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The identification of relationships in complex networks is critical

in a variety of scientific contexts. This includes the identification of

globally central nodes and analysing the importance of pairwise

relationships between nodes. In this paper, we consider the

concept of topological proximity (or ‘closeness’) between nodes

in a weighted network using the generalized Erdó́s numbers

(GENs). This measure satisfies a number of desirable properties

for networks with nodes that share a finite resource. These

include: (i) real-valuedness, (ii) non-locality and (iii) asymmetry.

We show that they can be used to define a personalized

measure of the importance of nodes in a network with a natural

interpretation that leads to new methods to measure centrality.

We show that the square of the leading eigenvector of an

importance matrix defined using the GENs is strongly correlated

with well-known measures such as PageRank, and define a

personalized measure of centrality that is also well correlated

with other existing measures. The utility of this measure

of topological proximity is demonstrated by showing the

asymmetries in both the dynamics of random walks and the

mean infection time in epidemic spreading are better

predicted by the topological definition of closeness provided

by the GENs than they are by other measures.
1. Introduction
The study of complex networks has increased enormously in recent

years due to their applicability to a wide range of physical [1,2],

biological [3], epidemiological [4,5] and sociological [6] systems.

Two basic goals in this regard are to understand and quantify the

structure of the network to better characterize the relationship

between the interacting members of the network (the nodes),

while also characterizing the dynamical processes on the network

[6] that may shed light on the processes by which they form [7].

Understanding the topological properties of the network on

both a global and local level can be useful in approaching both

of these goals. Global properties of interest may include simple

measures of the distribution of node properties, such as the
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degree distribution, strength distribution or distribution of clustering coefficients [8,9]. Community

structure in the network [10–12], which partitions the network into densely connected sub-networks

with more links within communities than between communities, has been extensively studied and

may provide more detailed information about the relationship between nodes than simple

distributions. Community structure can indicate the existence of underlying similarities between nodes

in the network, and may have a great impact on dynamical processes occurring on the network (such

as a random walk [13–15] or epidemic spreading [4,16,17]), and can influence the material properties

of granular systems [1].

While global properties of networks can be used to assess the attributes of the nodes on an aggregate

level, it is also of great interest to understand the topological properties of nodes on an individual, local

level. Node centrality is the classic example of a topological measure associated with an individual node,

which assesses the ‘importance’ of a node in a variety of contexts. The most basic measure of a node’s

centrality is simply related to its degree, a property of the node that is based solely on the local

topology of its connectivity. The centrality of individual nodes can also be measured incorporating the

global topology of the network in a variety of ways, including PageRank [18], betweenness [15] or

random walk [13] centralities. Each of these measures reduces the global properties of the network

into an individualized local measure of importance, permitting a rank-ordering of their importance in

the network [19,20]. Dynamics on networks can likewise be described in terms of pairwise

interactions between nodes, with the time between an origin and a destination node (e.g. sources and

sinks in a random walk or the time of infection of one node given an epidemic originating at another)

depending on the network topology.

In many contexts [21,22], not all members of the network will necessarily agree on the importance of

the same node: nodes that have a direct connection between them will be more important to each other

than distant nodes in the network. Nodes that are central to the network as a whole may have very low

importance from the perspective of sub-networks. The universality of importance is further complicated

by the fact that we may expect the influence between a pair of nodes to be asymmetric even if they are

directly connected [22] (the importance assigned by an important node towards an unimportant one is

not necessarily the same as the importance assigned in the opposite direction), which may have

important consequences in real-world systems [3]. The determination of a personalized measure of

node importance that incorporates the global topology in an asymmetric measure is therefore an

important but non-trivial problem.

In this paper, we explore the use of the generalized Erdó́s numbers [11,23] (GENs) as a measure of

topological closeness between nodes in a network. Using the GENs, we identify two measures

of centrality using the pairwise importance between nodes, and show that these global centralities are

highly correlated with other common centrality measures. We show that the infection times of a node

originating from a source that is not a nearest neighbour in an epidemic spreading model are highly

correlated with the GENs, indicating their potential utility in predicting the influence of network

topology on the dynamics on networks. We further show that the infection times are better predicted

by the GENs than two other commonly used measures of the non-metric distance between nodes in a

network: the resistance distance and mean first passage times (MFPT) in a random walk. Finally, we

show that the asymmetry in the GENs is correlated with that in the MFPT between nodes in a

random walk. This work illustrates that the GENs are a useful measure of the topological closeness

between pairs of nodes in a complex network, and also illustrates that a meaningful definition of

closeness has the potential to bridge the gap between the topology of a network and the dynamics on

the network in multiple contexts.
2. The generalized Erdó́s numbers
2.1. Topological closeness in complex networks
When nodes represent objects in a physical space [2,24–27], the distance between nodes, Dij, is a

naturally defined (metric) measure of closeness between the objects. Objects that are physically

proximate (or close to one another) of course have small Dij which is bounded below by Dij ¼ 0, while

objects that are not close have large Dij. Owing to the generality of networks (where nodes and edges

abstractly represent ‘objects’ and ‘interactions’, respectively), there can be no guarantee of a naturally

defined distance metric [2,28], and, in some cases, the network topology itself must define a measure
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Figure 1. Two competing requirements for global ‘closeness’ in a network with shared resources. In (a), many short paths between
nodes increase the closeness between them. This is similar to the resistance distance between nodes: additional parallel paths
between them reduce their resistance distance. In (b), the finite resources of the high-degree blue node suggest that it should
be less close to the red node than for the lower-degree blue node above, as resources are shared also with the other
neighbours. This is similar to the transition probability from the blue node in a random walk: the more connections the blue
node has, the lower probability of visiting the red node.
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of closeness (Dij) based solely on the matrix of weights between nodes i and j, wij (with an undirected

network where wij ¼ wji is assumed throughout this paper).

The proximity or closeness between nodes, Dij, will be small for nodes that are close to one another

and large for distant nodes, with a simple and common choice being Dij ¼ w21
ij (so strongly connected

nodes are ‘close’, and disconnected nodes are ‘far’). Alternatively, in an unweighted network, the

length of the shortest path between a pair of nodes is a natural definition [28,29] and is the basis for

the classic Erdó́s numbers in the context of an unweighted collaboration network [30].

Improvements on this simple measure which incorporate the effect of multiple paths between nodes

(see figure 1a for a schematic diagram) include the resistance distance [14,31], self-consistent similarity

measures [32] and communicability [33], to name only a few. An additional approach to defining

similarity between nodes is found by positing a multidimensional ‘latent space’ of node properties

[34], with the assumption that nodes that are close in the latent space are likely to be connected in the

network and each node’s position in the space inferred from the observed connectivity. Each of these

methods incorporates the global topology of the network into a symmetric measure of closeness

between pairs of nodes (Dij ¼ Dji).
2.2. Finite resources and asymmetric measures of proximity
Finite resources are shared in some networks, with examples including collaboration on networks (where

time with one collaborator reduces the available time for others), multi-core processor components [35]

(where finite memory or other hardware must be shared) and random walks (where the walker can only

move to a single neighbour at a time with a transition probability Pi! j ¼ wij/Wi with Wi ¼
P

k wik the

total strength of the node i). In the context of these networks of limited resources, closeness measures

such as resistance distance may be undesirable [22], because the addition of a new edge in the

network should be detrimental to some nodes (those who receive less of the finite resource due to the

new edge) and beneficial to others (those who receive more due to the edge). For closeness measures

based on the direct weight between nodes (where the ‘closeness’ between i and j is often taken to be

w21
ij ) or resistance distance between nodes, it is straightforward to see that the newly measured

closeness between nodes i and j, D
(new)
ij � D

(old)
ij for all pairs, i.e. the addition of an edge can never

cause nodes to become less close to one another. This is not sensible in the context of nodes that share

a finite resource with their neighbours, as shown in figure 1b: if a node i has many neighbours, each

receives less of the resource than if i had few neighbours.

