Y) locations that was used to derive the estimated 
missing angle size value. The missing angle size was calculated as: Missing angle size = π − (effective base angle 
right + effective base angle left). We repeated this process 400 times to produce a distribution of estimated angles 
per side length and base angle. We then calculated the mean and standard deviation as a function of side length 
and base angle. We used the same correlation length, ξ = 2, and noise levels of V0 = 0.4. The dynamic model sim-
ulations of Eqns (1–3) yielded similar results, see SI for a detailed description.
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Model estimates of the categorical geometric reasoning task results. The categorical geometric 
reasoning task of triangle completion challenged participants to compare location or angle size estimates from 
two triangles, an initial incomplete triangle presented on the screen and an imagined triangle resulting from a 
specific manipulation (increasing or decreasing the distance between or angle size of the two base angles; see 
above). We thus compared the model’s predictions for the locations or angles of the initial triangle to the triangle 
that would result from the indicated manipulation. For example, consider a question about the location change of 
the missing vertex after an increase of the distance between the two base vertices. We calculated the location 
estimates of the model for the initial triangle by plugging the model’s predicted mean and variance to a Gamma 
distribution yielding a sample of 400 estimated locations (see SI, Fig. S12). We then repeated this process for the 
manipulated triangle. Next, we compared the two samples of location estimates in pairs. For each pair, we calcu-
late the percent change in location, and used a threshold to categorize the answer as “move up”, “move down” or 
“stays in the same place”: Locations which were 5% higher than the initial estimated location we marked as “move 
up” > .

−( )0 05y y
y

after init

init
. Locations which were 5% lower than the initial estimated location we marked as “move 

down” < − .
−( )0 05y y

y
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. All values in between these two thresholds were marked as “stays in the same place” 
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. This categorization method was also used with angle questions. The threshold was 

set by estimating the median coefficient of variation (std/mean) in participants’ answers in the localization task of 
the missing vertex location estimates (See SI for more details and sensitivity analysis of the thresholding values). 
For all questions the following parameters were used: correlation length, ξ = 1.25, variance of interior angles 
estimates V0 = 0.5, initial side-length, L = 3.2 for location questions and L = 1.25 for angle questions, initial 
angle = 36 degrees, increased angle = 45 degrees, length increase for location questions = 25%, length increase for 
angle questions = 50%. Similar to previous sections, we also compared the dynamic model simulations with the 
categorical behavioral responses, yielding similar results to the statistical model (see SI for more details).

Goodness of fit for the model and the categorical geometric reasoning task results. We used 
a Chi-Squared test for goodness of fit between the model predictions and the participants’ responses in the cat-
egorical geometric reasoning task. These tests did not show a significant difference between the model and par-
ticipants’ responses. Chi-Squared statistics and p-values were: t(1) = (1.87, 1.87, 1.33, 1.33, 1.33, 0.75, 0.14, 0.14), 
p = (0.17, 0.17, 0.25, 0.25, 0.25, 0.39, 0.7, 0.7) for VIA,VDA, VID, VDD, AIA, ADA, AID, ADD questions respec-
tively (each condition first letter indicates whether the question concerned vertex location or angle size (V/A), 
the second letter indicates whether the manipulation concerned increase or decrease in value (I/D) and the third 
letter indicates whether the manipulation suggested concerned changes to the base angles size or the distance 
between the base angles (A/D)).

Bayes factor comparison of the model and a model with only noisy base angle estimates. We 
used Bayes factor analysis to validate the fit of our model to the categorical geometric reasoning task results. We 
compared our model with a model that used straight lines with only Gaussian noise in the assessment of the base 
angle - angles were assumed to be sampled from a Gaussian distribution with the mean set to the base angle and 
a standard deviation of 5 degrees (see SI for more details). We used the same thresholds for both models (5% 
change as a detection threshold). The Bayes factor was calculated as
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where PWLC,i are the probabilities derived from our model, Ptrig,i are the probabilities derived from a model with 
only noisy base angle estimates and ni are the number of such responses in the categorical geometric reasoning 
task. The BF results were BF = (1027, 1018, 10119, 1096, 1062, 10147, 0.08, 3) for the VIA,VDA, VID, VDD, AIA, ADA, 
AID, ADD questions respectively, indicating that, for most questions, the WLC model is superior to the simpler, 
straight-line Euclidean model with noisy base angle estimates.

Data availability. The experimental data is available online on the following link: https://github.com/
StatShapeGeometricReasoning/StatisticalShapeGeometricReasoning with the data files. Please refer to the 
README file for explanations on the data structure of each file:

 1) Experiment 1: exp1data.csv
 2) Experiment 2: exp2data.csv
 3) Experiment 3: exp3data.csv
 4) Experiment 4: exp4data.csv
 5) Experiment 5: exp5data.csv.
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Additional	Data	and	Analysis	
	
S1	The	distribution	of	the	individual	scaling	exponents	showed	a	sub-linear	range	
Each	participant	was	shown	15	different	triangles,	composed	of	one	of	5	base	lengths	and	one	
of	3	angle	sizes;	each	triangle	was	presented	10	times	in	a	random	order.	We	calculated	the	
scaling	exponent	of	the	Y-coordinate	standard	deviation	with	the	side	length,	! = #$.	We	found	
that	the	scaling	exponents,	%,	ranged	between	0.65-1.04	and	peaked	at	0.77,	indicating	a	wide	
range	of	scaling	exponents,	mostly	sub-linear.	Figure	S1	shows	the	histogram	of	the	different	
scaling	exponents.	
	
S2	X-coordinate	shows	a	small	right	bias	and	standard	deviation	that	scales	sub-linearly	
with	side	length		

We	note	that	contrary	to	the	vertical	location	of	the	missing	vertex,	the	horizontal	(x-axis)	
estimate	was	likely	influenced	by	the	symmetry	of	the	two	identical	vertices	shown	on	the	
screen.	We	found	that	the	x-coordinate	estimates	of	the	missing	vertex	were	close	to	the	true	
location	with	an	increase	of	the	bias	toward	the	right	for	only	large	values	of	the	side	length	
(Fig.	S2A).	The	maximum	bias	magnitude	was	4-fold	smaller	than	the	maximum	bias	found	for	
the	y-coordinate.	
	
We	also	calculated	the	dependence	of	the	standard	deviation	of	the	x-coordinate	with	triangle	
side-length	and	found	that	it	scales	sub-linearly	with	side	length,	with	a	scaling	exponent,	%,	of	
0.86	(median	exponent=0.86,	95%	CI=[0.84,0.87],	Fig.	S2B).	The	variance	in	the	x-	coordinate	
was	~2-fold	smaller	than	the	one	observed	for	the	y-coordinate.	
	
S3	Response	times	of	participants	in	the	localization	task	correlate	with	triangle’s	size	

In	order	to	assess	the	similarity	of	the	triangle	completion	localization	task	to	other	simulation-
based	phenomena,	such	as	mental	rotations,	we	analyzed	the	response	times	of	participants	as	
a	function	of	triangle	size.	We	find	that	the	mean	response	time	significantly	correlates	with	
triangle’s	side	length	(Spearman	correlation	r=0.53,	p-value<0.005,	Fig	S3A).	A	second	analysis	
with	all	response	times	(not	averaged	across	all	participants)	still	shows	a	correlation	with	
triangle’s	side	length	(Spearman	correlation	r=0.22,	p-value<10-7,	Fig	S3B).	
The	correlation	of	response	times	with	triangle’s	side	length	is	thus	reminiscent	of	other	
simulation-based	processes,	such	as	mental	3d	rotation.	
	
S4	Online	localization	experiment	shows	similar	results	to	the	laboratory	experiment	

To	validate	our	results,	we	repeated	the	laboratory	experiment	with	an	online	experiment	on	
Amazon’s	mechanical	Turk	platform.	One-hundred	participants	completed	the	online	study	and	
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were	randomly	assigned	to	one	of	two	groups	presenting	different	experimental	parameters.	
All	participants	were	shown	15	triangles,	at	base	lengths	of	0.1,	0.25,	0.5,	0.75,	1	of	the	
maximum	base	length	(which	was	900	pixels	for	group1	and	1300	pixels	for	group	2).	Each	base	
length	presented	3	different	angle	sizes	(30,	45	and	60	degrees	for	group	1	and	36,	51	and	66	
degrees	for	group	2).	Each	triangle	was	presented	10	times,	totaling	150	trials.	The	total	change	
in	triangle	side-length	ranged	21	folds.	
	
