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Meniscus instabilities in thin elastic layers

John S. Biggins a and L. Mahadevan *bc

We consider meniscus instabilities in thin elastic layers perfectly adhered to, and confined between,

much stiffer bodies. When the free boundary associated with the meniscus of the elastic layer recedes

into the layer, for example by pulling the stiffer bodies apart or injecting air between them, then the

meniscus will eventually undergo a purely elastic instability in which fingers of air invade the layer. Here

we show that the form of this instability is identical in a range of different loading conditions, provided

only that the thickness of the meniscus, a, is small compared to the in-plane dimensions and to two

emergent in-plane length scales that arise if the substrate is soft or if the layer is compressible. In all such

situations, we predict that the instability will occur when the meniscus has receded by approximately

1.27a, and that the instability will have wavelength l E 2.75a. We illustrate this by also calculating the

threshold for fingering in a thin wedge of elastic material bonded to two rigid plates that are pried apart,

and the threshold for fingering when a flexible plate is peeled from an elastic layer that glues the plate to

a rigid substrate.

1 Introduction

Interfacial instabilities are commonly associated with fluid–
fluid interfaces. The most celebrated examples are Saffman–
Taylor fingering1 when a less viscous fluid invades a more
viscous one in a porous media, Rayleigh–Taylor fingering2,3

when a dense fluid invades a lighter one under the influence of
gravity, and the Rayleigh–Plateau instability where a column of
fluid breaks into droplets under the influence of its surface
tension.4 More recently, there has been growing interest in
analogs of these fluid instabilities in soft solids, including
direct observations of Rayleigh–Taylor fingers in soft solid
slabs5 and surface tension driven instabilities in soft solid
cylinders.6–8 Here we focus on a range of recent observations
of fingering in soft solids.9,10 These instabilities typically occur
in thin elastic layers adhered to rigid bodies that arise naturally
whenever a soft polymeric glue is used, or when a rubber gasket
forms a seal.11

The viscous analogue of this instability, Saffman–Taylor
fingering has long been explored, experimentally and theoreti-
cally, by confining a viscous fluid between two glass plates
(a Hele Shaw cell) then injecting a less viscous fluid into it.12

It is found that the less viscous fluid invades the more viscous

fluid via radial finger-like protrusions, with a wavelength set by
a competition between capillary and viscous stresses. Many
previous studies have examined how the morphology of fluid
Saffman–Taylor fingers changes when the fluid properties are
changed. These included studies of fingering involving high
viscosity contrast and low interfacial tension fluids that yield
thin fractally branching fingers,13,14 associated with a transi-
tion from fingering to fracture,15–22 and similar patterns in
yield stress and shear thinning fluids,15,23–26 and chemically
reactive interfaces.27–29

The soft-solid analogue of this experiment consists of pump-
ing air into a cavity in a strongly confined thin elastic layer.9

At first the cavity simply dilated, but, at a critical pressure, the
uniformly circular meniscus gives way to fingers of air that
invaded the solid layer. Identical fingers have also been seen in
elastic layers trapped between rigid bodies if the air is induced
to invade the solid layer by pulling the bodies apart while
maintaining adhesion.10,30 In both cases the fingering transition
has been observed to be reversible, rate-independent and subcritical,
in sharp contrast with the viscous analogs where the fingering
instability is irreversible, rate dependent and supercritical.

This class of interfacial instabilities in confined solids is one
of four different elastic instabilities have been identified in
elastic layers in tension. Three of these arise when an elastic
layer adhered between rigid bodies is pulled apart whilst
maintaining adhesion. This leads to one of the following:
cavitation in the bulk of the elastic layer,31 fingering at the
meniscus of the elastic layer10,30 or an undulating fringe
instability localized around the contact line between the layer’s
meniscus and the rigid body.32,33 The fourth tensile instability
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is entirely different: when adhesion between the layer and the
body fails, 2-D patterns of adhered and de-adhered regions
emerge on the previously adhered elasticity.34–40 Which of
these instabilities occurs first depends on the aspect ratio of
the elastic layer. Cavitation occurs in very thin layers, fingering
in layers of intermediate thickness, and fringing in layers that
have an in-plane dimension comparable to their thickness.41

Here we show that the key driver for fingering is inward
displacement of the layer’s meniscus, which can be achieved
by pulling apart on the rigid bodies, but also arises via direct
fluid invasion. Thus, unlike fringing and cavitation, meniscus
fingering is not an inherently tensile instability, but rather an
invasive instability.

Previously theoretical frameworks for understanding the
elastic fingering transition10 are based on two approximations:
(i) the displacements in the elastic layer vary quadratically
through its thickness, and (ii) the deformations of the elastic
layer preserve its depth averaged volume. These approxima-
tions allow us to model the three-dimensional layer with an
effective two-dimensional elastic theory to predict the onset
and wavelength of the fingering instability in a minimal recti-
linear setting.10 Generalizing this framework to annuluar geo-
metries predicted elastic fingering on the inner circumference
when the plates are pulled apart or when air is pumped into the
central cavity, establishing the equivalence of these two super-
ficially different modes of fingering.42 Here, we seek to move
beyond the very specific geometries treated previously and
investigate the generality of fingering in elastic meniscii.

We first consider elastic fingering in a thin layer, with
in-plane dimensions much larger than its thickness. We show
that if the meniscus of the elastic layer recedes into the layer
then it will eventually become susceptible to fingering, and that
both the threshold degree of recession and the wavelength of
the fingers depend only on the thickness of the layer, not on
any other factors pertaining to the morphology of the layer or
the loading of the rigid bodies. This shows that the form of the
elastic fingering transition is relatively generic.