The expectation of the influence of resource shared in figure 1 is satisfied by a number of existing

measures of proximity. A quantity such as the transition probability in a random walk, Pi! j, is

http://rsos.royalsocietypublishing.org/
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asymmetric and ensures that nodes are closer if they have few neighbours, pictured in figure 1b (so a

walker is more likely to pass between them than if they had many connections). However, it is not a

global measure of closeness because the transition probability incorporates only the nearest neighbour

connections between nodes (so there is no proximity between disconnected nodes, even if multiple

paths exist between them). The PageRank matrix [18] Bi! j ¼ gPi! j þ (1 2 g)/N with g a teleportation

parameter gives a modified estimate of proximity, a uniform measure of closeness for disconnected

nodes independent of the network’s geometry.

The more refined non-backtracking matrix [36–38], as the name suggests, captures the transition

probability between pairs of nodes with the walker forbidden to retrace the previous step in the reverse

direction. The non-backtracking matrix has previously been used to identify a measure of centrality

that does not suffer from localization for highly connected nodes [36]. A simple measure of node

proximity can be established using the non-backtracking matrix, the probability of a non-backtracking

walker moving between pairs of nodes in two steps. Note that in every random-walk-based case, these

measures of proximity satisfy the expectations in figure 1b (many unshared neighbours reduce Dij) but

not figure 1a (many shared neighbours increases Dij): a walker on blue moves to red in two steps with

50% (100%) probability using the random walk transition matrix (non-backtracking transition matrix)

regardless of the number of shared neighbours. It is useful to develop a measure of closeness that

incorporates these two (sometimes seemingly contradictory) aspects depicted in figure 1: nodes are

close to one another if there are many paths between them, but popular nodes are less close to their

neighbours than unpopular nodes.
2.3. The GENs: measuring closeness via a weighted harmonic mean
We have recently shown [23] that the Eij or GENs, describing the topological closeness from node j to

node i, satisfy the expected properties for the sharing of finite resources described in figure 1. The

GENs on a weighted network of N nodes and M non-zero edges are defined as

W j

Eij
¼ w2

ij þ
X

l=i,w jl=0

w jl

Eil þ w�1
jl

, Eii ; 0, ð2:1Þ

where wjl ¼ 0 if nodes j and l do not share an edge. This form is chosen such that the node i is as close as

possible to itself and that if j is connected to only one node k, j’s closeness to i satisfies Eij ; Eik þ w21
jk . If

there are multiple paths between nodes, the closeness from j to i is strengthened if there is a direct

connection between them but also includes a contribution from all other neighbours of j weighted by

their connection strength. By choosing a harmonic mean for the form of the contribution, we bias our

measure of closeness towards neighbours that themselves are close to i. There is no possibility of zero-

valued Eij for i=j due to the offset w21
ij , avoiding the possibility of a numerical instability [39] due to

a vanishing denominator. Eij is thus always smaller for directly connected than indirectly connected

nodes, as the contribution from direct connections in equation (2.1) is w2
ij, strictly greater than wil/

(Eil þ w21
jl ) for indirect connections. The GENs are defined using the global topology of the network,

and Eij is finite even for nodes i and j in the same component that share no neighbours (as may not

be the case for more local measures of closeness [22]).

In appendix A, we demonstrate a number of features of the GENs when applied to synthetic

networks. For homogeneous networks such as the Erdó́s–Rényi (ER), whose degree distribution is

sharply peaked about the mean, the topological closeness between connected nodes is likewise

peaked about the mean which is proportional to the mean degree of the nodes kkl, while the closeness

between disconnected nodes is dominated by the network size N. Networks with heterogeneous

topologies, such as the Barabási–Albert networks that have a degree distribution of P(k)� k23,

likewise have a scale-free distribution of the GENs for connected nodes, indicating that the GENs are

indeed able to distinguish between distinct network topologies.

The nonlinear form of equation (2.1) makes analytical work intractable in all but the simplest cases,

and we must generally resort to numerical work to determine the topological closeness between nodes in

a network. Eij can be computed numerically in an iterative fashion [23], with Eij ; E(1)
ij and the recursive

definition W j=E(tþ1)
ij ¼

P
l w jl=[E(t)

il þ w�1
jl ] (with the constraint that E(t)

ii ¼ 0 continually enforced). In this

paper, the iteration is halted when maxij jE(tþ1)
ij � E(t)

ij j � e ¼ 0:005. The method also requires an initial

guess, E(0)
ij , with E(0)

ij ¼ 1 used in this paper.

The iterative method for evaluating equation (2.1) to determine the closeness of all nodes towards a

particular node i requires
P

j=i k j ¼ M� ki evaluations (one for each neighbour of j ). As there are N

http://rsos.royalsocietypublishing.org/
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target nodes, a complete evaluation of the GENs requires O(NM) computations, at worst O(N3) for dense

networks. This scaling is problematic for large dense networks, but the worst-case scaling of N3 is

common for many existing measures of centrality [15]. We note that other pairwise measures of

proximity (such as resistance distance or MFPT) will generally require a matrix inversion, at a typical

cost of O(N3) and thus comparable to the cost of evaluating the GENs. We also note that the

evaluation of the set fE1,jg is independent of the evaluation of fE2,jg, meaning the calculation of the

GENs can be parallelized to provide a significant boost in the speed of evaluation.

In addition to other existing measures of proximity that satisfy the expectations of figure 1, there is a

great deal of functional freedom in writing equation (2.1). For example, any measure E(g)
ij of the form

W jg(E(g)
ij ) ¼ w2

il þ
P

l=i w jlg(E(g)
il þ w�1

lk ) will satisfy the desired behaviour depicted in figure 1 for a

monotonically decreasing g(x), with g(x) ¼ x21 in the definition of equation (2.1). Another alternative

definition replaces the direct weight between adjacent nodes, w21
lj , with the closeness, Elj, in the

denominator of equation (2.1): W j=~Eij ¼ w2
ij þ

P
l=i w jl=(~Eil þ ~Elj) (with the constraint Eii ¼ 0 and Eij . 0

imposed). While these alternative definitions may be of interest in certain contexts, we continue to use

equation (2.1) throughout this paper, due to its simplicity and previously demonstrated successes in

prediction algorithms [23] and community detection methods [11]. Variations in the definition of Eij

will certainly change the numerical values of the closeness, but the qualitative behaviour of the

closeness between nodes is expected to be robust to perturbations of the definition of the GENs.
 1
3. Centrality and topological closeness
3.1. Erdó́s centrality and mean importance
The GENs incorporate a simple idea of what is meant by the ‘closeness’ between nodes in a network

where limited resources are shared, and we expect that a node j that is topologically close to node i
(having small Eij) considers node i to be ‘important’ in some sense. We may therefore regard the

inverse of the closeness between nodes (cij ¼ E21
ij ) as an unnormalized personalized measure of

importance, allowing a ranking of all nodes in the network from the perspective of the node j.
Because cij measures the importance of i from a particular node j (rather than the network at large), it

is not equivalent to a centrality measure.

