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Localized patterns in crushed conical shells
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Abstract – We use experiments and numerical simulations to study the rapid buckling of thin-
walled cones as they impact a solid surface at high velocities. The buildup of air pressure inside
the cone localizes the deformations to the impacting interface with the solid surface, leading to
the hierarchical formation of an ordered pattern of small rhomboidal cells. In contrast, when
the inner air pressure is not allowed to develop, the ordered pattern is destabilized and the cone
collapses in a highly disordered state on long length scales. Numerical simulations confirm that
the transition between ordered and disordered crumpling is governed by the competition between
the elastic deformation energy of the shells and the work required to pressurize the air. Our results
show how dynamic stabilization via tensioning suppresses long wavelength subcritical instabilities
in shells and leads to the localization and propagation of short wavelength patterns.

Copyright c⃝ EPLA, 2018

Buckling patterns in thin plates and shells arise due
to the relative ease of bending a thin sheet compared to
stretching it, and take a variety of forms, from global wrin-
kling to local folding and crumpling [1–3]. A particularly
dramatic version of these patterns is seen in the buckling of
axially loaded thin-walled cylinders; the reader can attest
to this by standing on an empty aluminum can that will
suddenly collapse into a crumpled, flattened disordered
shape wherein the cylinder deforms on the largest scale
possible, folding on itself [4]. This observation is in sharp
contrast to theoretical studies which show that the ener-
getically preferred patterns are a periodic array of buckled
rhombi cells of typical size (rt)1/2 (where r is the cylinder
radius and t its thickness) composed of triangular planar
surfaces known as the Yoshimura diamonds [5,6]. Indeed,
decades of careful experiments confirm the results of the
casual experiment alluded to earlier, i.e., producing or-
dered structures by compression of a cylinder is almost im-
possible. This is because the buckling instability of shells
is well known to be subcritical, and thus very sensitive to
imperfections [4,7,8]. Small imperfections associated with
geometric defects thus grow rapidly on loading, and the
entire structure collapses on large length scales with lit-
tle reproducibility. However, it is possible to obtain the
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ordered Yoshimura patterns in experiments, a fact known
to and exploited by artists and architects [9]. This requires
one to prevent the growth of defects on large length scales,
and can be done by introducing a slightly smaller rigid in-
ner cylindrical mandrel inside the cylindrical shell before
it is compressed [10] —this prevents the large wavelength
buckling patterns from growing, so that the diamond-like
ordered patterns arise naturally; the reader may have ob-
served these patterns in tight-fitting trousers (or long soft
boots) at the back of the leg, especially in the popliteal
region. Given these observations that long wavelength
subcritical instabilities are easy to excite in slowly loaded
shells suggests that if a cylinder or cone is rapidly com-
pressed to speed up the collapse, this would only amplify
the disorder in the final crumpled state, in analogy with
such systems as crystallization where slow annealing al-
lows the material to solidify to an ordered, energetically
favored configuration, while quick quenching drives the
system into a disordered frustrated state.

Here we show that exactly the opposite is true —when
a conical shell is smashed into a wall rapidly, it leads to
the creation of an ordered 3D structure on small scales
similar to inextensional fold patterns on cylinders and
cones [4,11]. Our experiments use paper cones made
by rolling flat paper sheets of thickness t = O(100µm)
and height O(20 cm) into cones of varying opening angles,
with an overlap of the sheets such that each cone is two
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Fig. 1: (Color online) (a) Three snapshots of a paper cone
with a 29◦ opening angle compressing against a glass surface.
(b) The interface between the cone and the surface is indicated
by a dashed red line. Unfolding the compressed cone reveals an
ordered Yoshimura-like pattern. (c) The pattern can be exam-
ined by cutting the cone along one of its generators and flatten-
ing it onto a plane. The length scales of the pattern cells in the
radial (lR) and azimuthal (lθ) directions can then be measured
as a function of the distance, R, from the tip of the cone (inset).

paper-layers thick. The shape of the cone is maintained
by a double-sided tape along one of its generators at the
edge of the sheet. The cones are mounted on a heavy
circular base with the tip facing down so that the air is
sealed within the cone, and dropped along a vertical rail
onto a flat glass surface at velocities of u = O (m/s). A
high-speed camera (Phantom V7.3) is used to image the
cones from the side as they collapse upon impact with the
surface at a frame rate of O(5 kHz).

