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Protein aggregation has been implicated in many medical dis-
orders, including Alzheimer’s and Parkinson’s diseases. Potential
therapeutic strategies for these diseases propose the use of drugs
to inhibit specific molecular events during the aggregation pro-
cess. However, viable treatment protocols require balancing the
efficacy of the drug with its toxicity, while accounting for the
underlying events of aggregation and inhibition at the molecu-
lar level. To address this key problem, we combine here protein
aggregation kinetics and control theory to determine optimal
protocols that prevent protein aggregation via specific reaction
pathways. We find that the optimal inhibition of primary and
fibril-dependent secondary nucleation require fundamentally dif-
ferent drug administration protocols. We test the efficacy of
our approach on experimental data for the aggregation of the
amyloid-�(1-42) peptide of Alzheimer’s disease in the model
organism Caenorhabditis elegans. Our results pose and answer
the question of the link between the molecular basis of pro-
tein aggregation and optimal strategies for inhibiting it, open-
ing up avenues for the design of rational therapies to control
pathological protein aggregation.
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Over 50 current human diseases, including Alzheimer’s dis-
ease, Parkinson’s disease, and type II diabetes, are inti-

mately connected with the aggregation of precursor peptides
and proteins into pathological fibrillar structures known as amy-
loids (1–5). However, the development of effective therapeutics
to prevent protein aggregation-related diseases has been very
challenging, in part, due to the complex nature of the aggre-
gation process itself, which involves several microscopic events
operating at multiple timescales (6–8).⇤ A promising and recent
approach is the use of molecular inhibitors designed to target
selectively different types of aggregate species, including the
mature amyloid fibrils, or the intermediate oligomeric species,
and, in this manner, interfere directly with specific micro-
scopic steps of aggregation (9–12). Examples of such compounds
include small chemical molecules, such as the anticancer drug
Bexarotene (10), molecular chaperones (13, 14), antibodies, or
other organic or inorganic nanoparticles (15). Just as large quan-
tities of the aggregates are toxic, in large doses the inhibitors
themselves are also toxic, suggesting the following questions:
what is the optimal control strategy (dose of inhibitor and timing
of its administration) for the inhibition of aggregation that arises
from a balance between the degree of inhibition and the toxi-
city of the inhibitor? Furthermore, most importantly, how does
this optimal control strategy depend on the detailed molecular
pathways involved in aggregation and its inhibition?

To address these questions, we combine kinetic theory of pro-
tein aggregation (16) with control theory (17) to devise optimal
treatment protocols that emerge directly from an understand-
ing of the molecular basis of aggregation and its inhibition.
To test our theory, we consider the example of the inhibi-
tion of amyloid-�(1-42) (A�42) aggregation by 2 compounds,
Bexarotene (10) and DesAb29�35 (15), that selectively target
different microscopic events of aggregation and qualitatively

confirm the theoretically predicted efficacy of the drug protocol
in a model organism, Caenorhabditis elegans.

Results
Kinetic Theory of Protein Aggregation Inhibition. The microscopic
mechanisms of irreversible protein aggregation involve a num-
ber of steps (Fig. 1A), including primary nucleation, followed
by fibril elongation (18). Once a critical quantity of fibrils is
formed, however, aggregation is accelerated by secondary nucle-
ation pathways, where the rate of formation of new aggregates
depends on the existing aggregate population, leading to expo-
nential growth (19–25); examples of such secondary nucleation
pathways include fibril fragmentation (19) and surface-catalyzed
secondary nucleation (20–25), which is active in A�42 aggre-
gation (22). The combined action of these diverse microscopic
aggregation mechanisms on the concentration f (t , j ) of aggre-
gates of size j at time t can be quantified via a master equation
(SI Appendix, Eq. S4 and subsequent discussion) (14, 16):

df (t , j )
dt

=2k+ Mm(t)f (t , j � 1)� 2k+ Mm(t)f (t , j )

+ 2k�

1X

i=j+1

f (t , i)� k�(j � 1)f (t , j )

+ k1 Mm(t)
n1�j ,n1 + k2 Mm(t)

n2�j ,n2

1X

i=n2

if (t , i),

[1]
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gies based on small molecules that suppress nucleation or
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aggregation diseases.
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Fig. 1. Elementary molecular events of pathological protein aggregation
and the diversity of mechanisms by which a drug can inhibit protein
aggregation. (A) Fibrillar aggregates are formed through an initial primary
nucleation step followed by elongation. Once a critical concentration of
aggregates is reached, secondary nucleation (in the form of fragmentation
or, as illustrated in the figure here, surface-catalyzed secondary nucleation)
introduces a positive feedback cycle leading to exponential growth of
aggregate concentration. (B) A drug can bind monomers; in addition, it can
bind primary or secondary oligomers to inhibit primary or surface-catalyzed
secondary nucleation. Alternatively, the drug can bind to the fibril ends or
the fibril surface to suppress elongation, fragmentation or surface-catalyzed
secondary nucleation.

where Mm(t) is the monomer concentration; k1, k+, k�, k2 are,
respectively, the rate constants for primary nucleation, elonga-
tion, fragmentation, and surface-catalyzed secondary nucleation;
and n1 and n2 are the reaction orders of the primary and sec-
ondary nucleation steps. Summation of Eq. 1 over aggregate
size j leads to a set of moment equations (SI Appendix, Eq.
S7) for key experimental observables, including the total num-
ber concentration of aggregates ca(t)=

P
j f (t , j ). Solutions

to such moment equations lead to a characteristic sigmoidal
profile for the aggregate number concentration, with an ini-
tial lag phase followed by a saturation phase due to monomer
depletion (SI Appendix, Fig. S2). During the initial lag phase,
the monomer concentration is approximately constant, Mm(t)⇡
M tot

m , where M tot
m is the total concentration of monomers. It

can be shown (SI Appendix, Eq. S12) that, in this limit, the
number concentration of aggregates increases exponentially with
time (positive feedback), ca(t)' (↵0/0)e

0t (25), where ↵0 =
k1(M

tot
m )n1 is the rate of generation of new aggregates through

primary nucleation and 0 =
p

2k+M tot
m [k2(M tot

m )n2 + k�] is an
effective aggregate proliferation rate arising from the com-
bined effect of aggregate growth and multiplication through
the secondary nucleation pathways. In the context of inhibit-
ing protein aggregation, a key interest is to block this positive
feedback mechanism observed during the early-time exponen-
tial growth of aggregates; we will thus focus on the early
stages of aggregation (rather than on the saturation phase)
and assume a constant concentration for the available soluble
monomers throughout. This constant-monomer concentration
scenario may also be relevant in vivo, where the monomeric pro-
tein concentration is likely to be maintained at constant levels
by the action of external mechanisms such as protein synthe-
sis (26).

Protein aggregation kinetics can be inhibited in its onset
or progression by the presence of a drug through 5 pathways
(Fig. 1B) (14): 1) binding to free monomers, 2) binding to
oligomers produced by primary nucleation (primary oligomers),
3) binding to oligomers generated by secondary nucleation
(secondary oligomers), 4) binding to aggregate ends to block
elongation, and 5) binding to the fibril surface to suppress frag-
mentation or block the production of toxic species through
surface-catalyzed secondary nucleation. Since the progression
of aggregation is relatively slow compared with the binding
rate of drugs, an explicit treatment of the full nonlinear mas-
ter equation in the presence of a drug shows that, in the limit
of constant monomer concentration, the aggregate number con-
centration ca(t) satisfies (see SI Appendix, section S2 for a
derivation)

dca(t)
dt

=↵(cd)+(cd) ca(t), [2a]

where the drug concentration cd affects the rate parameters
according to

↵(cd)=↵0

✓
1

1+K eq
m cd

◆n1
 

1
1+K eq

olig,1cd

!
, [2b]

(cd)=0

✓
1

1+K eq
m cd

◆n2
2
✓

1
1+K eq

endscd

◆1
2

✓
1

1+K eq
surfcd

◆1
2

 
1

1+K eq
olig,2cd

!1
2

. [2c]

Note that the kinetic equation for aggregate concentration and
the drug-dependent rate parameters (Eq. 2) can be explicitly
derived from a microscopic description of aggregation inhibi-
tion through a nonlinear master equation describing the time
evolution of the entire aggregate size distribution. They pro-
vide a link between microscopic mechanisms of aggregation and
inhibition to macroscopic aggregation measurements. The com-
plex interplay between the multiple aggregation pathways and
the drug is captured explicitly by renormalized kinetic parame-
ters ↵(cd) and (cd), which depend on the drug concentration
cd and are specific functions of the kinetic parameters of aggre-
gation as well as the equilibrium binding constant of the drug
to the targeted species, K eq

⇥ . Here, ⇥ is a placeholder for the
target species and the respective pathway, i.e., monomers (m),
primary or secondary oligomers (olig,1 and olig,2), fibril ends
(ends), and fibril surface sites (surf). In Eq. 2, we have focused
on the total aggregate particle concentration; it has, however,
been shown that low molecular weight oligomers are key cyto-
toxic species linked to protein aggregation (27–29). To account
for this situation, in SI Appendix, Eq. S15, we show that, in
the constant-monomer concentration limit, a linear proportion-
ality relationship links ca(t) to the concentration of oligomers.
Thus, after appropriate rescaling of concentration, the same
Eq. 2 can be used to describe oligomeric populations as well.
Throughout this paper, we thus use the generic term “aggre-
gate” to refer to the relevant population of toxic aggregate
species.

Optimal Control of Protein Aggregation. To find the optimal ther-
apeutic treatment that inhibits the formation of toxic aggregate
species requires a cost functional that balances aggregate toxicity
against drug toxicity:

C=Cost [ca(t), cd(t)]=

Z T

0

dt L (ca(t), cd(t)) , [3]
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Fig. 2. Distinct optimal treatment protocols characterize the timing of drug administration for compounds that inhibit primary or secondary nucleation
processes. (A) Optimal treatment protocol for the administration of a drug that inhibits primary nucleation (Top). In this case, the drug must be admin-
istered as early as possible (T1 = 0) and for a duration T2. Increasing drug concentration decreases the overall duration T2 of the optimal treatment
(Bottom) but without affecting the need for an early administration. When the drug concentration is large, no treatment is favorable (pink), while at
low drug concentrations, the optimal treatment can take the full available time T (green). (B) For a drug that inhibits either fibril elongation or sec-
ondary nucleation, a late, rather than early, administration of the drug is required (Top). The optimal treatment protocol is thus characterized by 2
switching times, T1 and T2, that define the start and the end of drug administration, respectively (Bottom). The duration of the treatment, T2 � T1,
decreases with increasing concentration of the drug. The parameters used in the plots are: ⇣0/(↵0Keq

oligo,1) = 0.6, 0T = 1.3 (A); and ⇣0/(↵0Keq
surf) = 10,

0T = 4.5 (B).

where T is the total available time for treatment, and L is a
function that characterizes the cost rate that increases for larger
aggregate and drug concentrations. L is expected to be a non-
linear and monotonically increasing function of drug and aggre-
gate concentrations. In the absence of detailed experimental
insights into the form of L, we linearize and use the follow-
ing monotonous form of the cost function L= ca(t)+ ⇣ cd(t),
where ⇣ > 0 quantifies the relative toxicity of aggregate and drug
molecules. In SI Appendix, section S3.7, we show that the pre-
dictions from the linearized cost function remain qualitatively
valid also in the case of a nonlinear cost function of the form
L= ca(t)

n + ⇣ cd(t)
n . Future experiments may provide detailed

insights into the specific form of the cost function allowing to
scrutinize our prediction quantitatively. The optimal drug admin-
istration protocol cd(t) minimizes the cost functional Eq. 3 given
the aggregation dynamics governed by Eq. 2, thus enabling us to
couch our problem within the realm of classical optimal control
theory (17) that allows for bang-bang control solutions, given the
linear nature of the cost function.