Having defined a pairwise measure of the importance a node j assigns to i using cij, we naturally

expect that we can leverage this definition into a global measure of the importance of node i. There

already exists a wide variety of methods for measuring centrality from a global perspective, including

the degree [15,40,41], PageRank [18,41], random walk [13], betweenness [13,15] and non-backtracking

[36] centralities. Each measure tends to rank high-degree nodes above low-degree nodes in complex

networks, but take the global network topology into account in different ways. The importance of

global topology is perhaps most clear in betweenness centrality, where high-degree nodes often have

high centrality, but nodes of low degree that act as bridges between components of the network may

have high centrality.

To convert our personalized importance measures into a single global measure for an unweighted

network, we define Ci ¼
P

l[Ci
cil as the sum of the importance the neighbours of i assign to it (akin

to the approach of [32]), which we refer to as an Erdó́s centrality. In figure 2a, we compare Ci to a

variety of other measures of centrality for a single realization of a Barabási–Albert network [7]

(generated using the algorithm described in appendix B) with N ¼ 512 and kkl ¼ 4. In all cases, there

is correlation between these various measures but with differences between the numerical values of

the centrality measures for both central and non-central nodes alike. The clear correlation seen here is

consistent with other realizations of the BA network, other values of kkl, and is also seen in ER

networks (not shown).

Figure 2b,c shows the same data plotted logarithmically for PageRank (b) and the non-backtracking

(c) centralities in comparison with Ci for one realization of the network. The degree of each node can

contribute significantly to its centrality depending on the measure, and the clustering of the data in

figure 2b is driven by nodes with identical degree with different nearby network topologies that lead

to differing values for the GENs. Non-backtracking centrality is less dependent on node degree

(as evidenced by the lack of clustering), indicating the other topological features of the network are

important using this measure.

The clustering of some measures of centrality tends to occur for predominantly low-degree (and

thus low-centrality) nodes, and it is preferable [20,42] to focus our comparison of the different

http://rsos.royalsocietypublishing.org/
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Figure 2. Centrality for a Barabási – Albert network with kkl ¼ 20. (a) The Erdó́s centrality (x-axis) compared to the five common
centrality measures (y-axis) shows an obvious positive correlation overall. Circles shows degree centrality, squares PageRank,
diamonds betweenness centrality, up-triangles random walk centrality and down-triangles non-backtracking centrality. (b,c)
Betweenness centrality and PageRank compared to Erdó́s centrality on logarithmic axes, showing the clustering due to degree
in one case (b, betweenness) but not the other (c, PageRank). (d ) The intersection metric lXY(n) is used to quantify the
similarity between the top n elements of the Erdó́s centrality (oE(n)) and the top n elements of the other centrality measures
for varying n.
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measures on high-degree nodes [19,20]. We compare the Erdó́s centrality ordering to the other

measures of centrality using the fractional intersection between the top-n orderings [43],

lXY(n) ¼ (1=n)
Pn

k¼1 joX(k) > oY(k)j=k, with oX(k) the top-k ordering using method X. In figure 2d,

lXY(k) is plotted for X ¼Ci and X the other centrality measures, averaged over 100 realizations of the

network. We see that comparison of other measures of centrality to the Erdó́s centrality exhibits a

high degree of overlap at n ¼ 1 with a sharp jump in l for n�10 in all measures. Beyond n �10, there

is a slow variation, but all top-n lists remain similar above 80–90% with the exception of the non-

backtracking centrality. Despite their different formulations, the top-n list for Ci compares best to the

list from random walk centrality (dashed turquoise line) above 90% for low- and high-degree nodes,

indicating Ci is most closely related to the random walk centrality over all node degrees.
3.2. Importance eigenvector centrality and teleportation in random walks
The Erdó́s centrality, Ci ¼

P
l[Ci

cil described in the previous section, is a natural definition arising from

the pairwise importance cij assigned to it by all of its direct neighbours. While well correlated with other

centrality measures (suggesting its utility), a significant amount of information regarding the global

importance is neglected: the value of the importance assigned to nodes that are not directly connected

http://rsos.royalsocietypublishing.org/
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to i are all ignored. This is true of many centrality measures, generally counting the number of direct

paths between nodes to identify an overall measure of importance (degree, random walk and

betweenness all proceed solely through direct links between nodes).

PageRank centrality differs from a purely random-walk-based measure by accounting for indirect

links between nodes through the steady state probability of a Markov process with transition

probability Bij ¼ gaij/ki þ (1 2 g)/N. In this process, the random walker moves between connected

nodes (randomly) with probability g, but jumps between disconnected nodes (again, randomly) with

probability (1 2 g). The leading eigenvector of the matrix B reduces to solving the coupled equations

Pri ¼ N�1(1� g)þ g
P

j[Ci
k�1

j Pr j with Ci the set of nodes connected to i (in a directed network, this

is the set of nodes with edges directed towards i).
In the limit of g ¼ 0, Pri ¼ N21 is uniform as is expected for pure teleportation. In the limit of g ¼ 1

(no teleportation), the PageRank equation reduces to Pri ¼
P

j[Ci
k�1

j Prj, and it is straightforward to see

that the anzatz Pri ¼ ki/N is a solution (as the equation becomes Pri ¼ aki ¼ a
P

j[Ci
1). A uniform

probability of teleporting between distant nodes may be an imperfect model for the dynamics of a

random walker on a network and a number of modifications to the PageRank algorithm have been

proposed that account for inhomogeneous teleportation probabilities between nodes [44,45] in a

variety of contexts.

A similar Markov process strongly related to the PageRank algorithm can be defined using

personalized importance: a random walk performed with a transition probability B0ji ¼ cij=
P

l=i clj

(with the convention B0ii ¼ 0, meaning the walker never remains at i). This process has an

interpretation similar to that of PageRank: the most probable transition for a walker at node j to make

passes through direct connections (moving to i with wij . 0), but has a non-zero probability of

jumping to a disconnected node. Unlike the PageRank methodology, a walker in this process has a

non-uniform probability of choosing to move along an edge versus teleportation.

As an example of the heterogeneity of the teleportation in this process, a node i with degree k ¼ 1 in an

unweighted network will have a most probable transition to its sole neighbour (with the greatest

importance j assigns going to i with cij ¼ 1). However, the total probability of teleporting (moving from

i to a node without a direct connection) is pteleport ;
P

j=Ci
pi!j ¼ 1� (

P
l=i cli)

�1. In appendix A, we

show that the average closeness felt between disconnected nodes in a large network scales as Ed � N1/2,

which suggests that (
P

l=i cli) � N�1=2. This indicates that walkers at low-degree nodes will usually

teleport to more important nodes in the network (as pteleport � 1� 1=
ffiffiffiffi
N
p
� 1 for large N). Teleportation

between distant nodes in the network will be highly heterogeneous in this walk, and we expect it to

have a significant contribution to the centrality for large networks with low-degree nodes.