We	found	similar	results	to	the	laboratory	experiment:	The	error	in	the	mean	estimate	was	
biased	toward	the	base,	increasing	linearly	with	side	length	(Fig.	S4A).	The	standard	deviation	
scaled	sub-linearly	with	the	side-length,	with	a	mean	scaling	exponent	of	0.64:	!~#'.)*	(Fig	
S4B).	While	it	is	not	clear	why	the	scaling	exponent	for	our	lab	experiment,	which	dealt	with	
much	larger	triangles,	was	larger	than	that	of	the	online	study,	the	increase	in	the	exponent	is	
consistent	with	the	difficulty	of	tracking	the	initial	base	angle	over	long	distances	and	a	possible	
increase	in	the	variance	of	interior-angles	estimates	(+',)	in	the	online	experiment	(see	section	
S8	for	more	details).	
	
S5	Rotating	the	triangle	does	not	show	a	preferential	bias	that	differentiates	the	vertical	
from	the	horizontal	completion	tasks	

We	checked	whether	our	observations	were	influenced	by	an	inherent	bias	present	along	a	
vertical	axis.	To	do	this,	we	rotated	the	original	triangle	by	90°	so	that	the	missing	vertex	lies	
along	the	x-axis,	while	the	base	lies	along	the	y-axis	(Fig	S5A),	and	then	asked	participants	to	
locate	the	missing	vertex.	The	responses	reflected	a	mean	location	that	was	proportionally	
displaced	towards	the	base	of	the	triangle,	except	when	the	missing	angle	was	30	degrees	(Fig.	
S5B).	Furthermore,	the	standard	deviation	scaled	sub-linearly	with	the	side	length,	with	!~#'.))	
(Fig.	S5C),	but	its	magnitude	was	1.6-fold	larger	(compare	with	Fig.	S4).	
	
	
S6	Dynamical	model	equations	and	sensitivity	analysis	

To	model	the	mental	process	for	the	triangle	completion	task,	we	start	with	a	dynamical	model.	
The	model	describes	the	evolution	in	space	and	time	of	two	trajectories,	launched	from	the	
vertices	along	the	triangle	base	(see	Fig	S6).	The	equations	for	the	evolution	of	each	trajectory	
(i=R,L)	
		

(S1) -./0
-1.

= 2
3

2
4
5' − 57 − -/0

-1
+ 9 : ,			= = {?, #}	

(S2) -A0
-1
= BC cos 57 		

(S3) -G0
-1

= BC sin 57 	
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where	the	model	parameters	are:	J,	an	inertial	relaxation	time	scale,	BC,	a	characteristic	speed,	
K,	a	time	scale	for	global	error-correction	(which	is	proportional	to	the	correlation	length	
defined	in	the	statistical	model	in	the	main	text,	up	to	a	factor	of	the	speed	BC),	and	9 : 	is	a	
noise	term	with	noise	amplitude	D	( 9 : 9 :L = M	N : − :′ ).	In	addition,	the	model	has	the	
base	length,	P,	as	a	parameter	and	a	threshold	for	the	x-coordinate	distance	between	the	two	
curves,	Q,	which			once	crosses,	ends	the	process.	The	current	model	does	not	consider	possible	
variations	in	the	base-angle	estimates,	5',	which	could	be	another	parameter	in	the	model.	
	
To	explore	the	individual	contribution	of	each	parameter,	we	varied	each	parameter	of	the	
model	while	keeping	the	rest	of	the	parameters	fixed	(BC, Q, M, K, P).	Since	timing	does	not	play	
a	role	in	our	current	experimental	setup,	we	set	the	integration	time	scale,	J = 1,	throughout	
all	the	calculations.	Similarly,	the	base	angles	were	fixed	to	45	degrees	unless	otherwise	stated.	
We	present	below	the	sensitivity	analysis	of	the	dynamic	model	statistics	(mean	and	variance)	
to	the	model	parameters	as	well	as	the	predicted	angle	estimates	from	the	dynamical	model.	
	
As	expected,	the	scaling	exponent,	%,	highly	depends	on	the	error-correction	time	scale,	K,	
ranging	from	0.5	for	small	values	of	K	and	increasing	above	1	for	high	values	of	K,	indicating	a	
transition	between	the	error-correction	mechanism	to	the	correlated	random	walk	regime	(Fig.	
S7A).	Similarly,	the	speed,	BC,	has	the	same	effect	on	the	scaling	exponent:	as	it	increases,	the	
scaling	exponent	increases	(Fig.	S7B).	The	interior-angle	noise	level,	D,	decreases	the	observed	
scaling	exponent	mildly	over	a	range	of	almost	two	orders	variation	(0.01	to	1,	Fig.	S7C).	Lastly,	
increasing	the	stopping	criteria	threshold,	Q,	increases	the	scaling	exponent	(Fig.	S7D).	
	
The	mean	deviation	from	the	missing	vertex	true	location	(N)	shows	a	strong	dependence	on	
the	normalized	stopping	criterion	(Fig.	S8A).	The	interior	angles	noise	level	(D),	error-correction	
time	scale	(K),	and	speed	(BC),	play	a	secondary	role	in	the	mean	deviation	results	(Fig.	S8B-D,	
compare	with	the	results	of	the	statistical	model).		
	
	
S7	Statistics	deduced	from	the	local-global	mathematical	model	

In	the	following	three	subsections,	we	present	a	derivation	of	the	statistical	properties	derived	
from	the	mathematical	model	associated	with	the	balance	between	local	smoothness	and	
global	reorientation.	We	start	in	section	S7.1	with	a	derivation	of	the	upper	and	lower	bounds	
on	the	scaling	exponent,	%,	that	links	the	standard	deviation	of	the	location	of	the	missing	
vertex	and	the	side-length.	In	section	S7.2	we	derive	expressions	for	the	first	three	statistical	
moments	of	the	distribution	of	the	vertical	location	of	the	missing	vertex	as	a	function	of	the	
correlation	length	in	our	model.	In	section	S7.3	we	derive	expressions	for	the	moments	by	
accounting	for	noise	in	estimates	of	the	base-angles	as	well.		
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S7.1	Bounds	on	the	scaling	exponent	for	locally	dominated	and	globally	dominated	strategies	

We	first	consider	the	case	when	there	is	no	global	error	correction	that	causes	the	trajectory	to	
hew	to	the	base	angle.	Instead,	we	assume	that	extrapolation	is	achieved	by	keeping	two	
consecutive	angles	close	to	each	other	(with	a	corresponding	penalty	on	bending	of	the	curve).	
This	mechanism	tends	to	maximize	smoothness,	and	in	this	case,	the	dominant	term	in	
statistical	model	(Eq.	(2)	in	the	main	text)	is			

(S4) TC
-U
-V

,
WXY

' .	

Writing	the	angle	as,	Z~[
Y
,	where	L	is	the	length	of	the	extrapolated	line	and	N	is	the	standard	

variation	of	the	y	position	of	the	line,	if	the	overall	amplitude	of	the	fluctuations	can	be	
assumed	to	be	in	statistical	equilibrium,	this	implies	that	

(S5) TC
[
Y
2
Y

,
#~1	

and	so	
(S6) ! = ⟨N,⟩2/,~#_/,TC

`2/,	
i.e.	the	standard	deviation	of	the	location	scales	with	side-length	to	the	power	% = 3/2.	To	
understand	this,	we	note	that	for	a	rigid	line	with	fluctuations	only	in	the	base	angle	(see	also	
sections	S7.3	and	S15),	one	expects	linear	scaling	of	the	standard	deviation	with	the	length.	
When	using	short	noisy	segments,	there	is	an	additional	accumulation	of	noise	at	each	“step”	in	
the	extrapolation	process,	so	that	the	exponent	should	be	larger	than	1.		
	