Indeed, the optimal treatment protocol consists of using piece-
wise constant concentration levels of the drug over varying time
spans of the treatment (Fig. 2 A and B) determined by the drug
toxicity, the aggregation kinetic parameters, and the mechanism
of inhibition (SI Appendix, section S3). In this protocol, T1 is the
waiting time for drug administration, T2 �T1, denotes the time
period during which the drug is applied, and T �T2, is a drug-
free period after treatment. We find that, depending on whether
the drug suppresses selectively primary nucleation or secondary
nucleation and growth at the ends of the aggregates, the optimal

protocol for drug administration is fundamentally distinct (30).†
When the drug inhibits primary nucleation (↵=↵(cd), =0;
Fig. 2A), there is no waiting period for drug administration (T1 =
0, “early administration”), and the optimal treatment dura-
tion reads

T2 =T � 1
0

ln

✓
⇣cd0

↵0 �↵

◆
. [4]

When the drug affects secondary nucleation or elongation (=
(cd), ↵=↵0; Fig. 2B), the optimal protocol is qualitatively dif-
ferent: the drug must be administered after a waiting period
T1 (“late administration”) and the optimal treatment dura-
tion is

T2 �T1 =
0

0 �


T � 1

0
ln

✓
⇣cd

2
0

↵0(0 �)

◆�
. [5]

In either case, the optimal treatment time decreases with increas-
ing drug concentration or toxicity. Moreover, at low drug concen-
trations, there is a regime where the drug must be administered
for the full time period T , while if the drug concentration
exceeds a critical threshold, cd > (↵0/⇣0) e

0T , the preferable

†Note that the distinction between “early” and “late” administration is relative to the
overall, macroscopic timescale of aggregation, �1

0 , and available time, T ; it is thus
not related to the time required for secondary nucleation to dominate over primary
nucleation the production of new aggregates, which occurs very early in the lag phase
(30). In fact, secondary nucleation dominates the production of new aggregates both
during an early and a late administration of the drug.
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choice is no treatment. The optimal treatment duration cor-
responds to a minimum in cost and reflects the competition
between drug-induced suppression of aggregates and drug tox-
icity (Fig. 3A). The achievability of optimal treatment conditions
is determined by the curvature of the cost function at the optimal
treatment, which approximately reads (0 �)⇣cd (SI Appendix,
section S3.4.4). Lower curvatures around the optimal treatment
parameters facilitates a robust possibility to find mostly optimal
treatment conditions.

Our optimization approach allows to use the cost function
to compare quantitatively different inhibition strategies and to
identify the regions in the parameter space where a certain strat-
egy is to be preferred over an other; we illustrate this idea
by comparing the costs for inhibition of primary or secondary
nucleation (Fig. 3B and SI Appendix, section S3.4.6). We find
that at large drug concentrations, and short available times
0T , the inhibition of primary nucleation represents the optimal
treatment strategy compared with the inhibition of secondary
nucleation or elongation, as the former strategy exhibits lower
cost. Indeed, a drug that inhibits primary nucleation must be
administered from the beginning. Hence, preventing aggrega-
tion over a longer time 0T necessarily requires longer periods
of drug administration, eventually making the inhibition of pri-
mary nucleation costlier than blocking secondary nucleation at
later stages. A boundary line, corresponding to equal costs for
both strategies, separates the regimes of optimal treatment. The
position of the boundary line depends on the relative affinity
of the drug to the primary oligomers compared with secondary

oligomers, fibril ends, or fibril surfaces. Increasing drug toxicity
shifts the boundary line to the right, hence favoring inhibition
of primary nucleation. Another interesting parameter to con-
sider is the initial level of aggregates, which provides a measure
of preaging of the system; we find (SI Appendix, section S3.6)
that increasing the initial level of aggregates shifts the bound-
ary line to the left, hence disfavoring the inhibition of primary
nucleation. Overall, for known values of the relative toxicity, our
approach suggests how to select specific drugs corresponding to
different mechanisms of action either in an early or late stage of
the detection of protein aggregation disorders and depending on
experimentally accessible parameters, such as drug affinity.

We next use the cost function to characterize longevity gain as
a function of the parameters of drug-induced inhibition of aggre-
gation (Fig. 3C and SI Appendix, section S3.4.5). We define the
life time as the time at which the cost reaches a critical value
corresponding to the cost that a cell or an organism can tolerate
before it dies. In the absence of any drug treatment, the cost func-
tion grows exponentially with available time T , i.e., Cost(cd =
0)' (↵0/

2
0 )e

0T . Crucially, the addition of a drug following the
optimized treatment protocol lowers the cost down to a linear
increase in time, Costopt ' ⇣cdT . Hence, the difference in life
times between an optimized treatment and the situation when
no treatment is applied can be significant. The expected life
time as a function of treatment duration displays a distinct max-
imum where the gain in longevity is maximal in correspondence
of the optimal treatment protocol (Fig. 3D). The maximal life
expectancy decreases with increasing drug concentration.

C
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Fig. 3. Comparison between different inhibition strategies and predictions of lifetime gain due to optimal treatment. (A) The normalized cost,
Cost/Cost(cd = 0), for the inhibition of secondary nucleation, has a minimum (Eq. 5) as function of the dimensionless treatment duration 0(T2 � T1).
At lower drug concentration (green line), the minimum of the cost becomes broader, indicating an easier access to the optimal protocol in the presence
of fluctuations or limited knowledge of cellular kinetic parameters or concentrations. (B) Phase diagram indicating the region of parameter space where
inhibition of primary nucleation has a lower cost than inhibition of secondary nucleation or growth. The green line indicates how the boundary line shifts
when drug toxicity is increased by a factor of 2. Similarly, the pink line indicates how the boundary line shifts when the system is preaged, i.e., has an
increased concentration of aggregates initially. Note that cd/↵' (0/↵0)c3/2

d Keq
1o/

q
Keq

2nd , where Keq
1o and Keq

2nd are the binding constants (affinities) for

the inhibition, respectively, of primary and secondary nucleation. Thus, decreasing Keq
1o or increasing Keq

2nd favors the inhibition of secondary nucleation over
primary nucleation. (C) Cost without drug (blue) and optimal cost (pink) as a function of available time 0T . Note the dramatic difference in the time depen-
dence of the cost for the optimal treatment (linear in T) and without treatment (exponential in T). (D) Expected life expectancy as a function of treatment
duration. There is a distinct maximum where the gain in life time is maximal in correspondence of the optimal treatment protocol. The parameters used in
the plots are ↵0/0 = 2 ⇥ 10�8, ⇣ = 200, Keq

surf = 5 µM�1, 0T = 13, cd = 2 µM (green), cd = 6 µM (blue) (A); and 0Costc = 10�3.5 M, ↵0/0 = 10�7, ⇣ = 10,
Keq

surf = 1 µM�1, cd = 3 µM (green), cd = 5 µM (blue) (D).
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Fig. 4. Application to the inhibition of Alzheimer’s A�42 aggregation in C. elegans model of A�42-mediated toxicity. (A) Expression of A�42 in the worm’s
muscle cells leads to age-progressive paralysis detected through the reduction in the frequency of body bends relative to healthy worms, which do not
express A�42. (B) Low drug (Bexarotene) concentration, which selectively inhibits primary nucleation, improves worm fitness due to the inhibition of protein
aggregation; however, too large drug concentrations decrease worm fitness due to toxicity of the drug (data from ref. 10). (C) Effect of early (72 h
before day 0 of adulthood) and late (day 2 of adulthood) administration of Bexarotene (10 µM) show that early administration is significantly more
effective in alleviating the symptoms of worm paralysis compared with the late administration of the same drug. In the latter case, there was no observable
improvement of worm fitness compared with untreated A�42 worms (data from ref. 10). (D) Effect of early (day 1 of adulthood) and late (day 6 of
adulthood) administration of a selective inhibitor of secondary nucleation (DesAb29�36) (data from ref. 15) show that a late administration of DesAb29�36

is more effective than an early administration in causing worm recovery. In B and C, the effect on fitness (body bends per second) was measured at day 6 of
adulthood and compared with healthy worms and untreated A�42 worms, while in D, the effect on fitness was measured at day 7 of adulthood. Error bars
indicate the SEM; the sample size was n = 200 worms for Bexarotene experiments (10) and n = 500 worms for DesAb29�36 experiments (15).

Comparison with Experiments. We finally tested qualitatively the
efficacy of the optimal protocol in practice by considering pre-
vious data (10, 15) on the inhibition of A�42 amyloid fibril
formation of Alzheimer’s disease using the drug Bexarotene in
a C. elegans model of A�42-induced dysfunction (Fig. 4A) (10,
31). Fig. 4B shows the effect of administering increasing con-
centrations of Bexarotene to A�42 worms in their larval stages
on the frequency of body bends, a key parameter that indicates
the viability of worms. At low drug concentrations, increasing
Bexarotene concentration has beneficial effects on worm fit-
ness, but too large drug concentrations decrease worm fitness.
Thus, there is an optimal dose of Bexarotene (10 µM) that
leads to maximal the recovery of the worms. This optimal dose
emerges from the competition between the inhibition of pro-
tein aggregation by Bexarotene (SI Appendix, Fig. S6 A and B)
and its toxicity (SI Appendix, Fig. S6C), as anticipated by our
cost function (SI Appendix, section S3.5). At a mechanistic level,
Bexarotene has been shown to affect protein aggregation by
inhibiting selectively primary oligomers and hence reduce pri-
mary nucleation both in vitro (10) and in the C. elegans model
of A�42-induced toxicity (10) (SI Appendix, Fig. S6A). Thus,
the key prediction from our model is that Bexarotene would be
most effective with an early administration protocol. This pre-
diction is in line with the experimental observations (Fig. 4C)
(10) that show that the administration of Bexarotene follow-
ing a late administration protocol at day 2 of worm adulthood
does not induce any observable improvement in fitness relative

to untreated worms. In contrast, administering Bexarotene at
the onset of the disease in the larval stages (early administra-
tion), leads to a significant recovery of worm mobility. To further
support our predictions, we consider in Fig. 4D the inhibition
of A�42 aggregation by another compound, DesAb29�36, which
has previously been shown to inhibit selectively secondary nucle-
ation (15). The data in this case show that DesAb29�36 is more
efficacious when administered at late times than during the early
stages of aggregation, an observation that is in line with the
theoretical predictions of our model.

Conclusions
We have introduced a framework for estimating optimal con-
trol protocols for inhibition of irreversible protein aggregation.
Overall, our results highlight and rationalize the fundamental
importance of understanding the relationship between the mech-
anistic action, at the molecular level, of an inhibitor and the
optimal timing of its administration during macroscopic profiles
of protein aggregation. This understanding could have important
implications in drug design against pathological protein aggrega-
tion. For example, using the cost function could provide a new
platform for systematically ranking drugs in terms of their effi-
ciency to inhibit protein aggregation measured under optimal
conditions.

Our optimal protocols do not account for spatial hetero-
geneities, crowding, and fluctuations. Spatially dependent opti-
mal protocols could be determined for instance by extending
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our theory to reaction-diffusion systems or by including spa-
tial organization effects, e.g., from liquid compartments (32).
More generally, optimal protocols depend on the measurement
accuracy of aggregate and drug concentrations and the nature
and type of the cost functional. Stochasticity effects could be
accounted using Kalman filter-based approaches (33). More gen-
erally, accounting explicitly in the cost function for additional
factors such as organismal absorption, distribution, and clear-
ance of the drug or its degradation over time in our theory could
allow extrapolating most effective protocols from a model sys-
tem, such as C. elegans, to clinically relevant conditions. This
procedure may help to efficiently design future medical trials
and would also suggest moving toward optimal drug cocktails or
oscillatory protocols.