The leading eigenvector of the matrix B0 can be compared to that of the PageRank transition

probability matrix B, which has a uniform probability of teleporting to any node in the network

(regardless of the network topology). In figure 3a, we show the steady-state probability of being

found at a node i for this random walker in this process, computed from the leading eigenvector of B0

http://rsos.royalsocietypublishing.org/
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with elements gi, termed importance eigenvector centrality in this paper. A clear correlation with the

degree centrality is observed, with the solid line indicating a scaling of gi/ ki
ag for ag � 0.55. A similar

quality of fit is found for larger N (discussed further below) as well as for the ER networks (not

shown). Excellent agreement is found for high-degree nodes (as was the case in §3.1 for the Erdó́s

centrality), with deviations occurring primarily for low-degree nodes that are clustered based on the

node’s degree. For all nodes of a fixed degree k, PageRank will tend to give a higher centrality to

those nodes that are connected to high-degree hubs. By contrast, importance eigenvalue centrality gi

will tend to give a lower centrality as the hub’s attention is divided among many nodes and it assigns

a lower importance to its neighbours. This effect produces the downward slope in the clusters of data

in figure 3a, and is more pronounced for low-degree nodes.

The relationship between PageRank and the importance eigenvector centrality gi persists even for

real-world networks with neither a homogeneous nor scale-free degree distribution, such as the

lognormally distributed 2004 political blogs network [46]. In this network, each node is a liberal or

conservative blog in the lead-up to the 2004 presidential election and each edge indicates a link

between the blogs. In order to implement the GENs in equation (2.1) on this network, we converted

the network from a directed network (where wij=wji) to an undirected network (where wij ¼max(wij,

wji)) and retained only the largest connected component of 1222 nodes. In figure 3b, we see g2
i and Pri

are both highly correlated with the degree centrality (R2 ¼ 0.999 and 0.982, respectively), indicating

that both measures are dominated by node degree rather than other details of the network topology

(as was the case in the BA networks in figure 3a). In the case of PageRank, this is due to the fact that

hubs are connected to low-degree nodes, so walkers on low-degree nodes tend to move towards

high-degree nodes if they do not teleport (occurring 85% of the time). In the case of importance

eigenvector centrality, the model is entirely different: with more than 90% probability walkers on

low-degree nodes (k � 10) will teleport, but preferentially teleport to high-degree nodes. Despite the

different dynamics in the walks, the steady-state probability of arriving at any node is nearly identical

in both cases.
4. Understanding dynamics on networks through topological closeness
4.1. SIR model on an ER network
The spreading of an epidemic has been studied by many authors and in a wide range of contexts

[16,17,47–49], with the susceptible-infected-recovered (SIR) model being one of the simplest and most

commonly used models. The SIR model assumes that a population of susceptible individuals becomes

infected due to interactions with previously infected individuals, and infected individuals may recover

and become non-infectious. A simple schematic of the SIR model is shown in figure 4a, with

infections occurring at a constant rate, rI, due to direct interactions between individuals, and the

recovery at constant rate, rR. A number of more complex models have been considered extensively for

a homogeneously mixed population of individuals [49], but non-uniform interactions between

individuals, represented by networks, can have a profound impact on the dynamics of epidemic

spreading in the SIR model [4,16,17]. The existence of epidemic thresholds [4,50] for homogeneous

networks (or the lack thereof for scale-free networks [16]) are well-studied global quantities of interest

[51], while more local quantities such as the probability of a particular node i becoming infected,

sparking an epidemic [52], and quarantine or immunization strategies [48,53] have also been examined.

While it is clearly useful to understand the global properties of the epidemic (such as the expected

number of infected individuals), a particular individual j may also be interested in its own probability

of becoming infected given the origin of the disease and may reasonably be less concerned if no

neighbours are infected than if many neighbours are infected. However, it is not straightforward to

analytically calculate how long the disease will take to reach j from any point in the network, and it

would be useful to have a measure for how ‘close’ the epidemic is from an individual node. If the

infection begins with a single node i, we expect that the disease will more rapidly propagate to nodes

for which i is topologically close, and it is therefore worthwhile to compare the pairwise infection

times (infection time of node j given an initial infection at i) with measures of topological closeness,

such as the resistance distance Rij, MFPT in a random walk tij, and the GENS Eij. PageRank and

betweenness are single-node properties (not properties of a pair) and cannot be used for comparison.

The resistance distance and MFPT in a random walk can be computed directly from the graph

Laplacian L [14,15].
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To see the relationship between infection time and topological closeness, we simulate an SIR epidemic

(diagrammed in figure 4a), using Gillespie dynamics [54] on an ER graph (with a uniform probability of

connection and each node having kkl ¼ 4 or kkl ¼ 20) and N ¼ 512. The infection rate rI ¼ 1 and recovery

rate are varied, but always above the epidemic threshold [4,16] rI . rR/kkl. Even above the epidemic

threshold, the disease may stochastically die off, and we take the pairwise infection time to be the

harmonic mean of the infection time of a node j given an initial infection at i over all of

the simulations, h�1
ij ¼

PK
k¼1 [t(k)

i!j]
�1 with Ki simulations initiated at site i for each rR. To compute the

infection time hij between all nodes, Ki ¼ 100 simulations were run for every node i being the sole

infected node at t ¼ 0.

4.2. Comparing topological closeness with infection time
The infection time can be compared to a variety of measures of topological closeness, and in this section

we focus on the GENs (Eji), the MFPT in a random walk (tij) and the resistance distance (Rij). Infection

that originates at a high-degree node (i) will rapidly spread throughout the network, but infections

starting at a low-degree node will tend to spread only locally until a high-degree node is encountered.

We thus expect the rate of infection of a non-nearest neighbour (j) of the initial infection site i to be

positively correlated with its topological closeness using all three measures.

In figure 4b–e, we compare hij in a network with N ¼ 512 and kkl ¼ 4 to Eji (b, d ) and tij (c, e),

normalized by hEi ¼ N�2
P

ij Eij (since the GENs do not contain any dynamic information and the

numerical values are thus arbitrary) and hti ¼ N�2
P

ij tij (for comparison with the GENs),

respectively. The figures show a random sample of 20 target nodes j with kj . 4 (for which there is a

consistent relationship for kkl ¼ 4, discussed further in appendix C). As expected, infection times of

non-nearest neighbours are lowest for nodes that are topologically close (low Eij or tij), with the lines

showing an empirical power-law fitting of hij/ xax
ij for x ¼ E or t. The exponent is non-universal,

depending on N, kkl and the recovery rate. It is apparent that the fit using the GENs is more robust

than the MFPT, due to the clustering of t (akin to the degree-driven clustering in figure 2b) with

larger variation in hij for a given value of tij than is seen for Eji. This is driven by the fact that tij is

much more strongly correlated with the degree of the target node j than is hij (shown in appendix C).

The comparison of hij with Rij has a trend similar to tij, and is not shown in the figure.

The quality of the fit between the infection time hij and any of the measures of closeness xij are shown

in figure 4f using the standard deviation of the residuals s2
x ¼ N�1

P
i (hij � cxa

ij )
2 for the power law best

fit hij ¼ cxa
ij. The mean of the residuals m ¼ N�1 ¼

P
i (hij � cxa

ij ) generally satisfies jmj � 1023 for all

measures at all rR. Figure 4f shows that all closeness measures perform worse when rR increases, due

to the fact that node recovery is independent of the network topology. The figure also clearly

demonstrates that the GENs are a significantly better predictor of the infection time than either the

MFPT or resistance for spreading on an ER network, indicating that they correspond to a relevant

measure of topological closeness that has an impact on the spreading process. For an ER network

with kkl ¼ 20, all nodes have degree k . 4 with high probability, and in this case the results are

consistent with those pictured in figure 4b– f without restriction on the degree. For kkl ¼ 20, we find

that sx increases overall for each measure of proximity (all on the order of sx � 0.3 2 0.4 for rR/rI � 0),

as shown in appendix C. Consistent with the behaviour in figure 4, sE is lower than st and sR for

non-zero rR/rI, indicating that the GENs remain a better predictor overall than resistance distance or MFPT.