In	the	other	limit,	two	consecutive	angles	are	no	longer	locally	correlated	but	rather	hew	to	the	
global	base	angle.	Intuitively,	this	is	a	limit	of	a	random	walk	and	one	expects	the	scaling	
exponent	to	be	1/2.	Following	the	same	considerations	as	those	for	the	smoothness	term,	one	
has		

(S7) c Z − 5' ,WXY
' 	

(S8) c [
Y

,
#~1	

(S9) ⟨N,⟩2/,~#2/, f −1/2 		
which	indeed	result	in	a	scaling	exponent	of	% = 1/2.		
	
The	two	limiting	mechanisms	serve	to	bound	the	scaling	exponent,	%,	to	lie	between	1/2	and	
3/2.	The	vertical	location	estimates	in	the	localization	task	show	that	the	scaling	exponents	
range	between	0.65-1.04	with	a	median	of	0.77	(Fig.	S1),	suggesting	a	slight	dominance	of	the	
global	error-correction	mechanism	over	the	local	smoothness	of	the	extrapolation.	
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S7.2	The	three	moments	of	the	y-coordinate	distribution	for	the	complete	model	

The	statistical	model	assumes	a	probability	distribution	that	penalizes	both	large	changes	in	
local	angle	estimates	(smoothness)	and	large	deviations	from	the	base-angle	value	(error-
correction).	With	no	loss	of	generality,	we	assume	the	base	angle	is	set	to	zero	by	rotating	the	
frame,	and	assume	a	constant	length,	L,	of	the	side	trajectory.	The	coordinates	of	a	trajectory	
starting	at	one	of	the	given	vertices	is	given	by	(see	also	Fig	S9)	

(S10) d = cos Z(X) WXY
' 	

(S11) f = sin Z(X) WXY
' 	

We	assume	that	to	estimate	the	location	of	the	missing	vertex,	participants	use	an	average	of	
the	two	trajectories	from	the	given	vertices,	and	this	leads	to	an	expression	for	the	missing	
vertex	coordinates	given	by	

(S12) g = Ah`Ai
,

cos 5' + Gh`Gi
,

sin 5' 	

(S13) j = AhkAi
,

sin 5' + GhkGi
,

cos 5' 	
Note	that	dY, fY	and	dl, fl 	are	independent	and	have	the	same	statistics	and	so	we	denote	
〈dY〉 = 〈dl〉 = 〈d〉	and	similarly,	 fY = fl = f .	We	also	note	that	by	symmetry	all	odd	
moments	of	y	will	vanish.	
Thus,	for	the	moments	of	X	and	Y	we	have	

(S14) ⟨g⟩ = 0	
(S15) j = d sin 5'	
(S16) 	〈g,〉 	= 2

,
〈d,〉 − 〈d〉, cos, 5' +

2
,
〈f,〉 sin, 5'	

(S17) 〈j,〉 	= 2
,

d, − 〈d〉, sin, 5' +
2
,
〈f,〉 cos, 5'	

and	the	variances	in	the	position	of	the	missing	vertex	are	given	by:	
(S18) !p, 	=

2
,
!A, cos, 5' +

2
,
!G, 	sin, 5'	

(S19) !q, 	=
2
,
!A, sin, 5' +

2
,
!G, 	cos, 5'	

Finally,	to	calculate	the	skewness	in	the	Y	coordinate	we	need	the	third	moment	which	is	given	
by:	

(S20) 〈j_〉 	= 2
*
〈d_〉 + 3〈d〉〈d,〉 sin_ 5' +	

3
4 〈df,〉 + 〈d〉〈f,〉 sin 5' cos, 5'	

	
First	moment	of	the	x-coordinate:	

(S21) 〈d〉 = WX	〈cosZ X 〉Y
' = WX WZ X cosZ X s(Z X )t	

`t
Y
' 		

(S22) s Z ∝ exp − 2
,
TC

-U
-V

,
WXY

' + c Z − 5' ,WXY
' 	

The	Gaussian	nature	of	the	probability	function	allows	for	calculations	of	the	moments	of	each	
coordinate	estimates	using	the	results	for	the	mean	angle	and	the	correlation	function	
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(S23) Z X = Z'y`V/4 	

(S24) z X, XL = ⟨Z X Z XL ⟩ = +',(y
` {|{}

~ − y`
{�{}
~ )	

where	+',	the	variance	at	each	interior	angle	estimate	equals	+', = 1/ 4TCc	and	K = TC/c	is	
the	correlation	length.	The	probability	distribution	for	each	angle	along	the	line	is	given	by	

(S25) s Z X = 2
,ÄÅ(V,V)

exp −
U V `U V

.

,Å(V,V)
	

and	therefore,	we	can	calculate	the	integrand	in	(S21)	conditioned	on	the	initial	angle,	as	the	
real	part	of	a	complex	potential,	

(S26) cosZ X 	 	Z'〉 	= Re WZ X 2
,Ä	Å V,V

exp =Z X −
U V `U V

.

,Å V,V
t
`t 	

which	yields	the	following		

(S27) < cosZ(X) |Z' >	= Re exp =	Z X − 2
,
z X, X =	

= 	Re exp −
1
2+'

,y`
,V
4 −

1
2z X, X 	

Next,	we	assume	a	Gaussian	distribution	for	the	angle	of	the	first	segment	

(S28) s Z' = 2

,ÄÜá.
exp − Uá.

,Üá.
	

and	on	substituting	into	(S21),	we	get		

(S29) 〈d〉 = y`
à
.âá

.
WX exp 2

,
+', − !', y

`.{~Y
' .	

Using	a	change	in	variable	with	: = 2
,
+', − !', y

`.{~ , W: = − ,
4
:	WX	this	yields	

(S30) 〈d〉 	= 2
,
Ky`

à
.âá

.
ä= âá.`Üá.

,
− ä= âá.`Üá.

,
y`,

h
~ 	

where	ä= d = ã|å

1
�
`A W:	is	the	exponential	integral.	

	
The	second	moment	of	both	coordinates:	
	The	moments	of	⟨d,⟩	and	⟨	f,⟩	are	

(S31) ⟨d,⟩ 	= WX WXL⟨cosZ X cosZ XL ⟩Y
'

Y
' 	

(S32) 	⟨	f,⟩ 	= WX WXL⟨sinZ X sinZ XL ⟩Y
'

Y
' 	

Using	the	trigonometric	identities	2cosZ2 cosZ, = 	 cos(Z2 − Z,) + cos Z2 + Z, ≡ ? + M	
and	2	sinZ2 sinZ, = cos(Z2 − Z,) − cos Z2 + Z, ≡ ? − M		it	follows	that	we	need	to	
calculate	integrals	of	the	form:	 WX WXL⟨cos Z X ± Z XL ⟩ =Y

'
Y
'

?y WX WX′Y
' 	Y

' ⟨y7	(U V ±U(V}))⟩ .	

Letting	Z = (Z X , Z XL ),	the	arguments	of	the	exponential	can	be	written	as	=	è	Z	where	è =
1,±1 .	Since	the	probability	distribution	(S25)	is	Gaussian,	the	above	integral	calculations	are	
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equivalent	to	the	Fourier	transform	of	a	Gaussian	with	mean	Z	and	covariance	matrix	ê	given	
by	

(S33) Z = Z(X)
Z(XL)

,					ê = z(X, X) z X, XL
z XL, X z(XL, XL) 	

Hence		

(S34) ⟨y7ë	U⟩ 	= exp[− 2
,
	èì ê + +',îîì è]	

where	î	is	defined	by	

(S35) Z = Z'
y`

{
~

y`
{}
~

≡ Z'î.	