Methods
Determination of Optimal Protocol for Inhibition of Protein Aggregation. To
obtain the optimal inhibition protocol, we use the Pontryagin minimum
principle of optimal control theory (17). In particular, the cost functional
Cost [ca(t), cd(t)] (Eq. 3) must be minimized subject to a dynamic constraint
of the form dca(t)/dt = f (ca(t), cd(t))(Eq. 2). This variational problem can be
solved most conveniently by introducing a time-dependent Lagrange multi-
plier �(t) (also known as costate variable in the context of optimal control
theory) and considering the extended functional

F [ca(t), cd(t)] = Cost [ca(t), cd(t)]

+

Z T

0
dt �(t)


dca(t)

dt
� f (ca(t), cd(t))

�
, [6]

where the second term ensures that the kinetic equation dca(t)/dt =
f (ca(t), cd(t)) is satisfied for all times t. The optimal inhibition protocol is

then determined by solving the dynamic equation dca(t)/dt = f (ca(t), cd(t))
together with the Euler–Lagrange equations for F

�F
�ca

=
@L
@ca

��(t)
@f
@ca

�
d�(t)

dt
= 0 [7a]

�F
�cd

=
@L
@cd

��(t)
@f
@cd

= 0, [7b]

subject to the initial condition ca(0) = 0 and the constraint �(T) = 0
(transversality condition). Eq. 7a describes the dynamics of the Lagrange
multiplier �(t); once �(t) is known, Eq. 7b yields the optimal protocol.

Since the drug concentration is constant in the case of fast drug bind-
ing (SI Appendix), the optimal control consists of discrete jumps, yielding a
bang-bang control of the form cd = cmax

d [✓(t � T1) � ✓(t � T2)], where ✓(x) is
the Heaviside function and T1 and T2 are the switching times (Eq. 4). For the
choices f(ca(t), cd(t)) =↵ (cd(t))+  (cd(t))ca(t) and L (ca(t), cd(t))= ca(t) +
⇣cd(t) discussed in the main text, the evolution equation for the Lagrange
multiplier, Eq. 7a, reads d�(t)/dt =�1 � (cd(t))�(t), while the optimal
control can be calculated from

�(Ti)
⇥
↵0 + 0 ca(Ti)

⇤
= ⇣ , i = 1, 2, [8]

where continuous derivatives with respect to cd in Eq. 7b have been replaced
by discrete jumps 0 = (0 �(cmax

d ))/cmax
d and ↵0 = (↵0 �↵(cmax

d ))/cmax
d . Eq.

8 determines the optimal values for the times to begin, T1, and to end the
drug treatment, T2. Finally, considering the cases ↵0 = 0 and 0 = 0 sepa-
rately, and, in the latter case, exploiting the fact that Ti ��1, we arrive at
the analytical results presented in Eqs. 4 and 5.
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S1. List of symbols

Parameter Meaning
k+ Rate constant for aggregate elongation
k1 Rate constant for primary nucleation
k≠ Rate constant for aggregate fragmentation
k2 Rate constant for surface-catalyzed secondary nucleation
n1 Reaction order of primary nucleation
n2 Reaction order of secondary nucleation

Mm(t) Monomer concentration
Mtot

m Total monomer concentration (conserved)
f(t, j) Concentration of aggregates of size j

ca(t) Aggregate number concentration ca(t) =
q

j
f(t, j) (0th moment of aggregate distribution)

Ma(t) Aggregate mass concentration Ma(t) =
q

j
jf(t, j) (1st moment of aggregate distribution)

cd(t) Drug concentration
Keq

◊ Binding constant of drug to ◊ = monomers (m), aggregate ends (ends), fibril surface (surf), primary or secondary
oligomers (oligo,1 and oligo,2)

Ÿ0 Effective rate of aggregate proliferation through aggregate elongation and secondary nucleation pathways

Ÿ0 =


2k+Mtot
m [k2(Mtot

m )n2 + k≠]
–0 Rate of generation of new aggregates through primary nucleation, –0 = k1[Mtot

m ]n1

’ Relative toxicity
T Terminal time

T1, T2 Switching times (start and end of drug treatment).
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S2. Irreversible aggregation kinetics of proteins

In this section we show that the following single linear equation can accurately capture the early stages of irreversible protein
aggregation kinetics for the aggregate number concentration (a) or the concentration of intermediate-sized oligomers (o), in the
absence and even presence of a drug cd:

dci(t)
dt

= –(cd) + Ÿ(cd) ci(t) , [S1]

where ci denotes the concentration of aggregates or oligomers, i = a,o. The drug a�ects the aggregation process via the
coe�cients –(cd) and Ÿ(cd). Below we explain the underlying approximations and present the derivation in the absence of drug
(section S2.1), in the presence of drug (section S2.2) and for the case with drug and additional oligomers (section S2.3).

S2.1. Kinetic equations in the absence of drug. The aggregation kinetics of a system of monomers irreversibly growing into
aggregates can be captured by the concentration of monomer mass Mm(t), and the particle and mass concentrations of the
aggregates/fibrils/polymers, denoted as ca(t) and Ma(t), respectively (1–5). The number and mass concentrations of aggregates
can be defined in terms of the concentrations f(t, j) of fibrils of size j as:

ca(t) =
Œÿ

j=n1

f(t, j), Ma(t) =
Œÿ

j=n1

jf(t, j), [S2]

where n1 denotes the size of the smallest stable aggregate (see below). These correspond to the lowest two principal moments
of the aggregate size distribution, defined in general as:

In(t) =
Œÿ

j=n1

j
n

f(t, j). [S3]

The dynamic equations for ca(t) and Ma(t) can be obtained explicitly from considering the time evolution of the concentrations
f(t, j) of aggregates of size j, which is described by the following master equation (1–5):

df(t, j)
dt

= 2k+ Mm(t)f(t, j ≠ 1) ≠ 2k+ Mm(t)f(t, j) [S4]

+ 2k≠

Œÿ

i=j+1

f(t, i) ≠ k≠(j ≠ 1)f(t, j)

+ k1 Mm(t)n1
”j,n1 + k2 Mm(t)n2

”j,n2

Œÿ

i=n2

if(t, i) ,

dMm(t)
dt

= ≠

Œÿ

j=n1

j
df(t, j)

dt
, [S5]

where k+, k≠, k1 and k2 denote the rate constants describing elongation of aggregates, fragmentation, primary and secondary
nucleation, respectively, and n1, n2 are the reaction orders of the primary and secondary nucleation (Fig. S1). Summation of
Eq. (S4) over j yields the following set of moment equations describing the dynamics of the particle and mass concentrations of
aggregates:

dMm(t)
dt

= ≠2
5

k+Mm(t) ≠
k≠n1(n1 ≠ 1)

2

6
ca(t) [S6a]

≠ n1k1 Mm(t)n1
≠ n2k2 Mm(t)n2

Ma(t) = ≠
dMa(t)

dt
,

dca(t)
dt

= k1 Mm(t)n1 + k2 Mm(t)n2
Ma(t) + k≠[Ma(t) ≠ (2n1 ≠ 1)ca(t)] , [S6b]

Eq. (S7) have a straightforward physical interpretation in the case of linear aggregates/fibrils/polymers. The term in Eq. (S6a)
proportional to the elongation rate k+ describe the decrease of monomer mass or the increase of aggregate mass through the
addition of monomers at the ends of the aggregates. There are two ends per aggregate in the case of linear fibrils or polymers
leading to the factor of two. The term proportional to k≠n1(n1 ≠ 1)/2 describes the release of monomers associated with the
formation of an unstable aggregate when a fibril breaks at a location that is closer than (n1 ≠ 1) bonds from one of its ends.
Eq. (S6b) states that the number of aggregates in the system increases either due to primary nucleation of monomers with a
rate k1, or through surface-catalyzed, secondary nucleation with a rate k2. We note that the surface of a linear aggregate (e.g.
fibril or polymer) scales with its mass Ma(t), while mass conservation causes both nucleation terms appear as sink terms in
Eq. (S6a). The term k≠[Ma(t) ≠ (2n1 ≠ 1)ca(t)] describes the formation of new fibrils when a fibril breaks at a location that is
at least (n1 ≠ 1) bonds away from either end.

Typically, the dominant sink term for the change in monomer mass concentration is the growth at the ends with a rate
k+ (1–3). This is because changes in monomer mass due to nucleation events are negligible in Eq. (S6a) relative to growth
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Fig. S1. Fundamental microscopic events of irreversible protein aggregation. Adapted with permission from (4).
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at the ends. In particular, for most known protein aggregation processes the ratio of rates ‹1 = k1(M tot
m )n1≠2

/(2k+) π 1
and ‹2 = k2(M tot

m )n2≠1
/(2k+) π 1 (and ‹2 = k≠/(2k+M

tot
m ) π 1 for fragmentation). Indeed, the steady-state “length” of

aggregates (measured in terms of the number of monomers) is given by ƒ 1/
Ô

‹2 (see Supplemental Materials of Ref. (6),
Section 4). Since aggregates are typically very long (several thousands of monomers), it follows 1/

Ô
‹2 ∫ 1. Moreover, in

most protein aggregating systems, such as in vitro assays with Alzheimer’s Amyloid-— (7), the secondary pathway dominates
primary nucleation hence ‹1 π ‹2 π 1. Thus we can neglect primary and secondary nucleation in the kinetic equation for the
monomers, and use the conservation of monomer mass, dMa/dt = ≠dMm/dt, leading to a set of only two independent moment
equations:

≠
dMm(t)

dt
= dMa(t)

dt
ƒ 2k+ Mm(t) ca(t) , [S7a]

dca(t)
dt

= k1 Mm(t)n1 +
#
k2 Mm(t)n2 + k≠

$
Ma(t) . [S7b]

S2.1.1. Early stage of aggregation. The solution to the moment equations Eq. (S7) describes a characteristic sigmoidal profile for
the aggregate number concentration: there is an initial lag phase followed by rapid growth and saturation due to monomer
depletion. The initial lag phase is a direct consequence of the existence of a positive feedback mechanism in the aggregation
process: as we shall see below, the couplings in Eq. (S7) between aggregate number and mass concentrations, ca(t) and Ma(t),
lead to an exponential growth of aggregates in the early stages of aggregation, when monomers are not significantly depleted.
Exponential growth slows down at the late stages of aggregation, when monomer depletion becomes important. In terms of
inhibiting protein aggregation, our main interest lies in the exponential growth of aggregates. For this reason, we shall now
focus our description to Eq. (S7) during the early stages of aggregation. The resulting equations are linear and are valid up to a
time where the growth of aggregates deviates from an exponential growth and begins to saturate due to depletion of monomers
(Fig. S2).

We consider the case where the system is initialized at t = 0 with a monomer mass Mm(0) = M
tot
m and zero aggregates, i.e.,

Ma(0) = 0 and ca(0) = 0; M
tot
m refers to the total protein mass in form of aggregates and monomers in the system. During the

early stages of the aggregation kinetics, the monomer mass Mm(t) hardly changes, while aggregates are already nucleated
and grow. In this early stage we can thus linearize the right hand side of Eq. (S7b) by replacing the kinetic monomer mass
concentration Mm(t) with the constant total protein mass M

tot
m . Moreover, if the change of Mm(t) is small compared M

tot
m ,

one can also replace Mm(t) with M
tot
m in Eq. (S7a). We thus arrive at the following simplified set of linear equations valid at

the early stages of the aggregation kinetics:

dca(t)
dt

ƒ –0 + —0 Ma(t) , [S8a]

dMa(t)
dt

ƒ µ0 ca(t) . [S8b]

In the equations above we abbreviated the following constant coe�cients as –0 = k1(M tot
m )n1 , —0 = k2(M tot

m )n2 + k≠ and
µ0 = 2k+M

tot
m . Using the initial conditions Ma(0) = 0 and ca(0) = 0, the solutions of the particle and mass concentrations of

the aggregates/fibrils/polymers is

ca(t) = –0 sinh(Ÿ0t)
Ÿ0

, [S9a]

Ma(t) = –0[cosh(Ÿ0t) ≠ 1]
—0

, [S9b]

where the rate Ÿ0 =
Ô

µ0—0 =


2k+M totm [k2(M totm )n2 + k≠] sets the time-scale of the exponentially growing concentrations
and represents a geometrical mean of the rates characterizing the elongation and the secondary nucleation of aggregates, while
primary nucleation only enters as a prefactor. This property is a consequence of restricting ourselves to the early stage of the
aggregation kinetics where the two concentration fields grow exponentially. Due to their “circular” couplings this is referred to
as “Hinshelwood circle” (8).