We illustrate this by considering fingering during the
opening a thin elastic wedge and peeling a glued plate from
a rigid substrate. Using our general results for the onset of
fingering and the resulting instability wavelength, we deploy
them in these specific geometries to calculate the degree of
loading required for the meniscus of the elastic layer to retreat
sufficiently and trigger fingering. The wedge problem is of
interest because it offers an alternative perspective on a very
old problem43,44 moving our focus from the tip of a loaded
elastic wedge to the thick end where fingering first occurs.
The peeling problem is noteworthy because we do not treat the
substrate as rigid, allowing us to ask how stiff the rigid body
needs to be for fingering to occur. We show the bending of the
plates introduces a new in-plane length scale, a1/2(k/m)1/6,
where k is the plate bending modulus, m the layer’s elastic
modulus and a its thickness, which quantifies the length-scale
over which the plate bends. Fingering follows the universal
form provided this length-scale is much larger than the
thickness a.

In the final sections we consider the effects of finite bulk
modulus and surface tension on elastic fingering, showing that

the former introduces a second in-plane length, a
ffiffiffiffiffiffiffiffiffi
B=m

p
, which

must also be large compared to a for fingering to follow the
universal form, while the latter introduces an elasto-capillary
length g/m which must be short compared to a for surface
tension to remain negligible. Our study concludes by pointing
out that elastic fingering has a universal form in layers that are

thin compared to their in-plane length scales, including a
ffiffiffiffiffiffiffiffiffi
B=m

p
and a1/2(k/m)1/6, but thick compared to g/m. Given the latter scale
is typically measured in microns, elastic fingering will have the
same form in a wide range of layers of intermediate thickness.

2 Mechanics of meniscus fingering in
thin layers

We consider a thin elastic layer that might have a varying
thickness, and a complex in-plane shape with curved boundaries,
confined between stiff but not necessarily completely rigid bodies.
We assume that the layer is thin in the sense that all the length
scales, {li}, that characterize the geometry of the layer (for example
the layer’s in-plane width, the radii of curvature of its boundaries
and the length scales over which the thickness changes and over
which the rigid bodies flex) are large compared to the thickness of
the layer. We then focus our attention on a region at the meniscus
of the elastic layer that is large compared to its thickness, a, but
small compared to all the other length-scales. This smallness
means that our region has essentially constant thickness and an
essentially straight boundary. This allows us to construct a locally
rectilinear coordinate system so that the elastic layer occupies the
region �a/2 o z o a/2, y 4 0 as shown in Fig. 1.

When air is induced to invade the elastic layer by either
pressurizing it so that it is physically forced to invade the layer,
or by prying apart the stiff bodies which increases the volume
between them and sucks air in, the meniscus is forced to
deform. In either case we assume adhesion is maintained
between the elastic layer and the stiff-bodies, so that the
meniscus takes the form sketched on the right of Fig. 1. If
the inward displacement of the central plane of the elastic layer
at the boundary is u, the strain at the boundary scales as u/a.
The meniscus loses stability and invaginates when this strain is
of order unity,10 which is when these non-linearities become
important. An immediate consequence of this observation is
that we expect any separation of the stiff bodies to be much less
than the thickness of the elastic layer. To see this, we note that
if the rigid bodies separate by an amount Da the change in
volume between them is DaA, where A is the in-plane area of the
layer. For soft elastic layers that are almost incompressible, this
must equal the volume of air sucked in, which we can estimate
as uac where c is the length of the meniscus of the layer. Putting
these two results together, we conclude that Da B a2c/A { a at
threshold, so that in the limit of a very thin layer, the required
separation becomes vanishingly small.

To go beyond this scaling result, we start with a description
of the elastic deformation of the layer by the three-dimensional

Paper Soft Matter



7682 | Soft Matter, 2018, 14, 7680--7689 This journal is©The Royal Society of Chemistry 2018

displacement field U(x,y,z). Focusing our attention on the
meniscus region sketched in Fig. 1, we note that the displace-
ment of the rigid bodies is very small compared to a, and so we
neglect it as a first approximation. Perfect adhesion between
the stiff bodies and the layer then requires U(x,y,�a/2) = 0.
Since this boundary region also has a constant thickness it is
symmetric around the z = 0 plane. We exploit the thinness and
symmetry of the meniscus region to expand out its displace-
ment field to second order in z as

U(x,y,z) = (1 � 4z2/a2)u(x,y) (2.1)

where u is the two dimensional in-plane displacement of a
point on the central (z = 0) plane. Using r as the two dimen-
sional (in the x–y plane) gradient operator and I as the two
dimensional identity tensor, we can then write the deformation
gradient tensor Fij = dij + qjUi as

F = I + (1 � 4z2/a2)ru � 8zuẑ/a2 + ẑẑ. (2.2)

We model the elastic layer as an incompressible neo-
Hookean material with an elastic energy density given by
1

2
Tr F � FTð Þ � 3ð Þ. This energy density can be explicitly inte-

grated in the thickness (z) direction to give an effective two-
dimensional elastic energy, while enforcing incompressibility
in terms of a two dimensional pressure field P(x,y) as a
Lagrange multiplier which constrains the thickness averaged
volume at each point in the x–y plane. The two-dimensional
energy density of the elastic layer is then given by

L½u;P� ¼ m
ða=2
�a=2

1

2
Tr F � FT
� �

� 3
� �

� PðDet Fð Þ � 1Þdz (2.3)