Thus	for	?	and	M	we	have	
(S36) ? = WX WXL⟨cos Z X − Z XL ⟩ 	=		Y

'
Y
' 	

= WX WXL
Y

'

Y

'
exp −+', 1 + y`

V`V}
4 + +', − !', y

`VkV
}

4 cosh
X − XL

K − 1 	

	
(S37) M = WX WXL⟨cos Z X + Z XL ⟩Y

'
Y
' =	

= WX WXL
Y

'

Y

'
exp	[−+', 1 + y`

V`V}
4 + +', − !', y

`VkV
}

4 (cosh
X − XL

K + 1)]	

	
Making	the	following	change	of	variables	

(S38) :
:L = 2

4
1 −1
1/2 1/2

X
XL 	

we	get	
(S39) ? = 2K,∫ W:	y`âá. 2`ã|å (Ei +', − !', cosh : − 1 	–		

−Ei +', − !', cosh : − 1 	y1`,
Y
4 )	

(S40) M = 2K,∫ W:	y`âá. 2kã|å ä= (+', − !', cosh : + 1 y`1 −	

−ä= (+', − !',) cosh : + 1 y1`,
Y
4 )	

	
Finally,	the	resulting	second	moments	can	be	written	as:	

(S41) 〈d,〉 	= 2
,
? + M 	

(S42) 〈f,〉 	= 2
,
? − M 	

	
The	third	moment:	
The	integrals	to	be	computed	are		
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(S43) 〈d_〉 	= WX W:	 Wö	〈cosZ X cosZ : cosZ ö 〉Y
'

Y
'

Y
' 	

(S44) 〈df,〉 	= WX W: Wö	Y
' 〈cosZ(X) sinZ : sinZ ö 〉Y

'
Y
' 	

Using	trigonometric	identities	yields	the	following	result:	
(S45) 〈d_〉 = 2

*
õ2 + 3õ, 	

(S46) df, 	= 2
*
(õ, −õ2)	

where	M1	and	M2	are	

(S47) õ2 = ?y WX W:Y
' WöY

'
Y
' 	〈y7	(U V kU 1 kU(ú))〉 	

(S48) õ, = ?y WX W:Y
' WöY

'
Y
' 	〈y7	 U V kU 1 `U ú 〉 	

and	we	can	use	again	eq.	(S34)	with	the	following	mean	Z	and	covariance	matrix	ê	

(S49) Z = Z'
y`

{
~

y`
å
~

y`
ù
~

≡ Z'î, ê =
z(X, X) z(X, :) z(X, ö)
z(:, X) z(:, :) z(:, ö)
z(ö, X) z(ö, :) z(ö, ö)

	

which	results	in	the	following	equations	for	M1	and	M2	

(S50) õ2 = WX W:Y
'

Y
' WöY

' exp − 2
,
+', 3 + 2y`

{|å
~ + 2y`

{|ù
~ + 2y`

å|ù
~ +

+ 2
,
+', − !', y

`,{�å�ù~ y
{�å
~ + y

{�ù
~ + y

å�ù
~

,
	

(S51) õ, = WX W:Y
'

Y
' WöY

' exp − 2
,
+', 3 + 2y`

{|å
~ − 2y`

{|ù
~ − 2y`

å|ù
~ +

+ 2
,
+', − !', y

`,{�å�ù~ y
{�å
~ − y

{�ù
~ − y

å�ù
~

,
	

	
S7.3	Calculation	of	the	predicted	moments	with	a	noisy	base	angle		

Since	we	calculated	all	the	moments	in	the	triangle	side	frame,	noisy	estimates	of	base-angles	
would	affect	only	the	rotational	part	of	our	calculation.	Thus,	terms	of	the	type	sin 5',	cos 5'	
and	their	higher	powers	(see	Eqn	(S15-20))	will	be	replaced	by	their	marginalized	values	under	a	
Gaussian	distribution	of	5' ∈ [0, ü/2]				

(S52) s 5 = 2
†(/á,Ü°)

exp − /`/á .

,Ü°
. ,			5 ∈ [0, ü/2]	

(S53) ¢ 5', !/ = Ä
,
	!/(erf

•
.`/á
,Ü°

+ erf /á
,Ü°

)		

and	the	resulting	averaged	quantities	are:	

(S54) 〈sin 5〉 	= y`
à
.Ü°

.
	Im y7/á

®©™
•
.|°á|0´°

.

.´°
k®©™

°á�0´°
.

.´°

®©™
•
.|°á
.´°

k®©™ °á
.´°
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(S55) 〈sin, 5〉 	= 2
,
− 2

,
y`,Ü°.	Re y,7/á

®©™
•
.|°á|.0´°

.

.´°
k®©™

°á�.0´°
.

.´°

®©™
•
.|°á
.´°

k®©™ °á
.´°

	

(S56) 〈sin_ 5〉 =

2
*
Im

_ã0°á|
à
.´°

.
	 ®©™

•
.|°á|0´°

.

.´°
k®©™

°á�0´°
.

.´°
`ã¨0°á|

≠
.´°

.
®©™

•
.|°á|¨0´°

.

.´°
k®©™

°á�¨0´°
.

.´°
	

®©™
•
.|°á
.´°

k®©™ °á
.´°

	

and	we	can	calculate	the	remaining	terms	by	using	the	relations	
(S57) 〈cos, 5〉 	= 1 − 〈sin, 5〉	
(S58) 〈sinθ	cos, 5〉 	= 〈X=%5〉 − 〈sin_ 5〉	

	
S8	Sensitivity	analysis	of	statistical	model’s	moments	to	parameter	variations	

The	three	moments	of	the	location	of	the	missing	vertex	(see	Eqn	(S30,S39-40,S50-51)	depend	
on	three	parameters:	the	scaled	correlation	length,	K/#;	the	variance	of	the	interior	angles,	+Ø,;	
and	the	variance	in	the	initial	angle,	!',.	
	
We	first	calculated	the	dependence	of	the	scaling	exponent,	%	(!~#$),	on	the	scaled	
correlation	length	K/#,	by	varying	K	while	keeping	other	parameters	fixed	(# ∈ [1,100], +' =
0.26, !' = 0).	We	found	that	the	exponent	increased	non-linearly	with	the	correlation	length,	
K,	from	a	value	of	0.5	towards	values	above	1,	as	expected	from	the	scaling	analysis	(Fig	S10A,	
and	see	section	S7.1).	Changing	the	variance	of	the	interior	angles	estimates,	+Ø,,	affects	the	
exponent	only	slightly,	decreasing	from	0.77	for	low	variance	to	values	of	0.6	for	high	variance	
levels	(up	to	120	degrees	standard	deviation,	see	Fig	S10B).	Similarly,	keeping	length	range,	
interior	angles	variance	and	correlation	length	fixed	(# ∈ 1,100 , +' = 0.26, K = 2),	and	
varying	the	initial	angle	variance,	!',,	resulted	in	a	decrease	of	the	scaling	exponent	(see	Fig.	
S10C).	This	suggests	that	the	larger	the	variance,	the	greater	is	the	impact	of	the	error-
correction	mechanism.	This	might	correspond	to	the	differences	observed	in	the	scaling	
exponent	between	the	lab	and	the	online	experiments,	where	the	latter	showed	smaller	
exponents	(see	section	S4).		
	
We	then	repeated	the	same	analysis	for	the	dependence	of	the	mean	deviation,	N,	on	side	
length.	To	do	so,	we	calculated	the	slope	of	the	mean	deviation	vs.	side	length,	-[

-Y
.	We	found	

that	the	correlation	length,	K,	did	not	significantly	affect	the	slope	across	two	orders	of	
magnitude	(Fig.	S11A).	In	contrast,	changing	the	interior	angles	variance,	+',,	decreased	the	
slope,	making	it	more	and	more	negative	as	+',	increases	(Fig.	S11B).	Changing	the	initial	angle	
variance,	!',,	did	not	affect	greatly	the	resulting	deviation	slope.	However,	changing	the	
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variance	of	base-angle	estimates,	!/,,	affects	the	resulting	slope	mildly,	as	expected	
theoretically	(Fig.	S11C	and	see	section	S7).	
	
	
S9	Fitting	experimental	estimates	in	the	localization	task	of	the	missing	vertex	to	a	
gamma	function	distribution	

To	predict	the	angle	estimates	in	the	angle	estimation	task	and	the	categorical	responses	in	the	
verbal	geometric	reasoning	task,	we	used	a	Gamma	distribution	(± d; ≥, ¥ =

2
µ ∂ ∑∏

d∂`2y`A/∑),	with	its	two	parameters	(≥=shape,	¥=scale)	taken	from	the	predicted	mean	

and	variance	values	from	our	model.		This	allows	us	to	sample	from	an	entire	distribution	rather	
than	be	limited	to	only	its	moments.	The	mapping	between	the	Gamma	distribution	parameters	
and	the	mean	and	variance	values	predicted	by	the	model	are	given	by		

(S59) ≥ = π q .