S2.1.2. Proportionality between aggregate mass and aggregate concentration. In the early stage of the clustering kinetics, there
are two relevant time regimes, t . Ÿ

≠1
0 and t & Ÿ

≠1
0 . The latter regime occurs when aggregate concentration and mass

significantly varies in time. To match the initial conditions the final expression for the particle and mass concentrations of the
aggregates/fibrils/polymers are written as

ca(t) ƒ
–0
2Ÿ0

(eŸ0t
≠ 1) , [S10a]

Ma(t) ƒ
–0
2—0

(eŸ0t
≠ 1) . [S10b]

Hence, we have a linear proportionality relationship between the two concentrations

Ma(t) = (Ÿ0/—0) ca(t) . [S11]
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By substituting this relationship into Eq. (S8a) we obtain a single linear equation for the time evolution of the aggre-
gate/fibril/polymer concentration, ca(t), in the early stage of the clustering kinetics:

dca(t)
dt

= –0 + Ÿ0 ca(t) . [S12]

S2.1.3. Proportionality between aggregate concentration and oligomer concentration. Oligomers are small aggregate species populated
during amyloid formation and that have been identified as potent cytotoxins (13–16). To study their dynamics, we extend the
dynamic equations Eq. (S8) to account for an additional field co(t) describing the concentration of oligomers. Oligomers are
formed through the nucleation pathways and are depleted due to their growth into larger fibrillar structures. Thus, we have:

dco(t)
dt

= –0 + —0Ma(t) ≠ µ0co(t) [S13a]

dca(t)
dt

= µ0co(t). [S13b]

Since growth is fast compared to the overall rate of aggregation Ÿ0, we can assume pre-equilibrium in Eq. (S13a). Setting
dco(t)

dt ƒ 0 in Eq. (S13a) yields

co(t) ƒ
–0 + —0Ma(t)

µ0
. [S14]

Since Ma(t) grows exponentially with time with rate Ÿ0, also co(t) grows exponentially with the same rate. Thus, when t & Ÿ
≠1
0

we have a linear relationship between the aggregate concentration and the concentration of oligomers

co(t) ƒ
—0
µ0

Ma(t) ƒ
Ÿ0
µ0

ca(t). [S15]

S2.2. Kinetic equations in the presence of a drug affecting aggregation.

S2.2.1. Impact of the drug. Now we incorporate the drug into the kinetics of aggregation described by Eq. (S7). To this end, we
consider three scenarios of how a drug can interfere with the aggregation kinetics (see sketch in main text, Fig. 1(a,b)):

(i) The drug could influence the aggregation process by a�ecting the primary nucleation through binding to the monomers,
and thereby deactivating or activating the monomers with a rate k

on
m or k

o�
m , respectively. Deactivated (referred to as

“bound” to the drug) monomers cannot participate in the aggregation process, i.e., they cannot nucleate to aggregates via
primary and secondary nucleation, nor they can attach at the aggregate end and drive elongation.

(ii) Moreover, the drug could suppress the secondary nucleation step of surface-catalyzed aggregation by occupying (“blocking”)
the surface with a rate k

on
surf for further binding. These “blocked” aggregates (shortly referred to as “bound" to the drug)

stop growing. When the drug detaches with a rate k
o�
surf aggregates can again catalyze secondary nucleation events of new

aggregates.

(iii) Finally, the drug could a�ect the growth of the aggregates by binding (“blocking”) the two ends of the aggregates.
Binding and unbinding of the drug occurs with a rate k

o�
ends and k

o�
ends, respectively. Aggregates with “blocked” ends,

re�ered to as “bound” aggregates, do not grow.
All these three mechanism have been verified by in vitro measurement of aggregating proteins, including the aggregation of the
Amyloid-— peptide of Alzheimer’s disease (5, 9–11) or the aggregation of the protein –-synuclein of Parkinson’s disease (12).

S2.2.2. Kinetic equations in the presence of a drug. To describe the impact of the drug we have to include additional species.
In particular, we introduce species for the monomer mass concentration, and the particle and mass concentration of the
aggregates/fibrils/polymers which are either active and not bound to the drug (“free”), or deactivated due to the binding of
the drug (“bound”), respectively. The “bound” species do not participate in the aggregation kinetics. The kinetics of the
“free” and “bound” species can be captured by the following set of equations (see Supplemental Information in Ref. (5) for a
derivation from kinetic theory of irreversible aggregation):

dM
free
m (t)
dt

ƒ ≠2k+M
free
m (t)cfree

a (t) ≠ k
on
m M

free
m (t)cd(t) + k

o�
m M

bound
m (t) , [S16a]

dM
bound
m (t)
dt

= k
on
m M

free
m (t)cd(t) ≠ k

o�
m M

bound
m (t) , [S16b]

dM
free
a (t)
dt

= 2k+M
free
m (t)cfree

a (t) ≠ k
on
surfM

free
a (t)cd(t) + k

o�
surfM

bound
a (t) , [S16c]

dM
bound
a (t)
dt

= k
on
surfM

free
a (t)cd(t) ≠ k

o�
surfM

bound
a (t) , [S16d]

dc
free
a (t)
dt

= k1M
free
m (t)n1 + k2M

free
m (t)n2

M
free
a (t) ≠ k

on
endsc

free
a (t)cd(t) + k

o�
endsc

bound
a (t) , [S16e]

dc
bound
a (t)

dt
= k

on
endsc

free
a (t)cd(t) ≠ k

o�
endsc

bound
a (t) . [S16f]
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Early-time solution
<latexit sha1_base64="T1nyYl0Scrb0sI6PvjQ72KSF0uY=">AAACCnicbVC7SgNBFJ31bXxFLW1Gg2Bj2BVBS1EEywgmEZIlzE5udHAey8xdMSypbfwVGwtFbP0CO//GSbKFrwMDh3PO5c49SSqFwzD8DCYmp6ZnZufmSwuLS8sr5dW1hjOZ5VDnRhp7mTAHUmioo0AJl6kFphIJzeTmZOg3b8E6YfQF9lOIFbvSoic4Qy91yptthDvUxiom81NmZX8XhQJKnZHZMDLolCthNRyB/iVRQSqkQK1T/mh3Dc8UaOSSOdeKwhTjnFkUXMKg1M4cpIzfsCtoeaqZAhfno1MGdNsrXdoz1j+NdKR+n8iZcq6vEp9UDK/db28o/ue1MuwdxrnQaYag+XhRL5MUDR32QrvCAkfZ94RxK/xfKb9mlnH07ZV8CdHvk/+Sxl41CqvR+X7l6LioY45skC2yQyJyQI7IGamROuHknjySZ/ISPARPwWvwNo5OBMXMOvmB4P0LKj+bLQ==</latexit><latexit sha1_base64="T1nyYl0Scrb0sI6PvjQ72KSF0uY=">AAACCnicbVC7SgNBFJ31bXxFLW1Gg2Bj2BVBS1EEywgmEZIlzE5udHAey8xdMSypbfwVGwtFbP0CO//GSbKFrwMDh3PO5c49SSqFwzD8DCYmp6ZnZufmSwuLS8sr5dW1hjOZ5VDnRhp7mTAHUmioo0AJl6kFphIJzeTmZOg3b8E6YfQF9lOIFbvSoic4Qy91yptthDvUxiom81NmZX8XhQJKnZHZMDLolCthNRyB/iVRQSqkQK1T/mh3Dc8UaOSSOdeKwhTjnFkUXMKg1M4cpIzfsCtoeaqZAhfno1MGdNsrXdoz1j+NdKR+n8iZcq6vEp9UDK/db28o/ue1MuwdxrnQaYag+XhRL5MUDR32QrvCAkfZ94RxK/xfKb9mlnH07ZV8CdHvk/+Sxl41CqvR+X7l6LioY45skC2yQyJyQI7IGamROuHknjySZ/ISPARPwWvwNo5OBMXMOvmB4P0LKj+bLQ==</latexit><latexit sha1_base64="T1nyYl0Scrb0sI6PvjQ72KSF0uY=">AAACCnicbVC7SgNBFJ31bXxFLW1Gg2Bj2BVBS1EEywgmEZIlzE5udHAey8xdMSypbfwVGwtFbP0CO//GSbKFrwMDh3PO5c49SSqFwzD8DCYmp6ZnZufmSwuLS8sr5dW1hjOZ5VDnRhp7mTAHUmioo0AJl6kFphIJzeTmZOg3b8E6YfQF9lOIFbvSoic4Qy91yptthDvUxiom81NmZX8XhQJKnZHZMDLolCthNRyB/iVRQSqkQK1T/mh3Dc8UaOSSOdeKwhTjnFkUXMKg1M4cpIzfsCtoeaqZAhfno1MGdNsrXdoz1j+NdKR+n8iZcq6vEp9UDK/db28o/ue1MuwdxrnQaYag+XhRL5MUDR32QrvCAkfZ94RxK/xfKb9mlnH07ZV8CdHvk/+Sxl41CqvR+X7l6LioY45skC2yQyJyQI7IGamROuHknjySZ/ISPARPwWvwNo5OBMXMOvmB4P0LKj+bLQ==</latexit><latexit sha1_base64="T1nyYl0Scrb0sI6PvjQ72KSF0uY=">AAACCnicbVC7SgNBFJ31bXxFLW1Gg2Bj2BVBS1EEywgmEZIlzE5udHAey8xdMSypbfwVGwtFbP0CO//GSbKFrwMDh3PO5c49SSqFwzD8DCYmp6ZnZufmSwuLS8sr5dW1hjOZ5VDnRhp7mTAHUmioo0AJl6kFphIJzeTmZOg3b8E6YfQF9lOIFbvSoic4Qy91yptthDvUxiom81NmZX8XhQJKnZHZMDLolCthNRyB/iVRQSqkQK1T/mh3Dc8UaOSSOdeKwhTjnFkUXMKg1M4cpIzfsCtoeaqZAhfno1MGdNsrXdoz1j+NdKR+n8iZcq6vEp9UDK/db28o/ue1MuwdxrnQaYag+XhRL5MUDR32QrvCAkfZ94RxK/xfKb9mlnH07ZV8CdHvk/+Sxl41CqvR+X7l6LioY45skC2yQyJyQI7IGamROuHknjySZ/ISPARPwWvwNo5OBMXMOvmB4P0LKj+bLQ==</latexit>