¼ 5ma
6

1

2
Tr G � GT
� �

� 2þ 16

5
ju
�
aj2 � PðDet Gð Þ � 1Þ

� �
(2.4)

where we have introduced an effective two dimensional deforma-

tion gradient G ¼ I þ 4

5
ru. We see that the effective two dimen-

sional energy density consists of a standard two-dimensional

elastic energy and a term that penalizes displacement directly
(rather than gradients of displacement), which captures the fact
that displacing the central plane of the layer strains the layer
adhered to the boundary at z = �a/2. We now seek to minimize
this energy, so we find the Euler–Lagrange equations for the two
fields u and P:

4

5
a2r2u�Det Gð ÞG�T � a2rP ¼ 8u (2.5)

Det(G) = 1. (2.6)

These Euler–Lagrange equations are augmented by the follow-
ing natural boundary condition (given by qL/qru�n̂ = 0 on the
boundary)

(G � P Det(G)G�T)y=0�ŷ = 0. (2.7)

We next consider the deformation of the elastic layer prior to
fingering. This base state is characterized by u varying over the
long length scales associated with the in-plane geometry of the
layer but not on length scales comparable to the thickness of
the layer. We therefore Taylor-expand u on the boundary to get

uðx; yÞ ¼ c1 þ c2
x

l1
þ c3

y

l2
þ c4

x2

l32
þ :::

� �
x̂

þ d1 þ d2
x

l4
þ d3

y

l5
þ d4

x2

l62
þ :::

� �
ŷ;

(2.8)

where the {li} are in-plane lengths with li c a. Since the region
of the meniscus we are focussing on is small compared to all
the in-plane lengths, only the zeroth order term in this series is
relevant, giving

u(x,y) = c1x̂ + d1ŷ. (2.9)

With this very simple form for u we see that G = I, i.e. eqn (2.6)
is already satisfied. Solving eqn (2.5) for P we get

P ¼ P0 �
8c1x

a2
� 8d1y

a2
; (2.10)

Fig. 1 Sketch of a highly elastic layer (shown in grey) between and adhered to two stiff bodies. We consider a very general case in which the shape of the
layer may be any shape, the thickness of the layer may vary and the stiff bodies may bend rather than being completely rigid, but we assume that all of
these forms of variation occur over distances much larger than the layer thickness. We concentrate on a section of the boundary, magnified in the
middle, which is large compared to the thickness of the layer but small compared to all these other length-scales of variation. In this region the elastic
layer has constant thickness a and a single straight meniscus. We set up an x�y�z coordinate system on the boundary as shown in the sketch such that
the undeformed elastic layer occupied the region �a/2 o z o a/2, y 4 0. Finally, on the right, we sketch a 2-D slice of this magnified region (at constant
x). The top figure shows the undeformed layer confined between the stiff bodies. The bottom figure shows the layer after air has been drawn in (for
example by very slightly separating the bodies) showing how air invades the layer whilst perfect adhesion is maintained between the layer and the stiff
bodies. The displacement u measures how far the meniscus of the layer has retreated.
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where P0 is a constant of integration. We substitute these
results into the boundary condition, eqn (2.7), to get

1� P0 þ
8c1x

a2
¼ 0; (2.11)

from which we conclude that P0 = 1 and c1 = 0, i.e. prior to fingering
all displacements near the meniscus are perpendicular to it.

The uniform displacement receding displacement of the
meniscus d1 in the base state implies that the term on
the right of eqn (2.5) into a spatially homogeneous driving
force. The origin of this force is the through-the-thickness
quadratic profile of the displacement in the layer. This leads
to the stress in the layer varying linearly as one approaches
the boundary (eqn (2.10)). We thus see that in general, a
sinusoidal perturbation of an interface is associated with a
net movement of material along the interface outward normal.
There is thus an analogy with the case of a gravitational field
acting on an elastic interface, as this will cause a sinusoidal
perturbation to release gravitational potential energy so (pro-
vided this release outweighs the perturbation’s elastic cost)
that fingers can grow as in the elastic analog of Rayleigh–
Taylor fingers.5 Correspondingly, in the confined elastic layer
case, a sinusoidal perturbation will generate a net movement
of the elastic layer back towards its zero displacement, releas-
ing some of the elastic energy associated with the quadratic
displacement profile. If this energy release is larger than the
shear elastic energy associated with the distortion, the pertur-
bation will grow and the front will be unstable. Elastic finger-
ing is therefore mathematically analogous to Rayleigh–Taylor
fingering, although it occurs in physical circumstances remi-
niscent of Saffman–Taylor fingering.

To determine when fingering becomes favourable, we now
consider the stability of the above base state to fingering by
adding an infinitesimal short-wave length perturbation to the
base state giving

u = (d1 + ef ( y)cos(kx))ŷ + eg( y)sin(kx)x̂ (2.12)

P ¼ 1� 8d1y

a2
þ ehðyÞ cosðkxÞ: (2.13)

The effective two-dimensional deformation tensor G is now
given by

G ¼
1 0

0 1

 !
þ 4

5
e

gð yÞk cosðkxÞ g0ðyÞ sinðkxÞ

�f ðyÞk sinðkxÞ f 0ð yÞ cosðkxÞ

 !
:

(2.14)

The first order correction to the volume conservation equation
(eqn (2.6)) is simply

gðyÞ ¼ �f
0ðyÞ
k
: (2.15)

Then, the inverse–transpose of the two-dimensional deforma-
tion tensor G is given by