As the tip of the paper cone impacts the rigid surface, a
dynamical cascade of folds is initiated as seen in fig. 1(a)
and Supplementary Movie SupplementaryMovie1.mp4.
The cone deforms at the impact zone into localized rhom-
bic patterns even as new rhombic indentations nucleate
typically between two indentations of the previous gen-
eration. Although the cone deforms most strongly along
a narrow circumferential rim in the neighborhood of the
contact zone, we see that the cone is also weakly indented
away from this zone. When the cone is unfolded by cutting
it open along a generator and flattening it, we see that the
process leads to an ordered tiled pattern —see fig. 1(b),
(c). The rhombi composing the pattern may be character-
ized in terms of their azimuthal and radial length, lθ and
lR, respectively, as shown in the inset to fig. 1(c). lR ini-
tially increases with the radial coordinate R, but quickly
saturates at a constant value as shown in fig. 2(a). In
contrast, lθ continues to increase well beyond the point at
which lR saturates, leading to more elongated cells farther
from the cone tip.

The form of the patterns depends on a number of pa-
rameters such as the cone opening angle, paper thick-
ness, and impact velocity, and so we systematically vary
them. Although the ordered patterns only form under
dynamic conditions, small variations in the velocity (by
a factor of three) do not change the observed pattern,
as seen in fig. 2(b). Changing the cone opening angle,
α = tan−1(r/R), where r is the local cone radius indicated
in fig. 2(c) changes the form of the rhombi. For larger α,

R
r

R (mm)

(m
m

)

r (mm)

(m
m

)

c
R (mm)

(m
m

)

a

R (mm)

(m
m

)

b

Fig. 2: (Color online) (a) The pattern length scales lR and lθ
as a function of the radial coordinate R for a cone with opening
angle of 19◦ (r/R = 1/6). (b) Varying the velocity at which
the cones impact the surface has little effect on the pattern
(r/R = 1/4). (c) However, by changing the opening angle of
the cone, the dependence of lθ on R can be tuned. The lθ
curves can be collapsed onto one master curve when plotted as
a function of r (inset).

lθ grows more rapidly with R, as shown for four different
opening angles in fig. 2(c). This suggests a dependence of
lθ on r, as shown by the data collapse onto one master
curve in the inset to fig. 2(c), indicating that the shape
of the pattern is determined locally by the instantaneous
value of r in contact with the surface. In contrast to the
strong dependence of lθ on the cone geometry, we do not
measure any dependence of lR on α.

To characterize the role of sheet thickness on the pat-
tern, we varied it from the typical value we used, 0.1mm,
to a range spanning 0.075–0.28mm. We find that the ef-
fect of thickness on the length scales of the rhombi pattern
was very small. This observation strengthens the claim
that the geometry of the crushed pattern is governed by
the dynamics during the crushing process, rather than by
minimization of elastic energy. However, the paper thick-
ness does affect the region of the cone where a Yoshimura-
like pattern emerges. At the very tip of the cone, where
the rhombi sizes are expected to be very small, the paper
creases instead of buckling into a rhomboidal pattern over
a distance that is strongly affected by thickness, from few
millimeters for 0.075mm thick paper to about 5 cm for
0.28mm thick paper.