∫ª©[q]
,				¥ = ∫ª© q

π[q]
	

To	validate	this	approach,	we	used	the	y-coordinate	estimates	from	the	localization	task,	taking	
for	each	triangle	its	mean	and	variance	and	plotting	the	resulting	Gamma	distribution	
compared	with	the	real	distribution	of	participants’	responses	(Fig	S12).	We	find	that	the	
Gamma	distribution	fits	the	experimental	results	of	the	localization	task	estimates	for	most	of	
the	triangles	presented.	
	
S10	The	model	predicts	the	observed	variations	in	the	estimates	of	the	missing	angle:	
overestimate	increases	and	variability	decreases	as	side	length	increases		
We	first	consider	the	prediction	of	the	missing	angle	by	the	dynamical	model.		In	Fig	S13,	we	
see	that	the	model	predicts	an	increase	in	the	over-estimate	of	the	angle	as	triangle	size	
increases,	while	the	variance	in	angle	estimates	decreases	(compare	with	Fig	S14).	We	
simulated	the	dynamical	process	for	three	base	angles=30	degrees,	45	degrees,	60	degrees.	The	
simulation	parameters	were:	integration	time	scale,	J=1,	error-correction	time	scale,	K = 4,	
speed	BC = 1,	base	length	range,	P ∈ [10'.º, 10,.º],	interior	angles	noise	levels,	M = 0.1,	and	
stopping	criterion	threshold,	Q = 0.2	#.	
	
To	estimate	the	missing	angle	in	the	statistical	approach	we	took	two	approaches.	In	the	first,	
we	used	the	averaged	estimated	location	to	infer	the	missing	angle	(missing	angle=angle	
between	the	two	extrapolated	sides).	In	the	second,	we	estimated	the	right	base	angle	with	
one	estimated	location	(x1,y1)	derived	from	our	model	and	the	left	base	angle	with	another	
estimated	location	(x2,y2)	(missing	angle=180	-	effective	right	base	angle	-	effective	left	base	
angle).	The	two	approaches	account	for	two	different	ways	participants	might	estimate	the	
missing	angle	–	one	necessitates	holding	two	lines	in	visual	memory	to	estimate	the	angle	
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between	them	and	the	other	works	sequentially,	but	necessitates	holding	the	value	of	the	base	
angles	in	memory.		
	
Estimates	from	both	methods	in	the	statistical	model	overestimate	the	missing	angle,	and	that	
overestimation	increases	with	a	side	length	increase.	In	addition,	variability	in	angle	estimates	
decreases	as	side	length	increases	(Fig.	S14A,B).	Intuitively,	angles	overestimates	are	a	
manifestation	of	the	vertical	bias	toward	the	triangle	base,	since	a	lower	location	of	the	missing	
vertex	implies	smaller	‘effective’	base	angles.	The	main	difference	between	the	two	approaches	
appears	in	the	variance,	where	in	the	simulation	of	the	two	lines	intersection	using	an	averaged	
location	estimate,	variance	curves	for	higher	base-angles	values	are	smaller.	This	effect	is	
masked	in	the	estimate	of	two	separate	base	angles	with	two	different	locations.		
To	test	the	model’s	predictions,	we	asked	participants	(mechanical	Turk,	N=65)	to	estimate	the	
missing	angle	by	moving	a	virtual	goniometer	to	reflect	the	angle	size	(Fig.	S14C).	We	found	that	
as	side	length	increases,	participants’	angle	estimates	increase	for	base	angles	of	45	and	60	
degrees	(Fig.	S14D).	For	30	degrees,	the	errors	in	the	estimates	are	smaller	and	without	a	clear	
trend.	As	predicted	by	the	model,	the	variability	in	the	estimates	decreased	as	side	length	
increased	(Fig.	S14D,	Inset).	We	note	that	in	the	experimental	data,	angle	estimates	show	
increasing	magnitudes	of	errors	for	larger	base	angles,	suggesting	the	involvement	of	other	
noise	mechanisms	that	do	not	result	from	location	estimates.	One	such	example	is	the	noise	of	
the	angle	estimate	itself	which	calls	for	further	investigation.		
	
S11	Response	times	of	participants	in	the	missing	angle	task	correlate	with	triangle’s	size	

We	analyzed	the	response	times	of	participants	as	a	function	of	triangle	size	in	the	missing	
angle	estimation	task.	We	find	that	the	mean	response	time	isn’t	significantly	correlated	with	
triangle’s	side	length	(Spearman	correlation	r=0.33,	p-value=0.24,	Fig	15A).	However,	when	
analyzing	all	response	times	(not	averaged	across	all	participants)	we	find	a	significant	weak	
correlation	with	triangle’s	side	length	(Spearman	correlation	r=0.07,	p-value<0.03,	Fig	15B).	
Comparing	the	two	smallest	triangle	sizes	with	the	two	biggest	triangle	sizes	yields	a	significant	
difference	between	the	response	times	(Median(big	triangles)-Median(small	triangles)=1.4s,	
W=0.32,	Mann-Whitney	test:	t(16,900)=7048,	effect-size=0.17).	The	correlation	of	response	
times	with	triangle’s	side	length	is	thus	scale	dependent	and	precludes	the	use	of	a	role	such	as	
Euclid’s	proposition	32	to	assess	the	size	of	the	missing	angle.		
	

S12	Years	of	education	have	no	effect	on	the	accuracy	of	responses	in	the	categorical	
geometric	reasoning	task	

In	the	categorical	geometric	reasoning	task,	407	participants	answered	8	categorical	questions	
about	the	effect	of	triangle	manipulations	on	the	location	of	the	missing	vertex	and	the	
magnitude	of	the	missing	angle.	Participants	also	listed	their	years	of	education.	To	test	
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whether	there	was	a	correlation	between	accuracy	and	education	level	of	the	participants,	we	
bootstrapped	the	data	1000	times,	each	time	sampling	with	returns	and	calculating	the	
correlation	in	the	bootstrapped	data.	We	found	no	correlation	between	participants’	accuracy	
rate	and	their	years	of	education	(Spearman	correlation	median	r=0.002,	95%	CI=[0,0.28],	see	
Fig	S16).	
	
S13	A	“trigonometric”	null-model	for	the	categorical	geometric	reasoning	task	

To	estimate	the	goodness of	fit	of	our	model’s	predictions	to	the	responses	in	the	categorical	
geometric	reasoning	task,	we	chose	to	compare	it	with	a	null	model	that	assumes	only	noise	in	
base-angle	estimates	(and	thus	straight,	unperturbed	triangle	sides	once	the	angle	is	set).	We	
note	that	this	model	is	contradicted	by	the	non-linear	scaling	of	the	standard	deviation	with	
side	length;	however,	it	captures	a	null	model	of	Euclidean	geometry	with	its	noise	properties.	
We	refer	to	this	model	as	the	“trigonometric	model”.		
	
To	calculate	the	trigonometric-model	predictions,	we	used	a	Gaussian	distribution	around	the	
base	angle	with	a	standard	deviation	of	5	degrees.	To	estimate	this	model’s	predicted	
responses	to	the	categorical	questions,	we	calculated	the	probability	that	the	location	after	the	
manipulation	(changing	of	the	distance	between	or	angle	size	of	the	base	angles)	would	“move	
up”,	“move	down”,	or	“stay	the	same”	compared	to	initial	triangle.	For	both	location	and	angle	
estimates	we	chose	thresholds	of	0.05,	as	implemented	for	our	model	in	the	main	text	(see	also	
Methods).	
The	distribution	of	base	angles	for	the	trigonometric	model	is	given	by	(see	section	S7.3)	

(S60) s 5' = 2
†(/á,Ü°)

exp − /`/á .

,Ü°
. ,			5 ∈ [0, ü/2]	

(S61) ¢ 5', !/ = Ä
,
	!/(erf

Ä/,	`/á
,Ü°

+ erf /á
,Ü°

)		

and	therefore,	the	vertical	location	estimates	distribution	is		

(S62) s j = 2
† /á,Ü° Y.`q.

exp −
Ωæø|à ¿

h `/á
.