Det Gð ÞG�T ¼
1 0

0 1

 !
þ 4

5
e

f 0ðyÞ cosðkxÞ f ðyÞk sinðkxÞ

�g0ðyÞ sinðkxÞ gðyÞk cosðkxÞ

 !
;

(2.16)

so it is straightforward to expand out the x component of
the bulk Euler–Lagrange equation (eqn (2.5)) to first order in
e to get

�4
5
a2k2gðyÞ þ 4

5
a2g00ðyÞ þ a2khðyÞ þ 4

5
8 f ðyÞkd1 ¼ 8gðyÞ;

(2.17)

which, upon substituting for g(y) using eqn (2.15), can be
rearranged to give

hðyÞ ¼ � 4

5a2k2
8d1k

2f ðyÞ þ 10þ a2k2
� �

f 0ðyÞ � a2f 000ðyÞ
� �

:

(2.18)

The y component of eqn (2.5) can also be expanded out to first
order in e, giving

�4
5
a2k2f ðyÞ þ 4

5
a2f 00ðyÞ � a2h0ðyÞ þ 4

5
f 0ðyÞ8d1 ¼ 8f ðyÞ; (2.19)

which, upon substitution for h( y) and g( y) (from eqn (2.15) and
(2.18)) gives the following fourth order equation for f ( y):

k2(10 + a2k2) f ( y) � 2(5 + a2k2) f 00( y) + a2f 0 0 0( y) = 0,
(2.20)

subject to stress free boundary conditions (eqn (2.7)) at y = 0,
and decay conditions at infinity, f ( y - N) - 0. We thus
initially write f as the sum of the two decaying solutions:

f ðyÞ ¼ Ae�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
10þa2k2
p

y
a þ Be�ky: (2.21)

To find the constants of integration, (A, B) we expand the stress-
free boundary condition, eqn (2.7), to linear order in e giving

4

5

g0ð0Þ

f 0ð0Þ

 !
� 4

5

f ð0Þk

gð0Þk

 !
�

0

hð0Þ

 !
¼

0

0

 !
: (2.22)

Substituting our results for f, g and h from (2.16), (2.19) and
(2.22) into the x component of the boundary conditions yields
an algebraic equations for A/B which we can solve to get

A

B
¼ � a2k2

5þ a2k2
: (2.23)

We can then use the y component of the boundary condition to
find the uniform base state of the displacement d1 in the y
direction. Noting that f 0( y) = �kg0( y), the equation is equivalent
to 8f 0(0) = 5h(0), or, substituting in for f and h,

8� Bk
ak

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2k2 þ 10
p

a2k2 þ 5
� 1

 !
¼ 5� 8B

a

1

ak
� 4d1=a

a2k2 þ 5

� �
:

(2.24)

Solving for d1, the threshold for instability is then:

d1

a
¼

25þ a2k2 10þ ak ak�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10þ a2k2
p� �� �

20ak
: (2.25)

Finally, to obtain the threshold of the first unstable fingering
mode, we minimize the above expression over k to find that the
first unstable mode has a wavelength (l = 2p/k) of

l = 2.74601. . .a (2.26)
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and occurs at a threshold value of d1

d1 = 1.26756. . .a. (2.27)

We recall that the coefficient d1 corresponds to the displace-
ment of points on the boundary of the elastic layer half way
between the stiff bodies. The above calculation reveals any
mechanism designed to draw air into a thin confined elastic
layer will first cause the layer to retract homogeneously normal
to the meniscus and then, when the layer has retracted by
amount 1.27. . .a, fingers of air with a wavelength of 2.74. . .a
will protrude into the layer.

These universal geometric conditions for elastic fingering
(including wavelength, threshold retraction strain) apply when-
ever a confined layer retracts, provided only that the layer is
thin. This thinness requirement allows both the confinement
geometry and base-state retraction to vary in-plane, provided
they do so on length-scales long compared to a, the boundary
layer thickness.

3 Meniscus fingering induced by
opening wedges

To move beyond this general picture to specific situations, we
first consider the opening of a thin wedge-shaped elastic layer
confined between rigid plates. The initial angle of the elastic
wedge is 2a and the layer is perfectly adhered to the two plates
as sketched in Fig. 2. Air is then drawn into the layer by opening
the angle between the plates to 2(a + da). The requirement of
layer-thinness here means the wedge angle must be small, a {
1, so that, for example, the layer thickness varies very little
within the finger-forming region at the open end of the wedge.
Using an r–y–z coordinate system (as shown in Fig. 2) the elastic
layer initially occupies the region r o l, �a o y o a.

After deformation the point in the elastic layer at (r, y, z) is
moved to (R(r,y,z), Y(r,y,z), Z(r,y,z)). In a thin wedge y is the
thickness coordinate so we expand out these fields to second
order in y. The symmetry condition y - �y implies that
R(r,�a,z) = r, Z(r,�a,z) = z and Y(r,�a,z) = �(a + da) to maintain
perfect adhesion between the layer and the plates, giving

R(r,y,z) = r + (1 � (y/a)2)ur(r,z) (3.28)

Yðr; y; zÞ ¼ aþ da
a

y (3.29)

Z(r,y,z) = z + (1 � (y/a)2)uz(r,z). (3.30)

The general form for the deformation gradient, F, in polar
coordinates (after a rigid body rotation that ensures the refer-
ence and target points have y = Y) is