While small variations in the velocity of impact do not
change the observed folded patterns, when the cone is
compressed quasi-statically the patterns disappear and the
cone crumples in a disorderly fashion with no localization
(see Supplementary Movie SupplementaryMovie2.mp4).
This difference suggests a role for dynamic effects associ-
ated with inertia in the shell and a potential role for air
pressure in stabilizing the long wavelength modes excited

14005-p2

http://stacks.iop.org/0295-5075/124/14005/mmedia
http://stacks.iop.org/0295-5075/124/14005/mmedia


Crushed conical shells

by quasi-static compression. The relative role of iner-
tial to elastic forces (per unit area) is determined by
the ratio ∼ρpaperu

τ / B
L3 [8]. Substituting parameter val-

ues (t = 100µm, ρpaper = 800 kg/m3, u = 1m/s, B = Et3

with Young’s modulus of paper E = 2GPa and the typical
length and time scales for buckling rhombi L = 1 cm and
τ = 0.01 s, respectively), we find that the ratio ∼10−2 ,
i.e., inertial effects are negligible. This leaves only the
air pressure as a pattern stabilizer, wherein it plays the
role of a dynamic mandrel to suppress the growth of long
wavelength defects in favor of the short wavelength or-
dered patterns that form at the zone of impact. To test
this experimentally, we mount the cones on bases through
which four circular holes of varying diameter, d, are cut, as
shown schematically in fig. 3(c). This allows air to escape
the cones and reduce the rate of buildup of the dynamic
pressure so that the compact patterning associated with
tip collapse becomes less ordered —fig. 3(a).

To quantify this change in pattern evolu-
tion as a function of the hole size (see Supple-
mentary Movies SupplementaryMovie1.mp4 and
SupplementaryMovie3.mp4), we measured the size
of the indentation zone h shown in fig. 3(b) as a function
of the axial distance H from the tip of the cone for differ-
ent hole sizes, where h and H are extracted from real time
imaging of the crushing process closely and correlate with
ℓR and R, respectively. For small holes, the air pressure
inside the cone is high, and the new indentations remain
localized near the interface of the cone and the surface.
For larger holes, the air pressure inside the cone is small,
and once indentations are created they grow rapidly
toward the base of the cone. In addition to the increase in
size the indentations reach, the release of air pressure also
increases the chance for a dent to nucleate away from the
surface, causing the cone to buckle catastrophically (see
Supplementary Movie SupplementaryMovie4.mp4). In
the absence of holes, the increase in the internal pressure
∆P scales as the ratio between the uncompressed volume
of the cone and the truncated compressed cone, of half
the volume, and yields ∆P ≈ 1 atm ≈ 100 kPa. Direct
measurement during compression confirms this buildup
of pressure within the cone; we observe a peak pressure
difference of between 16 and 27 kPa. When the holes
are large enough so that as the air escapes viscous
and compressible effects are negligible, ∆P ≈ ρairu2

air,
where ρair and uair are the density and velocity of the
escaping air, respectively. The velocity uair is estimated
by equating the flux of air escaping the cone to the rate
of the cone’s volume change. For a cone impacting the
surface at a velocity of 1m/s, this calculation yields
∆P ≈ 100Pa, three orders of magnitude lower than in the
pressurized case, confirming that the dominant stabilizing
effect that causes localized folding at the impact zone is
due to pressurized air in the cone.

We validated the buildup of pressure by measuring
the internal gauge pressure as the cone compacts with
an ELVEFLOW MFP Inline Pressure Sensor FlowPlus

h

H

d

H (mm)

h 
(m

m
)

ca

b

Fig. 3: (Color online) (a) Allowing air to escape the cone results
in disordered buckling of the cone. (b) The rhombic indenta-
tions propagate a typical height, h, along the generator of the
cone before folding on themselves. (c) The influence length h as
a function of the axial location H for cones mounted on bases
with different sized holes, decreasing the internal air pressure
as the cone is compressed.

embedded in the top circular plate sealing the cone. The
cones were dropped from a height of 1.2m and pressure
data recorded at a rate of 500Hz. The results are plotted
in fig. 4; the interior of the cone attains a peak internal
pressure of between 16 and 27 kPa. Leaks at the interface
between the top plate and the cone’s base, porosity of the
paper, and leaks due to delamination of the cone along
its lateral seam all contribute to the fall in pressure at
the end of the experiments, and the discrepancy between
the measured peak pressure and predicted theoretical peak
pressure of 100 kPa.