4.3. Random walks and the GENs
A surprising feature of figure 4 is the significant difference between the accuracy of Eji and tij in

predicting the infection time. Based on the good agreement between the importance centrality Ci and

random walk centrality ci in figure 2d, one might have expected to find consistency between the

GENs and the MFPT in a random walk. Random walk centrality is defined based on the differences

in MFPT [13], with tij 2 tji ¼ cj 2 ci, rather than the particular values of tij themselves. The MFPTs are

asymmetric (tij . tji if i is more easily reached than j ), as it is easier to reach a high-degree node than

a low-degree node, with a similar behaviour for the GENs (with Eji . Eij if i is topologically closer to

j than j is to i). This suggests a comparison of the asymmetry between the two measures that could

explain their agreement in figure 2d. In figure 5, we compare DEij ¼ Eij 2 Eji to the difference in the

MFPT between nodes Dtij ¼ tij 2 tji for an ER network with various N and kkl. The asymmetry in

the MFPT is highly correlated with the asymmetry in the GENs, with an empirical scaling of

Dtij � �DE ji
ffiffiffiffiffiffiffi
aN
p

and a � 4 (determined using Mathematica’s FindFit function). The fact that Dtij /
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DEji (even when there are no direct connections between i and j ) again indicates that the GENs are able to

capture the importance of the global network topology even for distant nodes.
5. Conclusion
In this paper, we have shown the utility of the GENs in measuring a non-metric topological closeness

between nodes in complex networks lacking a well-defined distance metric. Derived from simple

principles based on a conceptual picture of nodes sharing finite resources, the GENs incorporate the

global topology of the network into a pairwise measure of closeness for connected and disconnected
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nodes alike. Other non-local pairwise measures can be found in the literature (e.g. the MFPT in a random

walk or resistance distance between nodes), and we have shown that the GENs are able to describe the

structure of and dynamics on networks in a manner consistent with or outperforming these existing

measures.

The utility of the GENs was first demonstrated by identifying two potential measures of centrality

derived from the GENs that identify important nodes in heterogeneous networks consistent with

existing methods. The Erdó́s centrality, Ci ¼
P

l[Ci
cil (with cil ¼ E21

il ), defines centrality in terms of

the importance assigned by nearest neighbours and is appropriate for unweighted networks. An

alternative measure of centrality that takes the importance assigned between all node pairs i and j
into account arose from a novel definition of a random walk with teleportation: the importance

eigenvector centrality was defined as the steady state probability of being found in a node i in a walk

with transition probabilities pj! i/ E21
ij . This is conceptually related to the teleportation probability in

PageRank, but with our eigenvector centrality having an inhomogeneous teleportation probability

depending on the importance of each node. In both cases, we showed that these centrality measures

are consistent with existing approaches despite the very different origins they all have.

The GENs were further shown to be useful in quantifying the impact of the network topology on the

dynamics on epidemic spreading on an ER network. Nodes that are disconnected but topologically close

in a network should more quickly spread the infection between each other than nodes that are distant.

While the resistance distance and MFPT in a random walk are both positively correlated with infection

time (as expected), the GENs are an overall better predictor for high-degree nodes. We note that the

dynamics of the SIR model were not chosen to match the dynamics of the epidemic spreading, as

the SIR model does not have a finite resource shared between nodes (as each node can infect all of its

neighbours with equal rate). The GENs are expected to perform well on predicting the infection risk

of nodes for other disease models in which the process of infecting one node may reduce the infection

rate of other neighbours. Taken together, the quality of the centrality measures and the correlation

with dynamical processes on networks suggest that the GENs are a meaningful measure of

topological proximity and may be of potential benefit in a variety of contexts.
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Appendix A. Distribution of the GENs in synthetic networks
A.1. Homogeneous networks of small diameter
While equation (2.1) is not exactly solvable for all but the simplest of network topologies, the general

properties of the GENs can be explored for sufficiently homogeneous networks. The unweighted ER

networks have a degree distribution sharply peaked about the mean (ki � kkl, where ki is the degree of

the node i in an unweighted network), and we expect the closeness between nodes will still be

broadly distributed due to the complex network topology. The mean closeness between nodes can be

derived by assuming that Eij ¼ Ec (the ‘typical connected’ closeness) if i and j are connected, and the

‘typical disconnected’ closeness, Eij ¼ Ed, if they are not directly connected. In an unweighted regular

network, with all nodes having the same degree ki ¼ k, it is possible to examine the mean closeness

between connected and disconnected nodes using the GENs. For homogeneous degree distributions

such as the ER networks, we expect an approximation ki � kkl to be reasonable, with fluctuations in

the degree expected to have a relatively minor impact, particularly for high mean degree. For these

homogeneous networks, we assume that nodes that are directly connected have a typical closeness Ec

between each other, and another closeness Ed � Ec to nodes that are not. If i and j are directly

connected, they have on average (k 2 1)2/(N 2 2) neighbours in common (since both have exactly k
edges, one of which connects to the other), and they have k2/(N 2 2) neighbours in common on

average if they are not connected. A mean field approximation will treat connected (disconnected)

nodes as having a fixed closeness Ec (Ed) between each other, and split the sum in equation (2.1) into
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two parts: a sum over nodes neighbouring both i and j, and a sum over nodes only connected to j. This

gives the approximate equations for an unweighted network of constant degree

k
Ec
� 1þ (k � 1)2

N � 2

1

Ecþ1
þ k � 1� (k � 1)2

N � 2

 !
1

Edþ1
ðA 1Þ

and

k
Ed
� k2

N � 2

1

Ecþ1
þ k � k2

N � 2

� �
1

Ed þ 1
: ðA 2Þ

It is possible to solve Ec exactly in terms of k, N and the unknown Ed, with

Ec ¼
2þ kE2

d �N
�2þ kEd þN

: ðA 3Þ

Substitution of equation (A 3) into equation (A 1) and collecting terms implies that k2E4
d 2 k[N(k þ 1) 2

3]E2
d 2 2k2(N 2 2)Ed ¼ (N 2 2)(k 2 1)2. An exact solution to this is not enlightening, but in the limit of

N!1 an asymptotic solution can be found. Ed cannot be independent of N in the limit of N! 1 else Ed

would be imaginary. Rather, Ed must be an increasing function of N, implying that the highest order

terms must have the same scaling, with E4
d � NE2

d for large N. Then we expect Ed � N1/2 to leading

order, and we find for large N that

Ed �
(k þ 1)N

k

� �1=2

þ k
k þ 1

þO(N�1=2): ðA 4Þ

Comparing this expression to the numerical solution of the equation shows less than 1% deviation for

N �1000 and k � 300, suggesting the truncation to terms of order O(N0) is sufficient for large N over a

wide range of k. A good approximation for Ec can be found by setting k ¼ kN and taking the limit of k!
0. We find

Ec �
k þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3=N(k þ 1)

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(k þ 1)=N

p � k þO(k2N�1=2), ðA 5Þ

where the latter is the scaling for sufficiently large N� k4. Note that this scaling does not emerge

immediately: even for N �104, higher order terms can contribute in the series for only moderate

values of k, and the full expression is required to obtain an accurate estimate for finite size networks.