F ¼

@R

@r

1

r

@R

@y
@R

@z

R
@Y
@r

R

r

@Y
@y

R
@Y
@z

@Z

@r

1

r

@R

@y
@Z

@z

0
BBBBBBBB@

1
CCCCCCCCA
: (3.31)

We again formulate a two dimensional effective energy for the
elastic layer by modeling the layer as a neo-Hookean solid with
thickness (y) averaged volume preservation, leading to the
effective energy density

L ¼ m
ða
�a

1

2
Tr F � FT
� �

� 3
� �

� PðDet Fð Þ � 1Þrdy; (3.32)

which is directly analogous to eqn (2.3). While it is possible to
determine the onset of wavelength of fingering in this system
by substituting the quadratically varying fields (eqn (3.28)–
(3.30)), evaluating the y integral to produce a two-dimensional
energy, finding the Euler–Lagrange equations and boundary
conditions for the new energy and then conducting a stability
analysis on these equations. However, in the light of the results
in the previous section we see that we only need to treat the
‘‘base-state’’ to see what separation of the plates, da, will lead to
sufficient retraction of the layer to drive fingering. We therefore
restrict our attention to fields that are translationally invariant in
the z direction, giving

ur(r,z) = ur(r) (3.33)

uz(r,z) = 0, (3.34)

which simplifies F to

F ¼

1� y2

a2

� �
ur
0 ðrÞ þ 1 �2yurðrÞ

a2r
0

0
ðaþ daÞ

a
1þ 1� y2

a2

� �
urðrÞ
r

� �
0

0 0 1

0
BBBBBBB@

1
CCCCCCCA
:

(3.35)

Furthermore, the form of the field ur(r) is completely deter-
mined by the constraint that the thickness averaged volume be
preserved (which would be the Euler–Lagrange equation given
by varying the pressure in the original energy). This constraint

Fig. 2 Sketch of a highly elastic layer (light grey) between and adhered to two rigid plates (dark grey) in a wedge shape. On the left is the unstrained state,
labeled with coordinates (r, y, z), in which the elastic layer occupies the region �a o y o a and r o l. In the middle is the base deformation state, labeled
with coordinates (R, Y, Z), in which the plates have been opened to make an angle of 2(a + da), drawing air into the elastic layer. At a critical value of da
fingers of air will protrude into the layer along the r = l boundary, as sketched on the right.
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is simply ða
�a
ðDet Fð Þ � 1Þrdy ¼ 0; (3.36)

which, upon substituting the above form for F gives

15dar + 2(a + da)((4ur(r) + 5r)ur
0(r) + 5ur(r)) = 0. (3.37)

This has two solutions for ur(r) of the form,

urðrÞ ¼
1

4
�5r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ 5r2ð5a� daÞ

aþ da

s0
@

1
A; (3.38)

where A is a constant of integration. Perfect adhesion at the
point r = 0 requires that ur(0) = 0, which sets A = 0. The
requirement that if da = 0 then there should be no displace-
ment, so ur(r) = 0, requires us to choose the solution

urðrÞ ¼
1

4
r �5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�5þ 30a

aþ da

r !
: (3.39)

Inspecting the form of the quadratic fields, (eqn (3.28)–(3.30)),
we see that ur(r) represents the displacement in the r direction
of a point on the central (y = 0) plane of the wedge. If the wedge
has total length l then the thickness of the wedge at its fat-end
is 2al. We know from the previous section that the onset of
fingering will occur when u(l) = �1.27. . .2al, which given us the
expression

1

4
�5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�5þ 30a

aþ da

r !
¼ �1:27 . . .� 2a: (3.40)

If we expand this out for small da we discover that

da = 3.38015. . .a2. (3.41)

Provided the wedge is thin (i.e. a { 1) the expansion is self-
consistent. We see, as expected, that the critical degree of
opening depends only on the initial angle of the wedge and
that, for thin wedges, the required degree of opening to trigger
fingering becomes is negligible compared to the thickness of
the wedge. We also note that we can also express the wave-
length of the instability in terms of the parameters of the
wedge as

l = 2.74601. . . � 2al = 5.49202. . . � al. (3.42)

In thicker wedges, we still expect fingering but it will not follow
the universal form. This is so even though the elastic fields

associated with the fingers are localized to the open-end of the
wedge, they will never-the-less ‘‘feel’’ the diminishing layer
thickness and retraction towards the wedge tip. In this case,
fingering is expected to morph into a ‘‘fringing’’ form, with
separate undulations at the top and bottom plates of the
wedge.32,33

4 Meniscus fingering induced by
peeling

Next we consider a thin elastic layer between a completely rigid
substrate and a stiff but somewhat flexible plate that is gently lifted
up at one end. This situation is often associated with peeling an
adhesive layer with a backing, as sketched in Fig. 3. As in the wedge
geometry previously considered, the peeling action increases the
volume between the plate and the substrate causing the meniscus
of the elastic layer to retreat. This ultimately leads to fingers of air
invading the layer at the meniscus. Although the system super-
ficially resembles previous work on peeling plates from soft elastic
layers,35–37,39,40 those studies focussed on the movement of the
contact line between layer and plate caused by de-adhesion and
were in a linear-elastic regime. In contrast, in the current study, we
assume that adhesion is maintained and we operate in the non-
linear elastic regime.

Since the plate is not perfectly rigid, we have to understand
both its shape as well as that of the meniscus. To model this
situation we take our elastic layer to initially occupy the region
0 o z o a, y 4 0 and to be perfectly adhered to a rigid substrate
at z = 0 and to the plate, which is initially at z = a. We then
imagine lifting the end of the plate so that the point on the
plate initially at (x, y, a) moves to (x, y, a + h(y)). Our assumption
that the plate only moves in the z direction is justified provided
that h0(y) { 1 since the change to its length caused by this
deformation is quadratic in h0(y).