Full solution
<latexit sha1_base64="F/lnQvnC5U+6CiGX+HI0UsjeSbw=">AAACA3icbVBNSwMxEM3Wr1q/Vr3pJVgET2VXBD0WBfFYwX5Au5Rsmrah2WRJZsWyFLz4V7x4UMSrf8Kb/8ZsuwdtfTDweG+GmXlhLLgBz/t2CkvLK6trxfXSxubW9o67u9cwKtGU1akSSrdCYpjgktWBg2CtWDMShYI1w9FV5jfvmTZcyTsYxyyIyEDyPqcErNR1DzrAHkAqHRGRXidCYKNEknmTrlv2Kt4UeJH4OSmjHLWu+9XpKZpETAIVxJi278UQpEQDp4JNSp3EsJjQERmwtqWSRMwE6fSHCT62Sg/3lbYlAU/V3xMpiYwZR6HtjAgMzbyXif957QT6F0HKZZwAk3S2qJ8IDApngeAe14yCGFtCqOb2VkyHRBMKNraSDcGff3mRNE4rvlfxb8/K1cs8jiI6REfoBPnoHFXRDaqhOqLoET2jV/TmPDkvzrvzMWstOPnMPvoD5/MHNEiYgQ==</latexit><latexit sha1_base64="F/lnQvnC5U+6CiGX+HI0UsjeSbw=">AAACA3icbVBNSwMxEM3Wr1q/Vr3pJVgET2VXBD0WBfFYwX5Au5Rsmrah2WRJZsWyFLz4V7x4UMSrf8Kb/8ZsuwdtfTDweG+GmXlhLLgBz/t2CkvLK6trxfXSxubW9o67u9cwKtGU1akSSrdCYpjgktWBg2CtWDMShYI1w9FV5jfvmTZcyTsYxyyIyEDyPqcErNR1DzrAHkAqHRGRXidCYKNEknmTrlv2Kt4UeJH4OSmjHLWu+9XpKZpETAIVxJi278UQpEQDp4JNSp3EsJjQERmwtqWSRMwE6fSHCT62Sg/3lbYlAU/V3xMpiYwZR6HtjAgMzbyXif957QT6F0HKZZwAk3S2qJ8IDApngeAe14yCGFtCqOb2VkyHRBMKNraSDcGff3mRNE4rvlfxb8/K1cs8jiI6REfoBPnoHFXRDaqhOqLoET2jV/TmPDkvzrvzMWstOPnMPvoD5/MHNEiYgQ==</latexit><latexit sha1_base64="F/lnQvnC5U+6CiGX+HI0UsjeSbw=">AAACA3icbVBNSwMxEM3Wr1q/Vr3pJVgET2VXBD0WBfFYwX5Au5Rsmrah2WRJZsWyFLz4V7x4UMSrf8Kb/8ZsuwdtfTDweG+GmXlhLLgBz/t2CkvLK6trxfXSxubW9o67u9cwKtGU1akSSrdCYpjgktWBg2CtWDMShYI1w9FV5jfvmTZcyTsYxyyIyEDyPqcErNR1DzrAHkAqHRGRXidCYKNEknmTrlv2Kt4UeJH4OSmjHLWu+9XpKZpETAIVxJi278UQpEQDp4JNSp3EsJjQERmwtqWSRMwE6fSHCT62Sg/3lbYlAU/V3xMpiYwZR6HtjAgMzbyXif957QT6F0HKZZwAk3S2qJ8IDApngeAe14yCGFtCqOb2VkyHRBMKNraSDcGff3mRNE4rvlfxb8/K1cs8jiI6REfoBPnoHFXRDaqhOqLoET2jV/TmPDkvzrvzMWstOPnMPvoD5/MHNEiYgQ==</latexit><latexit sha1_base64="F/lnQvnC5U+6CiGX+HI0UsjeSbw=">AAACA3icbVBNSwMxEM3Wr1q/Vr3pJVgET2VXBD0WBfFYwX5Au5Rsmrah2WRJZsWyFLz4V7x4UMSrf8Kb/8ZsuwdtfTDweG+GmXlhLLgBz/t2CkvLK6trxfXSxubW9o67u9cwKtGU1akSSrdCYpjgktWBg2CtWDMShYI1w9FV5jfvmTZcyTsYxyyIyEDyPqcErNR1DzrAHkAqHRGRXidCYKNEknmTrlv2Kt4UeJH4OSmjHLWu+9XpKZpETAIVxJi278UQpEQDp4JNSp3EsJjQERmwtqWSRMwE6fSHCT62Sg/3lbYlAU/V3xMpiYwZR6HtjAgMzbyXif957QT6F0HKZZwAk3S2qJ8IDApngeAe14yCGFtCqOb2VkyHRBMKNraSDcGff3mRNE4rvlfxb8/K1cs8jiI6REfoBPnoHFXRDaqhOqLoET2jV/TmPDkvzrvzMWstOPnMPvoD5/MHNEiYgQ==</latexit>

Fig. S2. Time course of aggregate number concentration ca(t) =
q

j
f(t, j), predicted by the moment equations Eq. (S7) (solid line), displays a characteristic sigmoidal

profile, including an initial lag phase followed by rapid growth and saturation to a plateau due to conservation of monomer mass. The early stages of aggregation (lag-phase and
rapid growth) involve exponential multiplication of aggregates with effective rate Ÿ0, as described by the early-time solution Eq. (S12) (dashed line). For drug treatments, we
are interested in capturing the positive-feedback feature of aggregation associated with the initial exponential growth phase rather than in the saturation phase; for this reason
we will focus our analysis on the early times of aggregation, as described by Eq. (S12). Calculation parameters are the experimentally measured aggregation rate parameters
for A—42 (7): k+ = 3 ◊ 106 M≠1s≠1, k1 = 4 ◊ 10≠4 M≠1s≠1, k2 = 104 M≠2s≠1, k≠ = 0, mtot = 5µM, n1 = n2 = 2.
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Again we have neglected the nucleation terms in the kinetic equations for the monomer mass concentration in Eq. (S16a); see
section S2.1 for a discussion.

We now introduce the total monomer mass concentration Mm(t), and the total mass and particle concentration of the
aggregates, Ma(t) and ca(t):

Mm(t) = M
free
m (t) + M

bound
m (t) , [S17a]

Ma(t) = M
free
a (t) + M

bound
a (t) , [S17b]

ca(t) = c
free
a (t) + c

bound
a (t) . [S17c]

Conservation of total protein mass (monomer and aggregates), M
tot
m = constant, implies

M
tot
m = Mm(t) + Ma(t) = M

free
m (t) + M

bound
m (t) + M

free
a (t) + M

bound
a (t) . [S18]

Conservation of the total amount of drug c
tot
d = constant gives

c
tot
d = cd(t) + M

bound
m (t) + M

bound
a (t) + c

bound
a (t) , [S19]

from which the time evolution of the drug follows,

dcd(t)
dt

= ≠
dM

bound
m (t)
dt

≠
dM

bound
a (t)
dt

≠
dc

bound
a (t)

dt
. [S20]

S2.2.3. Simplified kinetic equations in the limit of fast drug binding. Eq. (S16) can be simplified in the limit of fast binding kinetics
of the drug with monomers and aggregates. Specifically, if the process of primary nucleation is slow compared to the on/o�
binding of the drug (k1(M tot

m )n1≠1
π k

on
··· cd, k

o�
··· ), the time change of the bound species can be approximated as

dM
bound
m (t)
dt

ƒ 0 ,
dc

bound
a (t)

dt
ƒ 0 ,

dM
bound
a (t)
dt

ƒ 0 , [S21]

leading according to Eq. (S20) to
dcd(t)

dt
ƒ 0 , thus cd(t) ƒ cd , [S22]

where cd is the constant drug level in the system. It can be shown that any drug that is able to significantly inhibit protein
aggregation must bind quickly compared to the dominant rate that contributes to the growth of aggregates. Otherwise, the
e�ect of inhibitor does not alter significantly the aggregation reaction.

The condition Eq. (S21) further implies that there is a linear relationship between the free and bound material:

M
bound
m (t) = K

eq
m cd M

free
m (t) , [S23a]

M
bound
a (t) = K

eq
surfcd M

free
a (t) , [S23b]

c
bound
a (t) = K

eq
endscd c

free
a (t) , [S23c]

where K
eq
m = k

on
m /k

o�
m , K

eq
surf = k

on
surf/k

o�
surf and K

eq
ends = k

on
ends/k

o�
ends are the equilibrium binding constants for the drug binding

to the monomers, the surface or the ends of the aggregates/fibril/polymers, respectively. These values have been accessed
experimentally for various types of drugs using in vitro assays for protein aggregation (see (5), or Fig. 1 in Ref. (9)) or from
measurements of binding kinetics using Surface Plasmon Resonance (SPR) (see Fig. 3 in Ref. (9)).

Eq. (S17) together with Eq. (S23) can be written as

M
free
m (t) = Mm(t)

1 + K
eq
m cd

, [S24a]

M
free
a (t) = Ma(t)

1 + K
eq
surf cd

, [S24b]

c
free
a (t) = ca(t)

1 + K
eq
ends cd

. [S24c]

Now we insert the relationships above into Eq. (S16a), Eq. (S16c) and Eq. (S16e), leading to three kinetic equations for the
total mass of monomers Mm(t), and the mass and particle concentration of aggregates, Ma(t) and ca(t), valid in the limit of
fast drug binding:

≠
dMm(t)

dt
ƒ

dMa(t)
dt

= 2k+

3
Mm(t)

1 + K
eq
m cd

4 3
ca(t)

1 + K
eq
ends cd

4
, [S25a]

dca(t)
dt

= k1

3
Mm(t)

1 + K
eq
m cd

4n1

+ k2

3
Mm(t)

1 + K
eq
m cd

4n2 3
Ma(t)

1 + K
eq
surfcd

4
. [S25b]
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S2.2.4. Linearized set of equations for fast drug binding and early stage of aggregation. Eq. (S25) resemble the kinetic equations Eq. (S7)
in the absence of drug, allowing us to further simplify Eq. (S25).

In the early regime of aggregation we can linearize the total monomer mass concentration Mm(t) around the total protein
mass M

tot
m . Considering the initial conditions Ma(0) = 0 and ca(0) = 0, we find

dMa(t)
dt

ƒ µ(cd) ca(t) , [S26a]

dca(t)
dt

ƒ –(cd) + —(cd) Ma(t) , [S26b]

where rates now depend on the drug concentration cd:

µ(cd) = µ0

1 1
1 + K

eq
m cd

2 3
1

1 + K
eq
endscd

4
, [S27a]

–(cd) = –0

1 1
1 + K

eq
m cd

2n1
, [S27b]

—(cd) = —0

1 1
1 + K

eq
m cd

2n2
3

1
1 + K

eq
surfcd

4
. [S27c]

The constant coe�cients are defined as µ0 = 2k+M
tot
m , –0 = k1(M tot

m )n1 and —0 = k2(M tot
m )n2 (see also Section S2.1.1).

S2.2.5. Final kinetic equation in the presence of drug and the linear relationship between particle and mass concentration of aggregates.

Eq. (S26) have the form as Eq. (S8). Following the same steps as outlined in Section S2.1.2, we can derive a single kinetic
equation for t & Ÿ(cd)≠1, which has the characteristic rate

Ÿ(cd) =


µ(cd)—(cd) = Ÿ0

1 1
1 + K

eq
m cd

2(n2+1)/2
3

1
1 + K

eq
endscd

41/2 3
1

1 + K
eq
surfcd

41/2

, [S27d]

and Ÿ0 =
Ô

µ0—0 =


2k+k2(M totm )n2+1. The geometric mean arises from the exponential growth of the two concentration
fields and their circular couplings and is referred to as “Hinshelwood circle” (8). Our final equation in the presence of the drug
that is valid at the early stages of the aggregation kinetics then reads

dca(t)
dt

= –(cd) + Ÿ(cd) ca(t) , [S28]

where Ÿ(cd) is given in Eq. (S27d) and –(cd) is given by Eq. (S27b).
As in the absence of drug (Eq. (S12)), the aggregation kinetics with drug can be captured by a single, linear kinetic equation

(Eq. (S28)) in the regime of fast drug binding and the early stage of the aggregation kinetics, t & Ÿ(cd)≠1. The coe�cients
–(cd) and Ÿ(cd) characterize how the drug inhibits the aggregation kinetics. Most importantly, for cd æ Œ, –(cd) and Ÿ(cd)
decrease to zero and the aggregation kinetics arrests.