In an alternative limit of N!1 but k ¼ k/N finite (i.e. a large, densely connected ER network), we

find the connected GENs scale as Ec �
ffiffiffiffi
N
p
� 1=kþO(N�1=2), converging on the disconnected nodes

Ed �
ffiffiffiffi
N
p
þ 1 but remaining closer to zero. This scaling is consistent with that for a fully connected

network, with [23] Ec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1
p

, indicating (unsurprisingly) that a dense random network is

structurally similar to a fully connected one.
A.2. Large diameter networks
This simple two-state approximation in equations (A 1) and (A 2) assumes there all nodes not directly

connected to i are identical, a reasonable assumption only in the case of networks with a very small

diameter. As ER networks have diameter [56] D � log(N )/log(k) for the networks with kkl ¼ 20, to a

good approximation each disconnected node is only a distance 2 away from i for the networks

considered in figure 2b,d. The approximation in equations (A 1) and (A 2) is poorly satisfied for kkl ¼
4, where the diameter is larger and fluctuations in the degree of each node are of much greater

importance due to the smaller mean degree. This heterogeneity in disconnected nodes may be

important for networks with small kkl/N due to the larger diameter, and in the same spirit as

equations (A 1) and (A 2) we define ex to be the mean value of the GENs from a node j a distance x
from node i (so e1 � Ec in equation (A 5)). For kkl� N, we can write approximately

k
ex
� 1

ex�1 þ 1
þ (k � 1)

nx�1 þ nx þ nxþ1

nx�1

ex�1 þ 1
þ nx

ex þ 1
þ nxþ1

exþ1 þ 1

� �
ðA 6Þ

with e0; 0 and where nx is the average number of nodes a distance x from node i. The first term accounts

for the fact that a node distance x from i must be connected to at least one node distance x 2 1 from i, by
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definition, and the second term accounts for the other potential connections: those a distance x 2 1, x or

x þ 1 from i. Note that these are the only possible connections for a node a distance x from i, which can be

connected to (a) more than one node a distance x 2 1 from i, (b) other nodes a distance x from i, or (c) any

number of nodes a distance x þ 1 from i. In the limit of large N for small k/N, nx � N[1 2 (1 2 k/

N )nx21] � nx21k, implying that nx � kx for connected or disconnected nodes with sufficiently small k/N.

Substitution of nx ¼ kx into equation (A 6) and taking the anzatz ex � e(lx) readily shows that l �
log(k) for sufficiently large k (still constraining k/N� 1). The GENs thus grow exponentially for small

x, a scaling similar to that of the GENs on a tree [23].

We empirically find that for sufficiently large x the growth of the GENs saturates for sufficiently

large x (as was observed in tree networks of finite size [23]), no longer satisfying the exponential

growth of ex � kx. For nodes at the diameter of the network (x ¼ D) with nDþ1;0, equation (A 6)

implies that eD � eD21 þ (k þ 1)/2 þ O(e21
D21), taking the limit of eD21� 1. In order to determine the

behaviour of the GENs for a pair of nodes separated by x ¼ D 2 l for some l� D, we take the anzatz

that eD2l � eD2lþ1 þ jl for jl, the difference between eD2l and eD2lþ1 a function of l assumed small

relative to eD2l. Substituting into equation (A 6) and in the limit of large eD2l21, we find the

asymptotic relationship jl ¼ jlþ1[k(k 2 1)/(k þ 2)] þ [k 2 1 þ 3/(2 þ k)] þ O(e21
D2l21). For large k (but

still satisfying k�N ), this implies jl � k(xl21 þ 1), and with j0 � k/2 we find jl � klþ1/2.

Asymptotically then, ex � ex21 þ kD2xþ1/2 for x sufficiently close to D. The exponential growth for

small x is therefore converted to a saturation when kx � kD2xþ1 or when x � (D þ 1)/2.

For large N and assuming log(k)�1 while still satisfying k�N, a continuum approximation for

the mean value of the disconnected GENs is determined by dividing the predicted GENs into

exponential growth for d�D/2 and a constant term for d �D/2. We estimate

hEdi � [
ÐD=2

0 dl nlell þ elD=2
ÐD

D=2 dl nl]=
ÐD

0 dl nl �
ffiffiffiffi
N
p

, where D ¼ log(N )/log(k) is the expected graph

diameter for an ER network, nl � ekl is the approximate number of nodes a distance l from i, and l �
log(k) is the asymptotic growth rate of the GENs before saturation. This leads to a scaling law of

hEdi �
ffiffiffiffi
N
p

in agreement with scaling for the two-state results, even in the limit of large D.

Equations (A 1) and (A 2) approximate the mean of the nonlinear terms by the function evaluated at

the mean: kE21l � kEl21. Noting that N�1
P

l f(xl) � f[N�1
P

l f(xl)]þ 1
2 f 00(hxi)s2

x for any sequence fxlg
with small variance sx, we expect that the approximation underlying equations (A 1) and (A 2) tends

to overestimate the value of the mean of kE21l ¼ kEl21 þ s2
E/kEl3 � kEl21 and thus our predicted

value of kEcl is expected to be underestimates (with a similar argument true for Ed). We emphasize

here these limits are valid only for 1� kkl� N, and these simplified models cannot accurately

capture the statistics of low-degree networks for which the neighbour statistics cannot be captured by

a simple mean value.
A.3. Simulated distributions of the GENs for ER networks
In figure 6, we show the distribution of the GENs for ER networks with varying N ¼ 512 and 1024 and

with kkl ¼ 4 and 20. In figure 6a,b we see that changing kkl radically alters the mean values of Eij as well as

the shape of the distributions, while changing N only marginally affects the distribution of the connected

GENs, shifting the peak a small amount while retaining a similar functional form. For kkl ¼ 4 the

distribution of Eij exhibits multiple peaks in figure 6a, with each local maximum corresponding to a

different degree of the node j and with the width of the distribution about the peak coming from

differing degrees of the node i. Such heterogeneity is less apparent for high-degree nodes (figure 6b),

where fluctuations in the degree of i or j have less of an impact on the GENs, and the distributions

are unimodal. For disconnected nodes, the distributions have a single dominant peak (figure 6c,d ),

and the location of the peaks is well predicted by equations (A 4) and (A 5) for kkl ¼ 20. Owing to the

significance of degree fluctuations for the smaller kkl ¼ 4, there are large differences between the

predicted and observed means.

The growth in the mean value for the disconnected GENs for increasing N is due to the increasing

sparsity of the network. Each node still has kkl neighbours on average, but a pair of nodes has

only �kkl2/N neighbours in common for large N. As the size of the network increases, there will be

fewer shared neighbours and the nodes will tend to be less close to one another. This has a marginal

effect on the closeness between nodes that share a direct link (for which we expect Ec � k for large N ),

but have a significant effect on disconnected nodes (for which Ed �
ffiffiffiffi
N
p

). In the limit as N!1 and

for fixed k, an ER network will drop below the percolation threshold (with kkl/N , 1) and become a

set of small components; in this limit the approximations underlying equations (A 1) and (A 2) break
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ER networks with N ¼ 512 and 1024 and with kkl ¼ 4 (a, c) or kkl ¼ 20 (b,d ). Note the changing axes in all figures. The
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For kkl ¼ 20, there is excellent agreement between the theoretical and simulated means. For kkl ¼ 4, the GENs are far more
heterogeneous due to the larger relative fluctuations than can be captured using the simple model in equations (A 4) and (A 5),
and the theoretical predictions do not agree well with the observed behaviour for both connected and disconnected nodes.
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down. For a fixed attachment probability kkl ¼ pN with N! 1, we expect the homogeneity conditions

required for equations (A 1) and (A 2) to remain valid, and thus that Ec �
ffiffiffiffi
N
p

.