To understand our results quantitatively, we recall that
an energy-based linear stability analysis predicts that the
typical length scale of the buckling pattern would scale
as l ∼

√
rt. However, the buckling patterns observed do

not follow this scaling relation because the pattern evolves
dynamically and cannot be described purely in terms of
energetics. Therefore, we numerically simulated compres-
sion of conical shells using a thin-shell theory based on
the Kirchhoff-Love assumptions that the shell geometry
and mechanics can be characterized entirely in terms of
the geometry of its midsurface. Furthermore, we consider
only geometric nonlinearities, and limit ourselves to elas-
tic buckling since this always precedes plastic deformations
and determines the basic patterns.

The shell can be parameterized entirely by the geometry
of a midsurface S; more specifically, let A be an annulus
in the plane and r : A → R3 the coordinate function
embedding S (illustrated schematically in fig. 5(a)). The
thin shell of thickness t is then parameterized by

r̃ : A ×[−t/2, t/2] → R3, (x, y, z) '→ r(x, y) + zn̂(x, y),

where n̂ = (rx ×ry)/∥rx ×ry∥ is the surface normal of S.
For the large deformations of a thin conical shell, geomet-
ric nonlinearities dominate material nonlinearities, and
so we use a simple linear St. Venant-Kirchhoff material
model. Denoting by S̄ the embedding of the cone at rest,

14005-p3

http://stacks.iop.org/0295-5075/124/14005/mmedia
http://stacks.iop.org/0295-5075/124/14005/mmedia
http://stacks.iop.org/0295-5075/124/14005/mmedia


Omer Gottesman et al.

Fig. 4: Internal gauge pressure of a sealed cone compressed
from a height of 1.2 m. The experiment was repeated four
times on cones of identical thickness and dimension.

before compression, and letting r̄ be its corresponding em-
bedding, the Steiner expansion formula [12] then gives the
elastic energy in terms of geometric quantities on the mid-
surface: [13,14]

E =
∫

S

∫ t/2

−t/2
2k1Tr[ϵ(η)2 ] + k2Tr2 [ϵ(η)] dη dĀ (1)

where ϵ(η) = ā−1(a−ā)+2ηā−1b+ η2 ā−1c, and a, b, c are
the first, second, and third fundamental forms of S that
can be expressed in terms of r by a = drT dr, b = drT dn̂,
and c = dn̂T dn̂. Here dĀ is the rest surface area element,
and is discretized using a piecewise-constant metric over S,
ā is the rest metric of the midsurface (the first fundamental
form dr̄T dr̄ of S̄), and k1, k2 are Lamé parameters.

Since we expect the in-plain strain to remain small dur-
ing compression, we discretize S using piecewise-linear
triangular elements T ; following Weischedel [15], we dis-
cretize the fundamental forms and write

E ≈
∑

T∈T
A(T )

∫ t/2

−t/2
2k1Tr[ϵ(η)2 ] + k2Tr2 [ϵ(η)] dη,

where A(T ) is the area of triangle T . To determine ex-
pressions for the fundamental forms we start by assuming
that qi, for i ∈ {0, 1, 2}, denote the positions of the tri-
angle vertices, q̄i the corresponding vertex positions on
the undeformed cone S, and pi their preimage in the pa-
rameter domain A. We can choose coordinates on A so
that p0 = (0, 0), p1 = (1, 0), p2 = (0, 1) so that the first
fundamental form

a =
[

∥q1 −q0∥ (q1 −q0 ) · (q2 −q0 )
(q1 −q0 ) · (q2 −q0 ) ∥q2 −q0∥

]

with ā defined similarly, with q̄i taking the role of the qi.
Discretizeing the second fundamental form by way of mid-
edge normals: we assign a unit vector nei to the midpoint
of edge ei opposite qi, where nei is equal to the face nor-
mal, if ei is on the top or bottom boundary of the cone, or

the normalized average of the two incident triangles, if ei

is an interior edge. Since the segments connecting triangle
edge midpoints are parallel to and half the length of the
triangle sides, we can write

b = 2
[

(ne0 −ne1) · (q1 −q0 ) (ne0 −ne1) · (q2 −q0 )
(ne0 −ne2) · (q1 −q0 ) (ne0 −ne2) · (q2 −q0 )

]
.