,Ü°
. ,			5 ∈ [0, ü/2]	

Define	Y1	as	the	vertical	location	estimate	of	a	triangle	with	side	length	L1	(initial	triangle)	and	Y2	
as	the	vertical	location	estimate	of	a	triangle	with	side	length	L2,	(the	triangle	after	the	distance	
manipulation).	We	next	denote,	j↓ j2 = 0.95	j2	and	j↑ j2 = 1.05	j2	as	the	lower	and	upper	
boundaries	of	the	‘same’	range.	
Integrating	over	the	joint	probability	for	j2	and	j,	we	can	compute	the	probabilities	for	“moves	
down”	(marked	with	a	downward	arrow)	and	“moves	up”	(marked	with	an	upward	arrow)	
responses	

(S63) s ↓≈Ø∆ «1»7… = Wj2
Yà
' Wj,

q↓ qà
' s j2, j, 	



	 14	

(S64) s ↑≈Ø∆ «1»7… = Wj2
Yà
' Wj,

Y.
q↑ qà

s(j2, j,)	
Since	j2	and	j,	are	independent,	each	given	by	a	different	process	on	a	different	triangle	we	
can	write	the	probabilities	as	

(S65) s ↓≈Ø∆ «1»7… = Wj2
Yà
' s j2 s ↓ |j2 	

(S66) s ↑≈Ø∆ «1»7… = Wj2
Yà
' s j2 s ↑ |j2 	

(S67) s ↓ |j2 = Wj,
q↓ qà
' s j, =

®©™ °á
.´°

`®©™ à
.´°

/á`Ωæø|à
¿↓ ¿à
h.

®©™ •/.|°á.´°
k®©™ °á

.´°

	

(S68) s ↑ |j2 = Wj,
Y.
q↑ qà

s(j,) =
®©™ •/.|°á.´°

`®©™ à
.´°

Ωæø|à ¿↑ ¿à
h.

`/á

®©™ •/.|°á.´°
k®©™ °á

.´°

	

which	when	plugging	back	to	eqn	(S65-S66)	yields		
(S69) s ↓≈Ø∆ |«1»7… =

,
ÄÜ°

Wj2
Yà
'

®©™ °á
.´°

`®©™ à
.´°

/á`Ωæø|à
¿↓ ¿à
h.

®©™
•
.|°á
.´°

k®©™ °á
.´°

.

Yà.`qà.
exp −

Ωæø|à ¿à
hà

`/á
.

,Ü°
. 	

(S70) s ↑≈Ø∆ |«1»7… =

,
ÄÜ°

Wj2
Yà
'

®©™ •/.|°á.´°
`®©™ à

.´°
Ωæø|à ¿↑ ¿à

h.
`/á

®©™
•
.|°á
.´°

k®©™ °á
.´°

.

Yà.`qà.
exp −

Ωæø|à ¿à
hà

`/á
.

,Ü°
. 	

Similarly,	for	the	angle	estimates	we	compared	the	angles	before	and	after	the	manipulations,	
with	the	same	Gaussian	distribution	for	the	base	angles	and	the	same	thresholds.	Following	
Euclidean	rules,	the	triangle	length-scale	does	not	play	a	role	in	these	comparisons	

(S71) s ↓ $… |«1»7… = ,
ÄÜ°

W52
Ä/,
'

®©™ °á
.´°

`®©™ à
.´°

/á`/↓(/à)

®©™
•
.|°á
.´°

k®©™ °á
.´°

. exp − /à`/á .

,Ü°
. 	

(S72) s ↑ $… |«1»7… = ,
ÄÜ°

W52
Ä/,
'

®©™ •/.|°á.´°
`®©™ à

.´°
/↑(/à)`/á

®©™
•
.|°á
.´°

k®©™ °á
.´°

. exp − /à`/á .

,Ü°
. 	

For	estimates	of	locations	and	angles	after	an	angle	manipulation,	we	computed	the	respective	
integrals	for	the	initial	triangle	side-length	and	base-angle	(L,	q0,1)	and	the	manipulated	triangle	
parameters	(L,	q0,2)	

(S73) s ↓≈Ø∆ |«1»7… =

,
ÄÜ°

Wj2
Y
'

®©™ °á,.
.´°

`®©™ à
.´°

/á,.`Ωæø|à
¿↓ ¿à

h

®©™
•
.|°á,à
.´°

k®©™ °á,à
.´°

®©™
•
.|°á,.
.´°

k®©™ °á,.
.´°

Y.`qà.
exp −

Ωæø|à ¿à
h `/á,à

.

,Ü°
. 	
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(S74) s ↑≈Ø∆ |«1»7… =

,
ÄÜ°

Wj2
Y
'

®©™ •/.|°á,..´°
`®©™ à

.´°
Ωæø|à ¿↑ ¿à

h `/á,.

®©™
•
.|°á,à
.´°

k®©™ °á,à
.´°

®©™
•
.|°á,.
.´°

k®©™ °á,.
.´°
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hà
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.
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. 	

(S75) s ↓ $… |«1»7… = ,
ÄÜ°

W52
Ä/,
'

®©™ °á
.´°

`®©™ à
.´°

/á`/↓(/à)

®©™
•
.|°á
.´°

k®©™ °á
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(S76) s ↑ $… |«1»7… = ,
ÄÜ°

W52
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'
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®©™
•
.|°á
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.´°
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,Ü°
. 	

	
Lastly,	the	probabilities	for	the	‘same’	events	are	calculated	by		

(S77) s = |«1»7… = 1 − s ↓ «1»7… − s ↑ «1»7… 	
	

S14	Sensitivity	analysis	of	the	model	predictions	in	the	categorical	geometric	reasoning	
task	

To	assess	the	model’s	parameter	sensitivity	for	each	parameter,	we	kept	other	parameters	
fixed	at	their	given	values	in	the	main	text	while	varying	the	parameter	in	question.	For	each	
parameter,	we	calculated	the	resulting	probabilities	(“gets	bigger”,	“gets	smaller”,	“stays	the	
same”)	for	the	four	categorical	questions	–	‘VIA’	(question	about	the	missing	vertex	location	
after	increasing	the	base	angles),	‘VID’	(question	about	the	missing	vertex	location	after	
increasing	the	distance	between	the	base	corners),	‘AIA‘	(question	about	the	missing	angle	size	
after	increasing	the	base	angles)	and	‘AID’	(question	about	the	missing	angle	size	after	
increasing	the	distance	between	the	base	corners).	As	in	the	main	text,	angle	changes	were	
from	36	degrees	to	45	degrees	and	length	changes	incurred	an	25%	change	in	the	location	
questions	and	50%	in	the	angle	questions.		
	
We	found	that	the	initial	length	of	the	triangle	significantly	changed	the	probabilities	only	in	the	
‘AID’	condition,	with	increasing	current	trends	in	the	other	conditions.	Increasing	the	initial	side	
length	in	the	‘VIA’	and	‘VID’	conditions	raised	the	probability	for	estimates	of	the	location	
change	as	“moves	up”	at	the	expense	of	the	probability	for	estimating	a	“moves	down”	(Fig	
S17A,B).	Similarly,	the	estimate	of	angles	getting	“smaller”	for	increasing	base-angles	sizes	
became	greater	as	length	increased	(Fig.	S17C).	For	the	‘AID’	condition,	as	length	increased	the	
probability	of	“stays	the	same”	increased	while	the	two	probabilities	of	“gets	smaller”	and	“gets	
bigger”	decrease	(Fig.	S17D).	In	conclusion,	as	expected	from	the	model,	as	side	length,	L,	
increased	while	the	correlation	length,	K,	is	fixed,	the	model’s	predictions	become	more	and	
more	“Euclidean”.	The	sensitivity	of	the	categorical	probabilities	predictions	to	variations	of	the	
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correlation	length	K	(Min-Max:0.3-15)	behaves	in	an	inverse	manner	to	the	effect	of	length	
changes,	though	on	a	smaller	scale	(S18A-D).	
	