S2.3. Kinetic equations in the presence of a drug affecting aggregation: Impact of toxic oligomers. In the following, we extend
our kinetic approach to explicitly account for populations of low-molecular weight aggregates, commonly called oligomers.
There is increasing recent evidence suggesting that oligomeric aggregates might carry increased cytotoxic potential compared
to their high-molecular weight fibrillar counterparts (13–16). Oligomers might correspond to short fibrillar species consisting of
a few to a few tens of monomers or might represent structurally distinct species from small fibrillar aggregates which thus need
to undergo a conversion step before being able to recruit further monomers and grow into mature fibrils.

We thus extend the set of equations presented in the last section S2.2 by a further species, the oligomers. In addition, we
allow for a further pathways of how the drug a�ect the aggregation kinetics. We consider the “deactivation" of the oligomers by
blocking the surface or ends of the oligomers, thereby suppressing secondary nucleation and elongation/growth of oligomers.
Since the growth and nucleation of oligomers and aggregates require monomers and because aggregates can mediate secondary
nucleation of oligomers, there will be an interesting competition between oligomers and aggregates.

S2.3.1. Kinetic equations with oligomers in the presence of a drug. In addition to the monomer mass concentration, and the particle
and mass concentration of the aggregates/fibrils/polymers we introduce a concentration of the oligomers. As in the last section,
all species exits in two “states”, i.e., they are active and not bound to the drug (“free”), or deactivated due to the binding
to the drug (“bound”). The “bound” species no more participate in the aggregation kinetics. The kinetics of the “free” and
“bound” species can be captured by the following set of equations for the monomers (m),

dM
free
m (t)
dt

ƒ ≠2k+M
free
m (t)cfree

a (t) ≠ k
on
m M

free
m (t)cd(t) + k

o�
m M

bound
m (t) , [S29a]

dM
bound
m (t)
dt

= k
on
m M

free
m (t)cd(t) ≠ k

o�
m M

bound
m (t) , [S29b]
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the oligomers (o),

dc
free
o (t)
dt

= k1M
free
m (t)n1 + k2M

free
m (t)n2

M
free
a (t) [S29c]

≠2kconvM
free
m (t)nconv

c
free
o (t) ≠ k

on
o c

free
o (t)cd(t) + k

o�
o c

bound
o (t) ,

dc
bound
o (t)

dt
= k

on
o c

free
o (t)cd(t) ≠ k

o�
o c

bound
o (t) , [S29d]

and the larger aggregates (a):

dM
free
a (t)
dt

= 2k+M
free
m (t)cfree

a (t) ≠ k
on
surf,aM

free
a (t)cd(t) + k

o�
surf,aM

bound
a (t) , [S29e]

dM
bound
a (t)
dt

= k
on
surf,aM

free
a (t)cd(t) ≠ k

o�
surf,aM

bound
a (t) , [S29f]

dc
free
a (t)
dt

= 2kconvM
free
m (t)nconv

c
free
o (t) ≠ k

on
ends,ac

free
a (t)cd(t) + k

o�
ends,ac

bound
a (t) , [S29g]

dc
bound
a (t)

dt
= k

on
ends,ac

free
a (t)cd(t) ≠ k

o�
ends,ac

bound
a (t) . [S29h]

The free oligomers are formed through primary and secondary nucleation pathways with rate constants k1 and k2; see Eq. (S29c).
Here, the rate constants k1 and k2 describe only the formation step of oligomers and need not to correspond to the corresponding
rate constants used in Sec. S2.1. As in section S2.1 we neglect the nucleation of oligomers in the kinetics of the monomer
mass concentration Eq. (S29a). In addition, there is a term describing the conversion of oligomers to large aggregates with a
rate kconv (Eq. (S29c) and Eq. (S29g)). Large aggregates grow via their ends by recruiting free monomers with rate constant
k+; see Eq. (S29e). The on/o� kinetics between “free” and “bound” species is captured by appropriate couplings to the drug
concentration cd similar to Eq. (S16). To derive Eq. (S29a)-Eq. (S29h), we have neglected the contribution of oligomeric
populations to the overall mass of aggregates; this assumption is justified as oligomers are small aggregate species that consists
of maximally order 10 monomers, as opposed to mature fibrils, which typically consists of several thousands of monomeric
subunits and thus are expected to dominate the aggregate mass fraction.

As in section S2.2, we introduce the total monomer mass concentration Mm(t), and the total mass and particle concentration
of the aggregates, Ma(t) and ca(t), as well as for mass- and particle concentration of the oligomers:

Mm(t) = M
free
m (t) + M

bound
m (t) , [S30a]

co(t) = c
free
o (t) + c

bound
o (t) , [S30b]

Ma(t) = M
free
a (t) + M

bound
a (t) , [S30c]

ca(t) = c
free
a (t) + c

bound
a (t) . [S30d]

Conservation of total protein mass (monomer and aggregates), M
tot
m = constant, implies

M
tot
m ƒ Mm(t) + Ma(t) = M

free
m (t) + M

bound
m (t) + M

free
a (t) + M

bound
a (t) . [S31]

Note that we have neglected the mass of the oligomers in the equation above. Conservation of the total amount of drug
c

tot
d = constant gives

c
tot
d = cd(t) + M

bound
m (t) + c

bound
o (t) + M

bound
a (t) + c

bound
a (t) [S32]

from which the time evolution of the drug follows,

dcd(t)
dt

= ≠
dM

bound
m (t)
dt

≠
dc

bound
o (t)

dt
≠

dM
bound
a (t)
dt

≠
dc

bound
a (t)

dt
. [S33]

S2.3.2. Simplified kinetic equations with oligomers in the limit of fast drug binding. Eq. (S29) can be simplified in the limit of fast
binding of the drug to monomers and aggregates (for more details see section S2.2.3), such that the time change of the bound
species can be approximated as

dM
bound
m (t)
dt

ƒ 0 ,
dc

bound
o (t)

dt
ƒ 0 ,

dc
bound
a (t)

dt
ƒ 0 ,

dM
bound
a (t)
dt

ƒ 0 , [S34]

leading according to Eq. (S33) to
dcd(t)

dt
ƒ 0 , thus cd(t) ƒ cd , [S35]
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where cd is the constant drug level in the system. The condition Eq. (S21) can also be used to equate the left hand side of
Eq. (S29b), Eq. (S29d), Eq. (S29f), Eq. (S29h), to zero. This gives linear relationships between the free and bound material:

M
bound
m (t) = K

eq
m cd M

free
m (t) , [S36a]

c
bound
o (t) = K

eq
o cd c

free
o (t) , [S36b]

M
bound
a (t) = K

eq
surf,acd M

free
a (t) , [S36c]

c
bound
a (t) = K

eq
ends,acd c

free
a (t) , [S36d]

where K
eq
m = k

on
m /k

o�
m , K

eq
o = k

on
o /k

o�
o , K

eq
surf,a = k

on
surf,a/k

o�
surf,a, K

eq
ends,a = k

on
ends,a/k

o�
ends,a, are the equilibrium binding constants

for the drug binding to the monomers, the oligomers or the surface/ends of aggregates/fibril/polymers, respectively. Eq. (S30)
together with Eq. (S36) can be written as

M
free
m (t) = Mm(t)

1 + K
eq
m cd

, [S37a]

c
free
o (t) = co(t)

1 + K
eq
o cd

, [S37b]

M
free
a (t) = Ma(t)

1 + K
eq
surf,a cd

, [S37c]

c
free
a (t) = ca(t)

1 + K
eq
ends,a cd

. [S37d]

Now we insert the relationships above into Eq. (S29a), Eq. (S29c), Eq. (S29e), Eq. (S29g), leading to three kinetic equations for
the total mass of monomers Mm(t), and the particle concentration of oligomers, co(t), and the mass and particle concentration
of aggregates, Ma(t) and ca(t), valid in the limit of fast drug binding:

≠
dMm(t)

dt
ƒ

dMa(t)
dt

= 2k+

3
Mm(t)

1 + K
eq
m cd

4 3
ca(t)

1 + K
eq
ends cd

4
, [S38a]

dco(t)
dt

= k1

3
Mm(t)

1 + K
eq
m cd

4n1

+ k2

3
Mm(t)

1 + K
eq
m cd

4n2 3
Ma(t)

1 + K
eq
surfcd

4
[S38b]

≠ 2kconv

3
Mm(t)

1 + K
eq
m cd

4nconv 3
co(t)

1 + K
eq
o cd

4
,

dca(t)
dt

= 2kconv

3
Mm(t)

1 + K
eq
m cd

4nconv 3
co(t)

1 + K
eq
o cd

4
. [S38c]

S2.3.3. Linearized set of equations for fast drug binding and early stage of aggregation with oligomers. Linearizing Eq. (S38) with the
total monomer mass concentration Mm(t) close to the total protein mass M

tot
m and considering the initial conditions Ma(0) = 0

and ca(0) = 0, we find

dMa(t)
dt

ƒ µ(cd) ca(t) , [S39a]

dco(t)
dt

ƒ –(cd) + —(cd) Ma(t) ≠ “(cd)co(t) , [S39b]

dca(t)
dt

ƒ “(cd)co(t) , [S39c]

where the rates now depend on the drug concentration cd:

µ(cd) = µ0

1 1
1 + K

eq
m cd

2 3
1

1 + K
eq
endscd

4
, [S40a]

–(cd) = –0

1 1
1 + K

eq
m cd

2n1
, [S40b]

—(cd) = —0

1 1
1 + K

eq
m cd

2n2
3

1
1 + K

eq
surfcd

4
, [S40c]

“(cd) = “0

1 1
1 + K

eq
m cd

2nconv 1 1
1 + K

eq
o cd

2
. [S40d]

The constant coe�cients are defined as µ0 = 2k+M
tot
m , –0 = k1(M tot

m )n1 , —0 = k2(M tot
m )n2 and “0 = 2kconv(M tot

m )nconv .
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S2.3.4. Final kinetic equations with oligomers in the presence of drug and the linear relationship between particle and mass concentration

of aggregates. The linearized equations Eq. (S39) can be written in matrix form

d
dt

A
Ma(t)
co(t)
ca(t)

B
=

A 0 0 µ

— ≠“ 0
0 “ 0

B A
Ma(t)
co(t)
ca(t)

B
+

A 0
–

0

B
. [S41]

We are interested in the exponentially growing solutions to Eq. (S41). Thus we search for the largest eigenvalue of the matrix
above. The characteristic polynomial for the eigenvalue x is

x
3 + “x

2
≠ “—µ = 0 . [S42]

To find the largest (positive) eigenvalue, we use the method of dominant balance in the limit of small “ (17). The basic idea of
this method is to show that two terms of the equation Eq. (S42) balance while the remaining terms vanish as “ æ 0. The
relevant dominant balance for our problem is obtained when

x = O(“1/3) . [S43]

In fact, writing x = “
1/3

X with X = O(1), we find

X
3 + “

2/3
X

2
≠ —µ = 0 “æ0

∆ X
3

≠ —µ = 0 ∆ X ƒ (—µ)1/3
. [S44]

The largest eigenvalue of interest is therefore approximatively equal to

x ƒ (“—µ)1/3
© Ÿ̄ . [S45]

Similar to sections S2.1.1 and S2.2.5 the largest eigenvalue corresponds to the geometrical mean of rates. Due to the exponential
growth of all three concentration fields and their circular coupling, the origin of the geometric mean can be illustrated by a so
called “Hinshelwood circle” (8). In the case of early stage aggregation with oligomers it is the geometric mean between “, —

and µ, while in the absence of oligomers, the largest eigenvalue is the geometric mean of — and µ only.
For t & Ÿ̄, Ma(t) ƒ Ae

Ÿ̄t, co(t) ƒ Be
Ÿ̄t, ca(t) ƒ Ce

Ÿ̄t, where Ÿ̄ = (“—µ)1/3. Moreover, using Eq. (S39), we find A = µ“/Ÿ̄
2,

C = “/Ÿ̄ and B = (– + “—µ/Ÿ̄
2)/(Ÿ̄ + “) and

Ma(t) ƒ
µ

Ÿ̄
ca(t) ƒ

µ“

Ÿ̄2 co(t) . [S46]

Substituting these relationships back into our linearized kinetic equations Eq. (S39), we obtain a single, independent (due to
Eq. (S46)) equation describing the aggregation kinetics:

dco(t)
dt

ƒ – +
1

“—µ

Ÿ̄2 ≠ “

2
co(t) = –(cd) + Ÿ̃(cd) co(t) , [S47]

where Ÿ̃ = (“—µ/Ÿ̄
2) ≠ “ = Ÿ̄ ≠ “. The drug dependence of the coe�cients are given in Eq. (S40).