Note that while a, ā and b depend on the choice of co-
ordinates on A, the energy E does not. The above
discretization can be interpreted as the discrete shape op-
erator [16] in the case where the edge directors are fixed
to equal the average face normals. Finally the third fun-
damental form c is computed from a and b using the
identitity c = 2Hb −Ka, where H = 1

2 Tr(a−1b) and
K = Det(a−1b) are approximations of the mean and Gaus-
sian curvature of S.

Since the cone is subject to body forces due to the dy-
namic buildup of pressure, we add an external force to
the vertices proportional to the pressure difference ∆P
across the cone; the force applied to vertex i is Fpressure =
Ai∆P ni, where the vertex barycentric dual area Ai is one-
third the sum of the faces incident to vertex i. For the
discretization of the surface normal ni at the vertex, we
chose the mean curvature normal, based on the relation-
ship ∆r = 2Hn, where Laplace-Beltrami operator ∆ is
applied component-wise. This relationship is discretized
to yield ni = (Lp)i/∥(Lp)i∥, where L is the cotangent
Laplacian [17] and p is the vector of vertex positions.

Crushing of the cone was modeled by simulating a plane
of given mass density, initial height H, and initial down-
ward velocity, and adding a unilateral inequality contact
constraints between the plane and every vertex of the cone
mesh. Both gravity and contact forces act on the plane,
so that it initially accelerates, then decelerates as pressure
builds up in the cone. We neglected self-contact as it does
not occur until after the creases of the rhombus pattern
have formed. In a typical simulation, the entire cone is
composed of roughly 160000 elements, and the evolution
of the cone is integrated in time using a velocity Verlet al-
gorithm with a time step size of 2×10−7 seconds. To damp
the transient elastic waves that propagate through the
cone during compression, we imposed a Rayleigh damping
model with a damping coefficient of 0.001. We use 160000
triangular elements to discretize the cone and write the
elastic energy in terms of the discrete versions of the first
and second fundamental forms [15,16,18]. We apply an
external force to the vertices proportional to the pressure
difference ∆P across the cone, and then solve the discrete
equations of motion using a velocity Verlet scheme using a
time step of 2×10−7 seconds. Our simulations allow us to
vary α and the pressure inside the cone, and measure how
these parameters affect the pattern as well as the elastic
energy stored in the deformed cone.

For the case of a sealed cone, we approximate the pres-
sure within the cone as being inversely proportional to the
volume ratio between the crushed and uncrushed cone.
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Fig. 5: (Color online) Schematic of simulation setup. The mid-
surface S of the cone in space is parameterized by an embed-
ding function r: A → R3 on an annulus A in the plane (a).
Simulation of a crumpled cone of opening angle 29◦. The crease
pattern in the virtual cone can be visualized with a heat map
of mean curvature; curvature concentrates into rhombi shaped
cells (warmer colors = more positive curvature) (b). The de-
pendence of lR and lθ on R show excellent quantitative agree-
ment between experiment and simulation (c). When the air is
not released and pressure builds up inside the cone, the elastic
energy per unit compression of the cone (red) quickly becomes
significantly smaller than the work required to compress the
air, indicating that the air pressure becomes the dominant fac-
tor in the deformation process. When air is released through 4
holes of diameter 17 mm or larger, there is a qualitative tran-
sition in the nature of the collapse as indicated in the energy
stored in (d).