As in our previous examples, we expand the displacement
field in the bulk of the elastic layer U(x,y,z), to leading order in z
and impose the condition of perfect adhesion between the layer
and the rigid substrate (at z = 0) and the plate (at z = a) giving:

Uðx; y; zÞ ¼ 4
zða� zÞ

a2
uðx; yÞ þ z

a
hðyÞẑ; (4.43)

where, as in our general treatment, u(x,y) is a two-dimensional
vector in the x–y plane corresponding to the x–y displacement
of a point in the elastic layer at (x, y, a/2). We note that the
in-plane displacement has a symmetry around z = a/2, which is

Fig. 3 A thin elastic layer (grey) between a completely rigid substrate (thick black line, bottom) and a stiff (but somewhat flexible) plate (black line, top).
On the left is the configuration of plate and layer before any deformation, with the layer occupying the region y 4 0, 0 o z o a and the plate in a flat
configuration at z = a. On the right is the situation after the (y = 0) end of the plate has been lifted by an amount h0. Consequently the plate at y has lifted
by an amount h(y) and air has been drawn into the elastic layer at the y = 0 boundary. Fingers of air will eventually invade the layer at this boundary.
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perhaps unexpected given the lack of symmetry in this geo-
metry. However, a bit of reflection allows us to see that since any
asymmetry arises via in-plane variation of h, and this is a higher
order effect given that h0(y) { 1, the observed symmetry is to be
expected. This displacement defines a deformation gradient
F = dij + qjUi which, using r as the in-plate (x–y) gradient operator
and I and the in-plane (x–y) identity matrix, we can write as.

F ¼ I þ 4zða� zÞ
a2

ruþ 4ð2z� aÞ
a2

uẑþ ð1þ h=aÞẑẑ: (4.44)

As in our previous examples, we model the elastic layer as
neo-Hookean and add to the elastic energy a two dimensional
pressure field P(x,y) to implement the thickness (z) averaged
volume preservation. However, in this case our elastic energy
for the layer is supplemented by an energetic penalty for

bending the plate, which we estimate as
1

2
kh00ðyÞ2 per unit area

of the plate, where k is the bending modulus of the plate. This
leads us to the full two-dimensional effective energy density

L ¼ m
ða
0

1

2
Tr F � FT
� �

� 3
� �

� PðDetðFÞ � 1Þdzþ 1

2
kh00ðyÞ2:

(4.45)

As with the wedge-case, we can simplify our analysis con-
siderably by restricting attention to the ‘‘base-state’’ deforma-
tions prior to fingering. In this case we expect translational
symmetry (in the x direction) to be maintained, so that

P(x, y) = P( y) (4.46)

u(x,y) = uy( y)ŷ. (4.47)

Unfortunately, even after focussing on these one-dimensional
fields, the resulting Euler–Lagrange equations for L do not admit
a closed form solution. However, by assuming that the plate is
very much stiffer than the elastic layer, we note that its displace-
ment decays over a length l that is much greater than the
thickness of the elastic layer, that is l c a. This yields a slowly
varying in-plane base state, that, as we show, is required for
fingering to adopt a universal form. At the instability threshold
the displacement of the elastic layer uy B a, and further that
volume conservation in the elastic layer implies that hl B uya, so
that h B uy � (a/l) B a2/l. We therefore rewrite h( y) and uy( y) as

uy( y) = aũy( y/l) (4.48)

hðyÞ ¼ a2

l
~hðy=lÞ; (4.49)

where ũy and h̃ are both dimensionless functions of O(1).
Furthermore, since these functions also have rescaled argu-
ments, y/l, at threshold they decay over an interval y/l B 1, and
thus their derivatives are also O(1). Expanding each term in the
energy (4.46) in the small parameter a/l and identifying the
leading order terms which dominate when the layer is thin then
implies that the first (neo-Hookean) term evaluates toða

0

1

2
ðTr F � FT
� �

� 3Þdz ¼ a
8

3
~uy

y

l

� 	2
þ O

a

l

� 	� �
; (4.50)

while the constraint term evaluates toða
0

ðDet Fð Þ � 1Þdz ¼ a
a

l
~h
y

l

� 	
þ 2

3
~uy
0 y

l

� 	� �
þ O

a2

l2

� �� �
:

(4.51)

We see that for these terms to be comparable, we expect P B l/a.
Returning to our original variables, we can therefore write the
effective energy density, to leading order, as

L ¼ ma
8uyð yÞ2
3a2

� PðyÞ hðyÞ
a
þ 2

3
uy
0 ðyÞ

� �� �
þ 1

2
kh00ðyÞ2: (4.52)

This yields the Euler–Lagrange equations for the three fields, uy,
h and P as:

8uy( y) + a2P0( y) = 0 (4.53)

mP( y) � kh0 0 0 0( y) = 0 (4.54)

3h( y) + 2auy
0( y) = 0. (4.55)

and must be augmented by a Dirichlet boundary condition
h(0) = h0, consistent with the fact that the end of the plate has
been lifted a distance h0, and h0(x), h00(x), h0 0 0(x) decays far from
the meniscus. Minimization of the energy with respect to
uy(0) and h0(0) also leads to the additional natural (Neumann)
boundary conditions qL/quy

0|y=0 = 0 and qL/qh00|y=0 = 0, so the
full set of boundary conditions are:

h(0) = h0, (4.56)

P(0) = 0, (4.57)

h00(0) = 0. (4.58)