Equation Eq. (S47) has the same mathematical form as the kinetic equations for the early stage aggregation in the absence
of drug, Eq. (S12), and in the presence of drug solely restricting to large aggregates, Eq. (S28). This mathematical equivalence
is only true in the limit of fast drug binding. Of course, the corresponding coe�cients are di�erent for each of the mentioned
cases. In the next chapter we will use this mathematical similarity and discuss optimal inhibition of irreversible aggregation
considering this type of kinetic equation Eq. (S1).
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S3. Optimal inhibition of irreversible aggregation of proteins

We are interested to find the solution to Eq. (S1), which lead to the “optimal” inhibition of aggregates or oligomers, respectively
(see Fig. S3(a)). Each solution is characterized by the drug concentration (in general referred to as control). In our case, the
drug reduces the amount of aggregates and oligomers. From a naive perspective, the drug level could simply be increased to
infinity suppressing all three pathways of aggregation, i.e., primary and secondary nucleation and the growth of the aggregates
at their ends (see section S2.2.1). However, the presence of a large amount of drug may be toxic (18). An increase in
concentration of a toxic drug competes with an decrease in concentration of aggregates/oligomers that are toxic as well. This
competition is mathematically captured by a functional, denoted as “Cost[·]”, which may depend on drug, oligomer and
aggregate concentrations. This functional is called “action” (in the context of physics �) or “cost” (in the context of optimal
control theory) and allows to select the “optimal solution”. The optimal solution corresponds to a minimum value of this
action/cost functional. It is obtained by minimizing this functional with the constraint that the corresponding controlling drug
concentration and aggregate/oligomer concentration are solutions to Eq. (S1). In the next section we will discuss the central
equations of this variational problem and apply it to the inhibition of aggregation in the following sections.

S3.1. Introduction to variational calculus with constraint and optimal control theory . Let us consider the time dependent
control cd(t) (e.g. the drug concentration) which controls the solution ca(t) to the di�erential equation

dca(t)
dt

= f (cd(t), ca(t)) . [S48]

We aim at the control cd(t) that minimizes the “action” or “cost”

Cost [cd(t), ca(t)] =
⁄ T

0
dt

Õ
L

!
ca(tÕ), cd(tÕ)

"
, [S49]

with the constraint that f (cd(t), ca(t)) is a solution to Eq. (S48). Thus we have to minmize the functional

F [cd(t), ca(t)] = Cost [cd(t), ca(t)] ≠

⁄ T

0
dt

Õ
⁄(tÕ)

3
dca(tÕ)

dtÕ ≠ f
!
ca(tÕ), cd(tÕ)

"4
, [S50]

where ⁄(t) is a continuous Lagrange multiplier (or co-state variable in the context of optimal control theory) which ensures
that the constraint Eq. (S48) is satisfied for all times t. Minimization yields

”F [cd(t), ca(t)] =
⁄ T

0
dt

Õ
1

”F

”cd
”cd + ”F

”ca
”ca

2
+ ⁄(t) ”ca(t)

----
T

0
. [S51]

The integrated terms on the right hand side vanish for ⁄(0) = 0 and ⁄(T ) = 0, or ”ca(0) = 0 and ”ca(T ) = 0, or ”ca(0) = 0 and
⁄(T ) = 0, or ⁄(0) = 0 and ”ca(T ) = 0. With one of these combinations of initial condition at t = 0 and fixed constraint at
t = T , we obtain the following set of equations:

0 = ”F

”cd
= ˆL

ˆcd
+ ⁄(t) ˆf

ˆcd
, [S52a]

0 = ”F

”ca
= ˆL

ˆca
+ ⁄(t) ˆf

ˆca
+ d⁄(t)

dt
. [S52b]

We have the same number of conditions, Eq. (S52) and Eq. (S48), as unknowns, namely the Lagrange multiplier ⁄(t), the
solution ca(t) and the control cd(t).

The three conditions can be rewritten to establish a “recipe” as commonly presented in textbooks on optimal control
theory (19). Defining the “Hamiltonian”

H (cd(t), ca(t), ⁄(t)) = L (cd(t), ca(t)) + ⁄(t) f (cd(t), ca(t)) , [S53]

Eq. (S52) and Eq. (S48) can be rewritten as
dca(t)

dt
= ˆH

ˆ⁄
, [S54a]

d⁄(t)
dt

= ≠
ˆH

ˆca
, [S54b]

0 = ˆH

ˆcd
. [S54c]

The defined “Hamiltonian” is conserved along the optimal trajectory, i.e., using Eq. (S54),
d
dt

H (cd(t), ca(t), ⁄(t)) = ˆH

ˆcd

dcd
dt

+ ˆH

ˆca

dca(t)
dt

+ ˆH

ˆ⁄

d⁄(t)
dt

= 0 . [S55]

In the field of optimal control theory, the corresponding mathematical theorem is called Pontryagin minimum principle
(PMP) (19). The Pontryagin theorem ensures the existence of a control cd(t) characterizing a unique solution ca(t) which leads
to the smallest value of the Cost[·].

�Note that we use the term “action” in a broader sense. Here the action not necessarily determines the equation of motions as in the case of Lagrangian mechanics.
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S3.2. Optimal control theory applied to the inhibition of protein aggregation. To capture the competition between drug-induced
inhibition of aggregation, ca(t) ƒ co(t)(“/Ÿ̄) (see Eq. (S47)), and the toxic action of the controlling drug concentration, cd(t),
we introduce the following functional called “cost” or “action”,

Cost[cd, ca] =
⁄ T

0
dt

3
ca(t) + ’ cd(t)

4
, [S56]

where we consider a linear dependence on the concentrations for simplicity. We introduce a toxicity ’ for the drug measured
relative to the toxicity to the large aggregates (a) or oligomers (o), respectively. Note that the amplitude of the cost functional,
Cost[·], does not matter for results obtained by variational calculus. The cost above increases for larger time periods T and for
higher concentrations of drug and aggregates and oligomers. Increasing the drug concentration creates extra “costs” for the
cell, to degrade the drug and/or maintain the biological function the cellular machinery in the presence of the drug for example.
Similarly, too many aggregates/oligomers also increase these cellular costs.

Alternatively, the presence of aggregates/oligomers for t < T may not create any costs for the cell, while there is a “terminal
cost” at t = T ,

Cost[cd, ca(T )] = T ca(T ) +
⁄ T

0
dt ’ cd,i(t) . [S57]

In the following we will study both cases of integrated cost (Eq. (S56)) and terminal cost (Eq. (S57)) as they may represent
limiting cases for a living system in which aggregates may cause both type of costs. For the considered equation Eq. (S1),
however, we will see that there is no qualitative di�erence in the results between integrated and terminal costs.

By means of the cost function we can select the optimal solution set by the drug concentration cd(t). This drug inhibits
protein aggregation by at least one of the mechanisms discussed in section S2.2.1, by some combination of them or via all three
mechanisms. To solve the optimal control problem described in the last section, we apply the variational recipe as introduced in
section S3.1. To this end, we introduce the Lagrange multiplier or co-state variable ⁄(t) and define the following Hamiltonian
in the case of integrated costs (Eq. (S56)),

H[cd(t), ca(t), ⁄(t)] = ca(t) + ’ cd(t) + ⁄(t)
#
– (cd(t)) + Ÿ (cd(t)) ca(t)

$
, [S58]

while for terminal costs (Eq. (S57)), the Hamiltonian reads

H[cd(t), ca(t), ⁄(t)] = ’ cd(t) + ⁄(t)
#
– (cd(t)) + Ÿ (cd(t)) ca(t)

$
. [S59]

The evolution equation for the Lagrange multiplier or co-state variable ⁄(t) is

d⁄(t)
dt

= ≠
ˆH

ˆca
= ≠1 ≠ Ÿ(cd) ⁄(t) . [S60]

Since the concentration of aggregates at t = T is free, we solve Eq. (S60) subject to the condition

⁄(T ) = A , [S61]

which is referred to as transversality condition in the context of optimal control theory (19). Here, A is a constant. In particular,
A = 0 for integrated costs (Eq. (S56)) and A = T for terminal costs (Eq. (S57)). By construction, the kinetic equation for the
drug concentration reads

dca(t)
dt

= ˆH

ˆ⁄
= – (cd(t)) + Ÿ (cd(t)) ca(t) . [S62]

The optimal control can be calculated by the condition

ˆH

ˆcd
= 0 , [S63]

i.e., the optimal drug concentration cd(t) corresponds to a minimum of the Hamiltonian with respect to the drug concentration.
If the drug concentration were a continuous concentration profile, the condition for the minimum is given in equation Eq. (S63).
However, the drug concentration may jump at the times T1 and T2 (see Eq. (S67) in the next section). Therefore, the derivatives
of the rates Ÿ(cd) and –(cd) with respect to cd jump as well, i.e., Ÿ

Õ = (Ÿ(cd) ≠ Ÿ0)/cd and –
Õ = (–(cd) ≠ –0)/cd. The minimum

condition gives di�erent conditions at t = Ti,

ˆH

ˆcd
= ’ + ⁄(Ti)

#
–

Õ + Ÿ
Õ
ca(Ti)

$
= 0 , [S64]

where the times Ti are determined by the actual drug protocol which we discuss in the following section.
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S3.3. Drug protocols for optimal inhibition. To discuss the drug protocol we consider the case of zero aggregates at time t = 0,

ca(0) = 0 , [S65]

i.e., the patient is initially healthy.
The drug concentration in Eq. (S1) is constant in the limit of fast binding of the drug to the aggregates and the monomers

(see sections S2.2.3 and S2.3.2). Consistently, we can only use a constant concentration for the drug. However, concentration
levels may be di�erent in di�erent time spans of the treatment. Depending on the value of the toxicity ’ and the kinetic
parameters, – and Ÿ, there are two di�erent type of drug protocols (see Fig. S3(d,e) on the right hand side). Each drug protocol
can be derived from the minimization of the Hamiltonian, Eq. (S64), which can be written as

’ = ⁄(Ti)
!
|–

Õ
| + |Ÿ

Õ
| ca(Ti)

"
, [S66]

noting that –
Õ(cd) < 0 and Ÿ

Õ(cd) < 0 (see e.g. Eq. (S27b) and Eq. (S27d)). This condition either yields two solutions, T1 and
T2, or just one, T2 (see Fig. S3(b,c,d,e)). The corresponding protocols either read

cd(t) =

Y
]

[

0 for 0 Æ t < T1 ,

cd for T1 Æ t < T2 ,

0 for T2 Æ t Æ T ,

[S67]

or

cd(t) =
;

cd for 0 Æ t < T2 ,

0 for T2 Æ t Æ T ,
[S68]

where T1 or t = 0, respectively, is the time of drug administration, T2 ≠ T1 or just T2 denotes the time period the drug is
applied, and T ≠ T2 is a drug-free period after medication.

In the following we compare two di�erent physical scenarios, where each corresponds to the drug protocol Eq. (S67) or
Eq. (S68), respectively:

1) The first scenario is the case where primary nucleation is not a�ected by the drug, i.e., –(cd) = –0; the drug only
decreases secondary nucleation and growth at the ends of the aggregates. This case leads to the drug protocol Eq. (S67)
illustrated in Fig. S3(d).