When simulating the crushing of cones with holes allow-
ing for the release of pressure, we estimate the pressure as
follows. When the holes in the cone’s base are large, air es-
capes quickly through the opening and the pressure within
the cone is expected to be negligible relative to that within
a sealed cone (no holes in the base). We assume that in
the large-hole regime, viscous and compressible effects are
negligible, and ∆P ≈ ρairu2

air, where ρair and uair are
the density and velocity of the escaping air, respectively.
Incompressibility allows us to compute uair based on the
geometry of the cone and its compression velocity ucone:
the volume air escaping through the holes during an in-
crement of time dt is nholesπr2

holesuairdt, where nholes and
rholes are the number of holes in the base of the cone, and
their radii, respectively. The change in volume due to com-
pression of the cone is πr(H)2uconedt, where r(H) is the
radius of the portion of the truncated cone in contact with
the ground, r(H) = r0H/H0 . Equating the volume loss
due to compression and the flux of air through the holes
yields, for the case of four holes, ∆P ≈ ρair

u2
coner4

0H4

16r4
holesH4

0
.

This formula is used to estimate a peak pressure differ-
ence of ≈ 100Pa for a cone with holes of diameter 17mm,
and is used in the numerical simulations to evaluate the
internal pressure of the cone at every time step.

In fig. 5(b) we show that our simulations capture
the rhombic patterns seen in our experiments (see

Fig. 6: (Color online) (a) Simulations confirm that for high
internal pressure, ∼20 kPa, deformations are strongly localized
near the tip. (b) For much lower pressures, ∼ 2 kPa, the conical
shell shows delocalized buckling patterns that propagate far
from the tip and can be further delocalized. Note that near the
base, the conical shell can even buckle into ring-like patterns,
seen in thick cylinders and flat sheets [4].

Supplementary Movie SupplementaryMovie5.mov), de-
spite the lack of plasticity in the simulated sheets [19–21].
In fig. 5(c), we see that the dependence of lR and lθ on R
observed in the simulation are in agreement with the ex-
perimental data. However, the boundaries between neigh-
boring rhombi appear to be less sharp and well defined
in simulations than in experiments, which we attribute to
the simple elastic constitutive law used in the simulations.

For the simulations using pressurized cones, the P −V
work done by the air on the walls of the cone becomes sig-
nificantly larger than the elastic deformation energy stored
in the sheets, as can be seen in fig. 5(d). When we sim-
ulate compression of a cone where air pressure is released
via four holes of diameter 17mm, the energy required to
compress the air drops by three orders of magnitude, well
below the elastic energy for all values of compression, in-
dicating that air pressure no longer plays a role in the
deformation of the cone.

In fig. 6 we demonstrate the effect of pressure on the
buckling process in simulation. For high pressure, the
deformations localize to the interface with the surface
(fig. 6(a)), while for low pressure, deformation of the shell
extends far away from the interface (fig. 6(b)). The most
notable difference between the simulations and experi-
ments is that the deformations observed in simulations
with low pressure, while not localized, still appear as
ordered layers of rhombi extending away from the surface,
as opposed to a smaller number of large buckles. We at-
tribute this to the ability of simulation to find better local
minima in the energy landscape of the deformed shells,
and believe that in the noisy experimental environment
the lack of localization results in the large disordered
buckling patterns we observe. Despite this change, we do
not observe an increase in the length scales of the buckled
rhombi or a transition to disorder as the pressure is re-
leased. We attribute this to the lack of large material and
geometrical inhomogeneities which are known to be impor-
tant for the nucleation and propagation of defects [4,7,8].
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Overall, our study shows how it is possible to suppress
subcritical instabilities in a rapidly compressed conical
shell by taking advantage of the role of air pressure that
works like a dynamic mandrel, and prevents the growth
of long wavelength instabilities. This in turn forces the
localization of pattern to small scales in the vicinity of
the impact zone from where it builds up hierarchically.
More generally, this is suggestive of a general principle by
which a dynamical process may be used to prevent the
growth of (slow) long wavelength instabilities and thus
lead to localized patterns and order in systems susceptible
to subcritical instabilities.
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