Next,	we	checked	the	dependence	of	the	categorical	probabilities	on	the	thresholds	values	(ThL,	
ThA).	We	varied	the	threshold	between	5%	to	20%	and	found	a	gradual	dependency	of	the	
probabilities	on	the	threshold	(Fig.	S19A-D).	For	the	condition	‘AIA’,	changing	the	threshold	
results	in	asymmetrical	decrease	in	“bigger”	vs.	“smaller”	probabilities,	indicating	a	skew	in	the	
model’s	resulting	distribution	for	the	change	in	angles	with	increasing	base-angles	size	(Fig.	
S19C).	
	
Lastly,	increasing	the	variance	of	the	interior-angles	estimates,	+',,	transitions	the	model	
predictions	from	pure	“Euclidean”	to	worse	and	worse	estimates	of	the	categorical	
probabilities,	indicating	an	increasing	difficulty	to	assess	the	change	in	location	and	angle	size	
and	the	increased	variance	of	each	of	these	estimated	distributions	(Fig.	S20A-D).		
	
S15	The	statistics	of	the	location	of	the	missing	vertex	as	a	function	of	the	base	angle	

The	observed	location	of	the	missing	vertex	had	a	mean	value	that	scaled	linearly	with	side	
length.	Here,	we	show	that	a	simple	model	of	noisy	estimates	of	the	base	angle	accounted	for	
the	observed	relation	between	the	mean	location	of	the	missing	vertex	and	the	base	angle.	We	
start	with	the	simple	prediction	of	the	y-coordinate’s	dependence	on	the	base	length	(P =
2# cos 5)	and	base	angle	(5):	

(S78) f = À
,
tan 5	

Assuming	a	Gaussian	estimate	of	the	base	angle,	s 5 ~exp	[− /`/á .

,Üá.
],	the	y-coordinate	

distribution	is:	

(S79) s f ~ ,

À 2k .Œ
œ

. exp	[− 2
,Üá.	

5' − arctan[,G
À
]
,
]	

and	the	maximum	likelihood	is	achieved	at	

(S80) 5' =
*G
À
!',	 + arctan ,G

À
	

In	the	limit	of	small	noise	for	a	base-angle	estimate,	!' ≪ 1.	Therefore,	the	vertical	location	of	
the	missing	vertex	has	a	small	deviation	from	its	true	location	which	is	linearly	dependent	on	
the	length,	i.e.		f = À

,
(tan 5' + N).	Substituting	this	relation	into	(S80),	we	get	

(S81) 5' = 2	!', tan 5' + N 	 + 5' +
[

2k	—ªø. /á
	

which	yields		

(S82) N = − ,	Üá. —ªø/á
,	Üá.k“”Ω./á

	

so	that	the	mean	location	of	the	missing	vertex	is	
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(S83) f = À
,
tan 5' 1 − ,	Üá.

,	Üá.k“”Ω./á
	

showing	a	systematic	downward	trend	for	the	location,	with	a	prediction	for	a	specific	
relationship	to	the	base	angle.	In	Figure	S21,	we	show	the	fit	of	this	prediction	with	the	data	
from	the	online	experiment,	where	angles	varied	in	a	range	between	30-66	degrees.	We	used	a	
fit	of	the	deviation	for	large	base-lengths	folds	(0.5,	0.75	and	1)	since	the	noise	at	lower	base	
lengths	was	too	high	to	enable	a	reliable	fit.	For	all	three	base	lengths,	there	was	a	good	fit	
between	the	model	predictions	and	the	observed	location-estimate	deviations	in	the	
localization	task	of	the	online	experiment.	We	note	that	parameter	estimates	showed	high	
variability,	indicating	a	possible	need	for	a	more	complex	model.	
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Figures	
	
	
	

	
Figure	S1:	Histogram	of	y-coordinate	scaling	exponents	for	individual	participants.	Each	
participant	was	shown	15	different	triangles,	composed	of	5	base	lengths	and	3	angles	
conditions;	each	triangle	was	presented	10	times.	For	each	participant,	we	calculated	the	
scaling	exponent,	%,	of	the	y-coordinate	standard	deviation	with	the	side	length	per	participant	
(!~#$).	
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Figure	S2:	X-coordinate	mean	deviation	from	the	missing	vertex	location	and	standard	
deviation	scaling	with	triangle	side-length.	A)	The	x-coordinate	estimates	of	the	missing	vertex	
were	close	to	the	true	location	for	most	side	lengths,	increasing	with	side	length	for	high	values	
only.	Shown	are	values	of	the	mean	deviation	from	the	true	x	location,	N,	as	side	length,	#,	
increases.	B)	The	scaling	exponent	of	the	x-coordinate	standard	deviation	with	the	side-length	
scales	sub-linearly	with	side	length,	with	a	scaling	exponent	of	0.86	(median	exponent=0.86,	
95%	CI=[0.84,0.87]).	Shown	are	values	of	the	x-coordinate	standard	deviation,	!,	as	a	function	
of	the	side	length,	#.	
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Figure	S3:	Response	times	correlate	with	triangle’s	side	length	in	the	localization	task.	A)	we	
analyzed	the	response	times	of	participants	as	a	function	of	triangle	size	in	the	vertex	
localization	task.	We	find	that	the	mean	response	time	significantly	correlates	with	triangle’s	
side	length	(Spearman	correlation	r=0.53,	p-value<0.005).	B)	A	second	analysis	with	all	
response	times	(not	averaged	across	all	participants)	still	shows	a	correlation	with	triangle’s	
side	length	(Spearman	correlation	r=0.22,	p-value<10-7).	 	
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Figure	S4:	Online	experiment	results	show	a	bias	toward	the	triangle’s	base	and	a	sub-linear	
scaling	exponent	of	y-coordinate	standard	deviation	with	side	length.	100	participants	
completed	the	online	study	in	two	experimental	setups.	All	participants	were	shown	15	
triangles,	at	base	lengths	of	0.1,	0.25,	0.5,	0.75,	1	of	the	maximal	base	length	(Group	1	–	900	
pixels,	Group	2	–	1300	pixels;	Group	2	locations	were	scaled	by	the	ratio	of	the	two	
experiments	to	match	scale	on	screen).	Each	base	length	was	presented	with	3	different	angles	
(Group	1	–	30,	45	and	60	degrees,	Group	2	-	36,	51	and	66	degrees).	Each	triangle	condition	was	
repeated	10	times,	totaling	150	trials.	A)	The	error	of	the	vertical	mean	estimate,	N,	was	biased	
toward	the	base,	increasing	linearly	with	side	length,	#.	B)	The	y-coordinate	standard	deviation,	
!,	scaled	sub-linearly	with	the	side	length,	#,	with	a	mean	exponent	of	0.64:	!~#'.)*.	In	both	
panels,	side	length	is	normalized	by	the	base	length	value	(B)	in	pixels.	
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Figure	S5:	A	tilted	version	of	the	localization	task	is	biased	towards	the	triangle	base	and	sub-
linear	scaling	of	the	standard	deviation	with	side-length.	A)	An	illustration	of	the	tilted	triangle	
completion	task.	The	triangle	base	was	at	the	right	side	of	the	screen	on	the	y-axis.	B)	The	mean	
deviation	of	participants’	location	estimates	in	the	x-axis,	N	as	a	function	of	side	length,	#.	For	
45	and	60	degrees,	the	deviation,	N,	was	biased	toward	the	triangle	base	and	increased	with	
side	length.	For	30	degrees,	the	bias	was	opposite	to	the	base,	increasing	slightly	with	side	
length.	C)	The	x-coordinate	location	estimates	standard	deviation,	!,	scaled	sub-linearly	with	
side	length,	!~#'.)).	It	should	be	noted	that	noise	levels	in	the	experiment	were	higher	than	
other	online	experiments,	perhaps	reflecting	participants’	difficulty	with	the	task.				
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Figure	S6:	The	schematics	of	the	dynamical	model	parameters	in	the	triangle	completion	task.	
The	model	parameters	are:	BC,	a	characteristic	speed	with	which	the	coordinates	progress,	K,	a	
time	scale	for	global	error-correction	(illustrated	as	number	of	segments	between	error-	
correction	events),	and	9 : 	is	a	noise	term	with	noise	amplitude	D	( 9 : 9 :L = M	N : − :′ ),	
not	shown	in	the	figure.	The	base	length	is	denoted	as	B,	and	the	stopping	criterion	threshold	is	
denoted,	Q.	The	base	angle	is	denoted	by	5'.		 	
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Figure	S7:	The	dynamic	model’s	scaling	exponent,	‘,	sensitivity	to	parameters	A)	Error-
correction	time	scale,	K	B)	Characteristic	speed,	BC	C)	Interior-angles	noise	level,	D	D)	Stopping	
criterion,	Q	
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Figure	S8:	The	dynamic	model’s	mean	deviation,	’,	sensitivity	to	parameters	A)	Stopping	
criterion,	Q	B)	Interior-angles	noise	level,	D	C)	Error-correction	time	scale,	x	D)	Characteristic	
speed,	BC	 	
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Figure	S9:	The	schematics	of	the	model	parameters	in	the	triangle	completion		task.	The	
model	has	three	different	angles	–	Z',	the	initial	angle	of	the	extrapolated	side	curve,	Z(X),	the	
interior	angle	at	a	distance	s	away	and	the	base	angle	5.	Each	angle	has	a	Gaussian	distribution	
with	mean	and	variance.	!',,	is	the	variance	of	the	angle	Z'.	+',,	is	the	variance	amplitude	of	
the	interior-angles	estimates	and	!/,,	is	the	variance	of	the	base	angle,	centered	at	5'.	For	the	
estimated	location	(X,Y)	we	calculate	the	statistics	of	the	right	side	trajectory	of	the	triangle	
(dl, fl)	and	then	rotate	it	to	get	the	moments	for	the	rotated	coordinates	(dlL , flL ) =
cos 5 − sin 5
sin 5 cos 5