Appendix B. GENs in heterogeneous networks
B.1. Generation of Barabási – Albert networks
The Barabási–Albert model generates a scale-free random network by combining the notion of growth

and preferential attachment. Beginning with some small initial network (a kernel), the method works by

adding new nodes incrementally, attaching each new node to existing nodes in the networks. Attachment

to existing nodes is preferential in that a new node has a probability of being attached to an existing node

proportional to the degree of the existing node: existing nodes with higher degree will tend to increase

degree, while existing nodes with lower degree will only rarely acquire a new connection. The parameters

in the model are

— n: number of nodes in initial clique

— m: number of edges in initial clique

— kmin: degree of new node upon addition (number of new edges added at each step)

— N: total number of nodes

— M: total number of edges

and the mean degree kkl of a node in the final network is given by kkl ¼ 2M/N. To generate a network

with a prescribed kkl, we need to choose n, m and kmin properly. If we require that our initial clique is fully

connected, preventing any initial node from being preferred over any other at first attachment, then m ¼
(n2 2 n)/2. We can also observe that for N/n� 1, M � Nkmin, as each new node introduces k edges by

definition. It is thus natural to choose this limiting case as a constraint to enforce for any network size,

meaning that we require M ¼ Nkmin and thus hki ¼ 2kmin. This determines m and kmin and allows us to
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solve for initial clique size n by equating the total number of edges in the final network to the sum of the

initial number of edges and the number of edges added by growth.

M ¼ mþ ðN � nÞkmin,

Nkmin ¼
n2 � n

2
þNkmin � nkmin

and n ¼ 2kmin þ 1:
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So the algorithm to generate a random Barabási–Albert network can be sketched as follows. Beginning

with a fully connected clique of n ¼ 2kmin þ 1 nodes, add N 2 n new nodes incrementally. Each new

node is attached to the existing nodes by choosing kmin unique existing nodes, each chosen with

probability proportional to the existing node’s degree, and add edges between the new node and this

existing set to the network. Because this algorithm requires beginning with a relatively large initial

clique to satisfy the mean degree constraint exactly, the final degree distributions feature heavier tails

than typical scale-free graphs, especially for large values of kkl/N (figure 7).
B.2. Topological closeness in scale-free networks
In contrast to the homogeneous degree distribution of the ER random network model, Barabási–Albert

(BA) networks [7] have a scale-free, heterogeneous degree distribution, and figure 8 shows that the

distribution for the GENs for BA networks are likewise heterogeneous for directly connected nodes. The

distribution for the GENs between nodes that share an edge (shown in figure 8a,b) appear to have a

heavy tail and approximately satisfy Pr(Eij ¼ E) � E2l for nodes that share a direct connection, with an

empirically determined scaling exponent near 1.5 for kkl ¼ 4 and around 2.1–2.2 for kkl ¼ 20 (shown in

figure 9, found using Mathematica’s LinearModelFit function). This is in comparison to the heavy tailed

degree distribution with the P(k)/ k23 scaling of the BA networks for both values of kkl. Variations in

the scaling exponent for Eij despite the fixed scaling exponent in the degree distribution does not

indicate a lack of robustness of the model: as N increases, each node with degree k . 1 is connected to a

greater number of nodes with degree k ¼ 1, thus decreasing the impact of shared neighbours for each

node in the network. The eventual scaling of the GENs for BA networks in the limit of N!1 is not

readily derived analytically, due to the heterogeneity of the networks that prevent mean field

approximations as in equations (A 1) and (A 2) from being appropriate. Low-degree nodes are often

linked to high-degree hubs in the BA algorithm, which leads to a significant decrease in the most

probable value of Eij seen in figure 9a,b compared to figure 6a,b. This is because randomly selected

nodes in the homogeneous ER networks probably have degree k, whereas a randomly selected node j
will most likely be of low degree in a BA network, and will have a smaller value of Eij to a hub (i).
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Interestingly, the distribution of the GENs for disconnected nodes does not depend as strongly on the

scale-free nature of the degree distribution, with similar qualitative features found in both figure 6c,d for

the ER networks and figure 8c,d for the BA networks. While the existence of hubs in the BA networks

tends to give a higher probability of finding smaller values of Eij for disconnected nodes in comparison to

ER networks, the most likely values of Eij are similar for disconnected nodes in either network topology

(in contrast to the radically different distributions for connected nodes). We have considered only

unweighted networks in this analysis, and allowing weighted edges further complicates the analysis of

the ‘typical’ GEN between nodes unless a homogeneity assumption on the distribution of weights is

likewise made.

Deviations from the best fit power law in figure 9 occur for large E due to the finite size of

the network. The scale-free nature of the network does not alter the arguments used to show the

saturation of the GENs for nodes at the diameter, and we therefore expect some upper bound on

the maximum value of closeness. We expect an exponential growth in the GENs for nodes that are a

large distance away from one another (as the network becomes more tree-like, with a low probability

of overlap in the neighbours) as was seen for the more homogeneous ER networks. There also

appears a lower bound on the GENs in figure 9, due to the fact that even neighbours shared between

nodes reduce the closeness between them. If we imagine that two nodes with degree k have a direct

connection between them and all neighbours are shared, representing the topology producing

the lowest closeness between the pair, the GENs will be Emin �
ffiffiffi
k
p

. This produces the lower bound at

E � 2 in figure 9a for kkl ¼ 4 and at E � 4.47 in figure 9b for kkl ¼ 20.

B.3. Asymmetry in random walks in Barabási – Albert networks
In the main text, we found that the asymmetry in the MFPT in a random walk on an ER network was highly

correlated with the asymmetry in the GENs, with a proportionality constant�
ffiffiffiffiffiffiffi
4N
p

for a wide range of N. In

figure 10, we see a similar scaling holds for random walks on BA networks, consistent with the good

agreement between the Erdó́s centrality and the random walk centrality for BA networks in figure 2.

B.4. GENs in networks with community structure
The usefulness of the nonlinear importance cij ¼ E21

ij on a network can rapidly determine meaningful

relationships between nodes in complex networks. To illustrate this, we consider the benchmark of

Liancichinetti, Fortunato and Radicchi (LFR) [10], which constructs a network of communities of
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variable sizes n (distributed as P(n)/ n2b), a scale-free distribution of the nodes (with P(k)/ k2g), and

which is characterized by the mixing parameter, m, as the fraction of inter-community edges. We have

previously shown [11] that the GENs can be used to detect the community structure underlying this

benchmark. When measuring the importance of a node, a global measure of centrality will generally

focus on nodes with high degree, but due to the heterogeneous density of edges between

communities, we expect a meaningful definition of the importance j assigns to i to differ significantly

depending on if i and j are in the same community.