Eliminating P(y) and uy(y) from the bulk equations, yields a
sixth-order linear equation for h(y):

a3k
m

hð6ÞðyÞ � 12hðyÞ ¼ 0; (4.59)

which has solutions which decay with characteristic length
l = (a3k/m)1/6 as observed in previous studies with a similar
geometry.35 Using this length-scale, and imposing the condi-
tion h( y) - 0 as y - N, we may write

hðyÞ ¼ c1 exp �
21=331=6y

l

� �

þ c2 cos
32=3y

22=3l

� �
þ c3 sin

32=3y

22=3l

� �� �
exp �3

1=6y

22=3l

� �
;

(4.60)

where c1, c2 and c3 are undetermined constants. Imposing the
boundary conditions (eqn (4.56)–(5.58)) on this solution yields

c1 = h0/3 (4.61)

c2 = 2h0/3 (4.62)

c3 = 0, (4.63)

and allows us (via the remaining Euler–Lagrange equations) to
easily determine the full base-state fields h( y), uy( y), P( y),
where the field uy( y) is the displacement (in the y direction)
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of the central z = a/2 plane of the elastic layer. The threshold for
fingering is, as always, uy(0) = 1.27. . .a, which then allows us to
find the required displacement of the plate

h0 ¼ 1:9179 . . .
a2

l
¼ 1:9179 . . . a3=2

m
k

� 	1=6
: (4.64)

We note that the three functions uy, P, and h are all functions of
y/l with the expected magnitude at threshold, where we have
identified the long length-scale as l ¼

ffiffiffi
a
p

k=mð Þ1=6. We also wish
to note that although the terms we neglected in L are negligibly
small provided l c a, our linearization of the energy in a/l does
not assume the strains in the layer are small; indeed on the
contrary, the strains in the layer are of order one at threshold.

5 Role of compressibility and
capillarity

Our analysis to date has focused on the case of incompressible
elastic materials with an infinite resistance to local volume
changes. An infinite bulk-modulus makes the elasticity of a
confined layer infinitely long-ranged as a change in volume
introduced at one point (for example by injecting air into a
cavity) must propagate to the boundary rather than being
mitigated by the material around the cavity changing volume.
Soft elastomers such as those used in experiments to study
these fingering instabilities typically have bulk moduli that are
many orders of magnitude larger than their shear modulus, so
the assumption of incompressibility is generally an excellent
approximation.

Real elastomers are not perfectly incompressible, so that the
effects of an imposed volume change decay with a long but
finite length-scale. To estimate this long-length scale we
consider a thin-strip shaped elastic layer occupying the region
�a/2 o z o a/2, �l o y o l, with l c a, and adhered to flat
rigid plates at z = �a/2. The flat plates are then separated by an
additional distance Da. If the elastic layer is perfectly incom-
pressible then volume conservation requires that the inward
displacement of a point with coordinates y and z = 0 be
u B Day/a, leading to a strain g B u/a B Day/a2 and an energy
density m(Day/a2)2. If the layer instead deformed by simply
increasing its volume, its fractional volume change would
simply be Da/a, leading to an energy density B(Da/a)2, where
B is the elastomers bulk modulus. Equating these two energy
densities, a characteristic in-plane length emerges that scales

as l2 � a
ffiffiffiffiffiffiffiffiffi
B=m

p
, and is the distance over which the layer behaves

in an incompressible way. In the above strip geometry, we
expect that if the width of the strip, l c l2 then the central
portion of the strip will respond to the separation of the plates
by increasing its volume, while only the parts of the layer within
l2 of the boundaries will deform in an incompressible way.
From the perspective of causing the meniscus of the elastic
layer to retreat to drive fingering at the meniscus, the effective
width of the strip is therefore reduced to l2. Then this addi-
tional in-plane length scale must be large compared to the

thickness of the layer for fingering to proceed along the lines
sketched in Section 2.

Real elastic layers also have a finite surface tension g,
requiring us to add a surface energy gA to the elastic energy,
where A is the area from the elastic layer’s meniscus. The elastic
strains associated with finger formation are of order one and
are localized to distances of order a of the layer’s meniscus, so
the change in elastic energy per unit length of boundary is of
magnitude Eel B ma2, while the corresponding surface energy
has magnitude Ecap = ga. Thus surface tension becomes ener-
getically relevant if a r g/m, the elasto-capillary length. Our
surface-tension free theory therefore requires that, in addition
to the thickness of the layer being small compared to the
previously discussed in-plane length-scales (i.e. that the layer
be geometrically thin) it must also be thick compared to the
elasto-capillary length-scale. Surface tensions in soft materials
are typically of magnitude g B 10�2 J m�2 so, even for layers
with elastic moduli of m B 500 Pa, the elasto-capillary length is
at most a few tens of microns, meaning surface tension will
only become relevant in the very thinnest and softest of layers.
Our theory ignoring capillary effects thus has a wide range
of validity.

6 Conclusions

When an elastic layer that is adhered above and below to rigid
bodies has a meniscus that is deformed (either by separating the
rigid bodies to suck air in or by injecting air into a cavity in the
layer) then, after a threshold, fingers will invade the layer along
the meniscus. While previous treatments of this problem have
treated specific geometries, here we have considered a broad
range of problems that show that the phenomenon is universal,
provided that the layer is geometrically thin, i.e. all its in-plane
length-scales li are large compared to the thickness a of the layer.
In such situations, the straight meniscus will give way to
undulations when forced beyond a threshold, independent of
the nature of the forcing. Furthermore, the fingering follows an
essentially universal form: the wavelength of the fingers will be
the same multiple of the thickness of the layer in all systems,
l E 2.74a, and occurs when the invading air causes the
meniscus to retreat by a universal multiple of the thickness of
the layer, u E 1.26a. To treat fingering problems in thin elastic
layers, we only need to find the ‘‘base-state’’ deformations (those
prior to fingering), and then apply our universal criteria for the
onset and wavelength of fingering to this base-state. To illustrate
this procedure we calculated the onset of fingering in two
geometries: opening an elastic wedge and peeling a stiff plate.