dl
fl ,	and	similarly	for	the	left	side	trajectory	of	the	triangle		(dYL , fYL ).	The	two	

side	trajectories	are	independent	and	assumed	to	have	the	same	statistics.		 	

θ θ

(xR’,yR’)(xL’,yL’)
(X,Y)

φ0

φ(s)
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Figure	S10:	The	sensitivity	of	the	scaling	exponent,	‘,	to	parameters	of	the	statistical	model.	
A)	Correlation	length,	x	B)	Standard	deviation	of	interior-angles	estimates,	+'	C)	Initial	angle	
standard	deviation	levels,	!'		
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Figure	S11:	The	sensitivity	of	the	model’s	predictions	for	the	deviation	of	the	vertex	location	
as	a	function	of	triangle	size,	-[

-Y
,		to	parameters	A)	Correlation	length,	x	B)	Standard	deviation	

of	interior-angles	estimates,	+'	C)	Base	angle	standard	deviation,	!/		
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Figure	S12:	Fitting	results	of	a	Gamma	distribution,	± d; ≥, ¥ = 2

µ ∂ ∑∏
d∂`2y`A/∑,	to	the	

vertical	location	estimates	in	the	localization	task	in	the	lab	experiment.	Plot	labels	are	angle	
and	base	factor	of	the	triangle	condition,	red	line	signifies	the	real	y-coordinate	value	of	the	
missing	vertex	(the	higher	the	y-value	the	lower	is	its	position	on	the	screen).				
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Figure	S13:	The	dependence	on	base	length	and	base	angle	of	the	dynamic	model’s	angle	
estimates.	The	model	captured	the	experimental	results	in	the	angle	size	estimation	task.	The	
model	predictions	showed	increased	overestimates	of	the	missing	angle	size	as	triangle	size	
increased	(Base	angles:	30	degrees	–	Blue,	45	degrees	–	Yellow,	60	degrees	–	Green).	Inset,	as	
base	length	increased,	the	variability	in	angle-size	estimates	decreased.	Simulation	parameters:	
integration	time	scale,	J=1,	error-correction	time	scale,	K = 4,	speed	BC = 1,	base	length	range,	
P ∈ [10'.º, 10,.º],	interior	angles	noise	levels,	M = 0.1,	and	stopping	criterion	threshold,	Q =
0.2	#.	
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Figure	S14:	Participants	estimate	of	missing	angle	size	is	predicted	by	the	mathematical	
model.	A,B)	The	model	predicted	that	as	side	length	increased,	angle	size	overestimated	errors	
increased	(Base	angles:	30	degrees	–	Blue,	45	degrees	–	Yellow,	60	degrees	–	Green).	Inset,	as	
side	length	increased,	angle-size	variability	decreased.	Shown	are	results	for	A)	two	separate	
angle	assessments	and	B)	an	averaged	location	estimate	with	its	corresponding	missing	angle	C)	
Participants	were	shown	two	base	corners	angles	of	an	isosceles	incomplete	triangle	and	were	
asked	to	move	a	slider	to	mark	the	missing	corner	angle	size.		D)	Participants’	angle	sizes	are	
overestimated	with	errors	increasing	as	side	length	increased	for	45	and	60	degrees.	For	30	
degrees,	the	curve	of	angle	estimate	errors	did	not	show	a	clear	trend	(Base	angles:	30	degrees	
–	Blue,	45	degrees	–	Yellow,	60	degrees	–	Green).	Inset,	as	side	length	increased,	the	variability	
in	angle-size	estimates	decreased.	
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Figure	S15:	Response	times	correlate	with	triangle	side	length	in	the	angle	estimation	task.	A)	
We	analyzed	the	response	times	of	participants	on	the	different	triangles	in	the	angle	
estimation	task.	We	find	that	the	mean	response	time	per	triangle	size	across	all	participants,	
response	times	shows	a	non-significant	correlation	with	triangle’s	side	length	(Spearman	
correlation	r=0.35,	p-value=0.24).	B)	Similar	analysis	across	all	the	response	times	shows	a	
significant	weak	correlation	with	triangle’s	side	length	(Spearman	correlation	r=0.07,	p-
value<0.03).	We	note	that	in	the	angle	estimation	task,	participants	were	using	a	slide	bar	to	set	
the	size	of	the	missing	angle.	 	
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Figure	S16:	Participants	education	does	not	affect	their	accuracy.	A)	While	participants	
succeeded	in	all	questions	probing	the	location	of	the	triangle’s	missing	vertex	(angle	change:	
Mean±STE=82±2%,	distance	change:	Mean±STE=51±2%),	they	only	succeeded	in	questions	
probing	the	angle	size	of	that	vertex	after	changes	to	the	angle	size	(Mean±STE=55±2%)	but	not	
distance	between	the	other	two	vertices	(Mean±STE=32±2%).	Dashed	line	is	set	at	chance	level	
(33%).	*p<0.05,	**p<0.01	(Bootstrapping	1000	times	the	data	and	compared	to	a	Binomial	
distribution	with	B(n=407,p=1/3).	B)	We	calculated	the	correlation	between	participants’	
percent	correct	and	their	years	of	education	in	the	categorical	geometric	reasoning	task.	We	
randomly	sampled	the	data	1000	times	with	returns	and	calculated	the	correlation	in	the	data.	
We	found	no	correlation	between	the	percent	of	correct	answers	and	participants’	years	of	
education.	Median	Spearman	r=0.002,	95%	CI=[0,0.28].	
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Figure	S17:	The	dependence	on	initial	triangle	side-length	of	the	model	predictions	for	the	
categorical	geometric	reasoning	task	A)	VIA	condition	B)	VID	condition	C)	AIA	condition	D)	AID	
condition			
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Figure	S18:	The	dependence	on	correlation	length,	÷,	of	the	model’s	predictions	for	the	
categorical	geometric	reasoning	task	A)	VIA	condition	B)	VID	condition	C)	AIA	condition	D)	AID	
condition	
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Figure	S19:	The	dependence	on	threshold	value	of	the	model’s	predictions	for	the	categorical	
geometric	reasoning	task	A)	VIA	condition	B)	VID	condition	C)	AIA	condition	D)	AID	condition	
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Figure	S20:	The	dependence	on	the	standard	deviation	of	interior-angles	estimates,	◊ÿ,	of	the	
model’s	predictions	for	the	categorical	geometric	reasoning	task	A)	VIA	condition	B)	VID	
condition	C)	AIA	condition	D)	AID	condition	
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