Note that the determination of the GENs does not require or use knowledge of the community

structure. In figure 11, we determine the distribution of importance cij between nodes i and j that do

not share a direct connection (wij ¼ 0) for nodes within i’s community (red) and outside of i’s
community (blue) on an LFR network with N ¼ 103, k ¼ 25, g ¼ 2, b ¼ 1 and m ¼ 0.3. There is an

immediately apparent difference in the distributions, with a greater probability of a high importance if

i and j are in the same community due to the increased number of shared neighbours (even in the

absence of a direct connection). However, the intra-community and inter-community distributions

overlap, indicating that some pairs assign a greater importance across communities than another pair

within the same community. This is driven by the heterogeneous node degrees, with high-degree

nodes assigning little importance to any node (including within their own community) but receiving

high importance from low-degree nodes (including outside of their community). Increasing the LFR

parameter m (which increases the number of edges between communities) reduces the difference in

the distributions, but varying the other system parameters has only a minor impact on the clear

distinction between the two distributions (data not shown).

Appendix C. Topological closeness and dynamics on networks
In §4, the infection time of a target node j for a disease originating at node i was shown to be an

increasing function of three different models of topological closeness: Rij, tij and Eji. The infection time
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hij tended to be clustered when compared to tij (leading to significantly greater variation in the residuals).

This is driven by the very strong relationship between tij and the degree of the target node, depicted in

figure 12. To determine the relationship between degree and topological closeness, we computed

ht(k)i ¼
P

ij tijdk,kj=
P

ij dk,k j with dx,y ¼ 1 if x ¼ y and 0 otherwise. This represents the mean MFPT

(averaged over all origin nodes i and all target nodes j ) with the constraint that the degree of the

target node is k. We find a very strong dependence of the MFPT on the degree of the target node,

with the blue line showing t (k)/ k21. This strong relationship may be unsurprising, as the steady

state probability of being found at a node j is proportional to kj (as discussed in the main text). We

can likewise compute kh(k)l and kE(k)l and find they both have a much weaker dependence on the

degree of the target node (error bars are standard deviation of the mean).

Figure 4 was restricted to target nodes j for which kj . 4 for an ER network with kkl ¼ 4. This is

because while the infection times of low-degree nodes are still correlated with the GENs, with

approximately the same exponent in the empirical fit hij / Ea
ji, the value of the coefficient of

proportionality c appears to vary with kj for low-degree target nodes. This is illustrated in figure 13a
for rR ¼ 0.01rI, with the dashed line the same fitting exponent as in figure 4b but the points

corresponding to low-degree nodes (with kj � 4, different colours indicate different initial nodes). The
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predicted by the GENs, leading to significant weight far from the fit. (b,c) The quality of the fit for the MFPT and resistance
distance (respectively). In (d ), the poorness of the fit is quantified using the standard deviation. At rR! 0 the GENs perform
best, but resistance distance is a better predictor of infection time for larger rR. Note the change in scale from figure 4f.
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best fit for the GENs tends to underestimate the infection time of low-degree nodes. The same qualitative

behaviour is seen for tij as well in figure 13b, with hij tending to be underestimated by the best fit. The

wide variation in figure 13 is consistent with that of figure 4c, and we expect that tij will be a worse

predictor of the infection time than the GENs. In figure 13c, we see the resistance distance is

qualitatively similar to the MFPT (more clustered and with greater fluctuations than the GENs), but

importantly the predictions for the infection times are not systematically underestimated as they are in

figure 13a. We find that the GENs remain a better predictor of the infection time than either R or t for

rR � 0, but that resistance distance quickly overtakes the GENs as rR increases. It is important to note

the difference in the axes between figures 13d and 4f, with the standard deviation for all three

measures significantly higher with the inclusion of low-degree nodes than was seen for solely

high-degree nodes.
References

1. Bassett DS, Owens ET, Daniels KE, Porter MA.

2012 Influence of network topology on sound
propagation in granular materials. Phys. Rev. E
86, 041306 (doi:10.1103/PhysRevE.86.041306)

2. Barthelemy M. 2011 Spatial networks. Phys. Rep.
499, 1 – 101. (doi:10.1016/j.physrep.2010.11.002)

3. Bacompte J, Jordano P, Olesen JM. 2006
Asymmetric coevolutionary networks facilitate
biodiversity maintenance. Science 312, 431 –
433. (doi:10.1126/science.1123412)

4. Newman MEJ. 2002 Spread of epidemic disease
on networks. Phys. Rev. E 66, 016128. (doi:10.
1103/PhysRevE.66.016128)

5. Balcan D, Colizza V, Goncalves B, Hu H, Ramasco
JJ, Vespignani A. 2009 Multiscale mobility
networks and the spatial spreading of infectious
diseases. Proc. Natl Acad. Sci. USA 106,
21 484 – 21 489. (doi:10.1073/pnas.
0906910106)

6. Keeling M. 2005 The implications of network
structure for epidemic dynamics. Theor. Pop.
Biol. 67, 1 – 8. (doi:10.1016/j.tpb.2004.08.002)

7. Barabási AL, Albert R. 1999 Emergence of
scaling in random networks. Science 286, 509 –
512. (doi:10.1126/science.286.5439.509)

8. Barrat A, Barthelemy M, Pastor-Satorras R,
Vespignani A. 2004 The architecture of complex
weighted networks. Proc. Natl Acad. Sci. USA
101, 3747 – 3752. (doi:10.1073/pnas.
0400087101)

9. Newman MEJ. 2010 Networks: an introduction.
Oxford, UK: Oxford University Press.
10. Liancichinetti A, Fortunato S, Radicchi F. 2008
Benchmark graphs for testing community
detection algorithms. Phys. Rev. E 78, 46110.
(doi:10.1103/PhysRevE.78.046110)

11. Morrison G, Mahadevan L. 2012 Discovering
communities through friendship.
PLoS ONE 7, e38704. (doi:10.1371/journal.
pone.0038704)

12. Girvan M, Newman M. 2002 Community
structure in social and biological networks. Proc.
Natl Acad. Sci. USA 99, 7821 – 7826. (doi:10.
1073/pnas.122653799)

13. Noh JD, Rieger H. 2004 Random walks on
complex networks. Phys. Rev. Lett. 92, 118701.
(doi:10.1103/PhysRevLett.92.118701)

14. Klein DJ, Randic M. 1993 Resistance distance.
J. Math. Chem. 12, 81 – 95. (doi:10.1007/
BF01164627)

15. Newman MEJ. 2005 A measure of betweenness
centrality based on random walks. Soc.
Networks 27, 39 – 54. (doi:10.1016/j.socnet.
2004.11.009)

16. Pastor-Satorras R, Vespignani A. 2001 Epidemic
spreading in scale-free networks. Phys. Rev. Lett.
86, 3200 – 3203. (doi:10.1103/PhysRevLett.86.
3200)

17. Ball F, Neal P. 2008 Network epidemic models
with two levels of mixing. Math. Biosci. 212,
69 – 87. (doi:10.1016/j.mbs.2008.01.001)

18. Franceschet M. 2011 PageRank: standing on the
shoulders of giants. Commun. ACM 54, 92 – 101.
(doi:10.1145/1953122.1953146)
19. Ghoshal G, Barabási AL. 2011 Ranking stability
and super-stable nodes in complex networks.
Nature Comm. 2, 394. (doi:10.1038/
ncomms1396)

20. Blumm N, Ghoshal G, Forró Z, Schich M,
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