The peeling geometry is reminiscent of an adhesive layer –
the thin plate is akin to the backing glued to an elastic layer,
and peeling corresponds to de-adhering the plate from a rigid
substrate. The instability threshold for peeling before fingering

takes place is h0 � 1:92 . . . a3=2
m
k

� 	1=6
, and thus larger for softer

plates. Estimating the bending energy of the plate (per unit

length in the x direction) we find Eb �
1

2
kðh=l12Þ2l1, which is of
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similar magnitude to the energy of the elastic-layer since l1 is
chosen to minimize the sum of these two contributions. The
force required to lift the end of the plate a distance h is Fh B hk/l1

3,
and at the threshold displacement h0 is Fh0

B k1/3m2/3. Thus,
although stiffer plates require less displacement to trigger finger-
ing they require more force.

Our conclusion that elastic fingering in these layers has a
general form is subject to three important caveats. In addition
to the layer being thin in the sense that its in-plane geometric
parameters must be large compared to its thickness, there are
two ‘‘hidden’’ in-plane length-scales that must also be large.
The first emerges if the rigid bodies that the layer is trapped
between are not perfectly rigid but instead have a large but
finite bending modulus k, and is the length-scale over which
the bodies then bend, given by

l1 ¼
ffiffiffi
a
p k

m

� �1=6

: (6.65)

The second ‘‘hidden’’ length-scale arises if the elastic layer is
not perfectly incompressible but has large bulk modulus B, and
is the length-scale over which bulk-deformations become ener-
getically preferable to shear deformations, given by

l2 ¼ a

ffiffiffiffi
B

m

s
: (6.66)

The condition l2 c a is not at all difficult to achieve. For a soft
rubber, we can easily have B/m 4 106, making l2/a B 1000.
However, for the very thin layers arising when soft polymeric
glues are used, l2 could easily be rather shorter than the
geometric size of the layer, meaning it will be important in
determining the separation required to induce fingering. In
contrast, l1 c a is a more rigorous constraint. If the elastic
modulus of the stiff bodies is mp and they have thickness t we

expect kB t3mp, giving l2 �
ffiffiffiffi
at
p
ðmp=mÞ1=6. The weak dependence

on mp in this length-scale means that it is very challenging to
make this length long by making the rigid bodies out of a stiff
material. However, this length-scale can easily be made long by
taking thick bodies with large values of t.

The third caveat also relates to a ‘‘hidden’’ length scale, the
elasto-capillary length

lcap ¼
g
m
: (6.67)

However, in this case the layer must be thick compared to lcap,
otherwise surface-tension effects become important, and the
fingering transition will change accordingly. This is also a weak
constraint since, for most soft materials, we expect lcap to be a
few microns. However, with very soft thin layers, the regime
with a B lcap is surely experimentally accessible, and is likely to
be a source of new phenomena.

There remain several outstanding challenges in this area.
The first is to prove mathematically that the transition to the
fingered state is subcritical. This was shown experimentally and
numerically9,10 but has not yet been treated analytically.
Secondly, we speculate that at very small thicknesses surface

tension may become important, as it is in the viscous analog
associated with Saffman–Taylor fingers; this may modify our
purely elastic results. In the analogous Saffman–Taylor fluid
problem, surface tension promotes stability, and the same
might naively be expected in the elastic case since the forma-
tion of large fingers surely increases the interfacial area. How-
ever, surface-tension can also drive instability, most famously
in the undulating instability of fluid or solid columns,4,6,7

known as the Rayleigh–Plateau instability. In these cases
surface tension drives instability because undulatory perturba-
tions to a cylinder can reduce its area while preserving its
volume, so the instability reduces the surface energy. In the
elastic fingering case, as the meniscus recedes prior to finger-
ing, it becomes highly curved in the thickness direction, having
a shape reminiscent of a half-cylinder. We might similarly
expect finger-like undulating perturbations to the meniscus to
decrease its area, and hence surface tension to help destabilize
the meniscus. Which of these competing intuitions is correct is
a promising topic for further work.

Finally, glued joints typically fail via stress induced instabil-
ities. Two main categories of failure have been studied: bulk
failure of the glue via cavitation or fracture, and direct adhesive
failure at the meniscus between the glue and the substrate.
However, our analysis suggests that stress in a layer of glue
under tension tends to be very high at the meniscus of the glue,
and that this leads to a fingering instability at the meniscus.
Fingering is also a failure mode for elastic seals when they are
invaded by the fluid they are intended to contain, generating a
leak.11 We speculate that there is a third category of failure
modes for glued joints initiated at the meniscus of the glued
layer by elastic fingering. In experiments, the elastic layers are
sufficiently compliant to sustain large strains, and while finger-
ing does occur, it often precipitates fracture of the glue and
failure of the joint. Elastic fingering is thus a potentially
important boundary driven failure mode of glued joints and
tight seals. Experimental verification of these failure modes
and understanding how to control them would make elastic
fingering a problem of some practical importance.
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