2) The second scenario corresponds to Ÿ(cd) = Ÿ0, i.e., secondary nucleation and growth at the ends are not a�ected by the
drug. Instead the drug only inhibits primary nucleation. This case leads to the drug protocol Eq. (S68) illustrated in
Fig. S3(e).

Later we will determine the parameter regimes where one of these strategies is more e�cient to inhibit protein aggregation
than the other. The optimal protocol for a drug inhibiting multiple aggregation steps can be obtained explicitly by solving
Eq. (S66) and is a combination of the scenarios (1) and (2) discussed here below.

S3.4. Optimal inhibition. We seek for the optimal treatment leading to the most e�ective inhibition of aggregate growth. We
would like optimize the treatment, characterized by the times T1 and T2 and the drug concentration cd, such that the aggregate
concentration ca(t = T ) at the final time t = T is an output of the optimization procedure. Thus we let the final aggregate
concentration ca(t = T ) “free” and fix the final time T , which corresponds to the condition Eq. (S61).

The optimal drug treatment can be found by calculating the optimal times to begin, T1, and to end the drug treatment, T2,
which minimize the cost functional Eq. (S56) given the aggregation kinetics governed by Eq. (S28).

By means of the optimization we will determine the weakest and optimal growth of the concentration of aggregates, ca(t),
and oligomers, co(t); see section S3.4.1. We calculate the dependencies of the times to begin, T1, and end, T2, the drug
treatment as a function of the aggregation parameters and the relative toxicities ’ (section Eq. (S3.4.2)). These results will
allow us to discuss how the life time expectance of patients is decreased if the treatment deviates from the optimum or if there
is no drug treatment (section S3.4.5).

S3.4.1. Solutions for Lagrange multiplier (co-state variable) and solution to aggregation kinetics. For T2 Æ t Æ T , we solve Eq. (S60)
considering that cd(t = T ) = 0 and thus Ÿ(cd = 0) = Ÿ0 (see Eq. (S67)):

⁄(t) = e
Ÿ0(T ≠t)

≠ 1
Ÿ0

+ A e
Ÿ0(T ≠t)

, T2 Æ t Æ T . [S69a]

To obtain the solution in the time period T1 Æ t < T2, we solve Eq. (S60) with cd = cd, and match with the solution above at
t = T2:

⁄(t) = e
Ÿ(cd)[T2≠t]

≠ 1
Ÿ(cd) + ⁄(T2) e

Ÿ(cd)[T2≠t]
, T1 Æ t < T2 . [S69b]
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No drug

With drug

Treatment Treatment Treatment

A B

Treatment
Optimal protocol

C

D

E

Case �� = 0

Case �� = 0

Optimal protocolTreatment

Fig. S3. (a) Effect of optimal control on aggregate concentration. While the aggregate concentration ca(t) grows exponentially in time in the absence of drug, a drug treatment
within the time interval [T1, T2] can significantly inhibit the aggregate growth. (b) Sketch of time evolution of co-state variable ⁄(t) with the transversality condition ⁄(T ) = 0
(in the case of integrated costs). Please refer to section S3.4.1 for the solutions of co-state variable ⁄(t) as a function of time. (c) Illustration of the time evolution of the quantity
⁄(t)[|–Õ| + |ŸÕ|ca(t)] which essentially determines the drug protocol. Note that ⁄(t)[|–Õ| + |ŸÕ|ca(t)] is the product of ⁄(t) (monotonically decreasing; see section S3.4.1)
and |–Õ| + |ŸÕ|ca(t) (monotonically increasing or constant; see section S3.4.1), hence it can have a non-monotonic behavior. The switching times T1 and T2 are set by the
condition Eq. (S66). (d) Optimal protocol for the case –Õ = 0. Drug is administered at t = T1 > 0 with the drug protocol Eq. (S67) illustrated on the right hand side. (e)
Optimal protocol for the case ŸÕ = 0. Drug is administered already at t = 0 with the drug protocol Eq. (S68) illustrated to the right.
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For 0 Æ t < T1, we find:

⁄(t) = e
Ÿ0(T1≠t)

≠ 1
Ÿ0

+ ⁄(T1) e
Ÿ0(T1≠t)

, 0 Æ t < T1 . [S69c]

Please refer to Fig. S3(b) for an illustration of ⁄(t). Since we have fixed the form of the drug as a function of time ca(t)
(Eq. (S67)), we can already calculate of the optimal concentration of aggregates as a function of time, ca(t), governed by

dca(t)
dt

= ˆH

ˆ⁄
= –(cd) + Ÿ(cd) ca(t) . [S70]

Using the initial condition ca(0) = 0, we find:

ca(t) = –0
Ÿ0

#
e

Ÿ0t
≠ 1

$
, 0 Æ t Æ T1 , [S71a]

ca(t) = –(cd)
Ÿ(cd)

5
e

Ÿ(cd)[t≠T1]
≠ 1

6
+ ca(T1) e

Ÿ(cd)[t≠T1]
, T1 < t Æ T2 , [S71b]

ca(t) = –0
Ÿ0

5
e

Ÿ0[t≠T2]
≠ 1

6
+ ca(T2) e

Ÿ0[t≠T2]
, T2 < t Æ T . [S71c]

Note that in the absence of any drug treatment,

ca(t) = –0
Ÿ0

#
e

Ÿ0t
≠ 1

$
, 0 Æ t Æ T . [S72]

Please refer to Fig. S3(a) for an illustration of how the concentration of aggregates changes with time, in the presence and
absence of drug.

S3.4.2. Optimal start and end of drug treatment. So far we have not yet determined the optimal values for the times to begin, T1,
and to end the drug treatment, T2. To this end, we consider the two cases outlined in section S3.3.

• Case –(cd) = –0 and –
Õ = 0 corresponding to the drug protocol Eq. (S67):

Using Eq. (S69) and Eq. (S71), we find

≠’ =
5

e
Ÿ[T2≠T1]

≠ 1
Ÿ

+ � e
Ÿ0(T ≠T2)

≠ 1
Ÿ0

e
Ÿ[T2≠T1]

6
Ÿ

Õ –0
Ÿ0

!
e

Ÿ0T1
≠ 1

"
, [S73a]

≠’ =
5

� e
Ÿ0(T ≠T2)

≠ 1
Ÿ0

6 Ë
Ÿ

Õ –0
Ÿ

!
e

Ÿ[T2≠T1]
≠ 1

"
+ Ÿ

Õ –0
Ÿ0

!
e

Ÿ0T1
≠ 1

"
e

Ÿ[T2≠T1]
È

, [S73b]

where we have suppressed the dependence on cd of Ÿ for the ease of notation, i.e., Ÿ = Ÿ(cd). Moreover, we have introduced
the following abbreviation

�(A) = 1 + Ÿ0A , [S74]
where A = 0, i.e., � = 1 for integrated cost (Eq. (S56)) and A = T for terminal cost (Eq. (S57)).
The equations above determine the optimal values for T1 and T2. To obtain an analytic result, we consider the case
where Ti π Ÿ

≠1. This condition has already been used to derive the underlying kinetic equation for aggregation (see
section S2.2.5). In particular, this implies that e

ŸTi ∫ 1. The resulting two equations can be subtracted or added,
respectively, leading to

T ≠ T2 ƒ T1 ≠
1
Ÿ0

ln (�) , [S75a]

T2 ≠ T1 ƒ
1

Ÿ0 ≠ Ÿ

5
T Ÿ0 ≠ ln

3
’Ÿ

2
0cd

–0(Ÿ0 ≠ Ÿ)�

46
. [S75b]

Eq. (S75b) describes the optimal treatment period (T2 ≠T1). The expression for the treatment period T2 ≠T1 (Eq. (S75b))
indeed minimizes the cost (see next section). Depending on the parameters such as relative toxicity ’ or aggregation
rates, there is a regime at large toxicity where a drug treatment makes no sense since the drug is too toxic. In the case
of a drug of low toxicity, the optimal treatment duration approaches T . For integrated cost, the drug administration
protocol is symmetric, i.e. T ≠ T2 = T1. The start and end times are then explicitly given by:

T1 ƒ
T

2 ≠
1

2(Ÿ0 ≠ Ÿ)

5
T Ÿ0 ≠ ln

3
’Ÿ

2
0cd

–0(Ÿ0 ≠ Ÿ)�

46
, [S76a]

T2 ƒ
T

2 + 1
2(Ÿ0 ≠ Ÿ)

5
T Ÿ0 ≠ ln

3
’Ÿ

2
0cd

–0(Ÿ0 ≠ Ÿ)�

46
. [S76b]

No treatment is preferable when T2 < T1, i.e. when

T Ÿ0 ≠ ln
3

’Ÿ
2
0cd

–0(Ÿ0 ≠ Ÿ)�

4
< 0 ∆ cd >

–0(Ÿ0 ≠ Ÿ)�
’Ÿ2

0
e

Ÿ0T
ƒ

–0�
’Ÿ0

e
Ÿ0T

. [S77]
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• Case Ÿ(cd) = Ÿ0 and Ÿ
Õ = 0 corresponding to the drug protocol Eq. (S68):

Following the analog steps as sketched in the previous paragraph, we find for the switching time T2 for the optimal
inhibition of primary nucleation. T2 is obtained as solution to (Fig. S3(e)):

’ = ⁄(T2) |–
Õ
| , [S78]

where ⁄(t) is given by

⁄(t) = e
Ÿ0(T ≠t)

≠ 1
Ÿ0

+ A e
Ÿ0(T ≠t)

. [S79]

Hence,

T2 = T ≠
1
Ÿ0

ln
5

�≠1
3

’Ÿ0cd
–0 ≠ –(cd) + 1

46
ƒ T ≠

1
Ÿ0

ln

A
’Ÿ0cd!

–0 ≠ –(cd)
"
�

B
. [S80]

In this case, no treatment is preferable when T2 < 0, i.e. when

cd >
(–0 ≠ –)�

’Ÿ0
e

Ÿ0T
ƒ

–0�
’Ÿ0

e
Ÿ0T

. [S81]

S3.4.3. Optimal costs and treatments deviating from the optimum . Here we compute the cost as the treatment deviates from the
optimum to estimate the additional “life time” gained by the optimization. One limiting case is no drug treatment. Using
Eq. (S72) and the definition of the cost Eq. (S56) for a single drug, we find the cost in the absence of drug treatment

Cost◊ ƒ
–0
Ÿ2

0
e

Ÿ0T
. [S82]

To calculate the cost with treatment, we consider the contributions from the drug and from the aggregates separately. For the
drug, the cost is given as:

Cost[0, cd] =
⁄ T

0
dt ’ cd(t) = ’cd(T2 ≠ T1) . [S83]

The opimized contribution from the drug is obtained by using Eq. (S75b):

Costopt[0, cd] = ’cd
Ÿ0 ≠ Ÿ

5
T Ÿ0 ≠ ln

3
’Ÿ

2
0cd

–0(Ÿ0 ≠ Ÿ)�

46
[S84]

= ’„(cd)
5

T ≠
1
Ÿ0

ln
3

’Ÿ0„(cd)
–0�

46
,

where

„(cd) = cdŸ0
Ÿ0 ≠ Ÿ

= cd
1 ≠ 1/(1 + cdK)n

=
;

cd cd ∫ K
≠1

1
nK + n+1

2n cd cd π K
≠1 , [S85]

where K is the equilibrium binding constant of the drug via some of the discussed mechanisms and n is some exponent (which
depends on the reaction orders for nucleation and the mechanism of inhibition etc.). For the cost from the aggregates, we
consider the two cases outlined in section S3.3 separately.

Case –(cd) = –0 and –
Õ = 0 corresponding to the drug protocol Eq. (S67):

The cost of the aggregates will slightly di�er between of integrated and terminal costs. In the case of integrated cost

Cost[ca, 0] =
⁄ T

0
dt ca(t) =

⁄ T1

0
dt ca(t) +

⁄ T2

T1

dt ca(t) +
⁄ T

T2

dt ca(t)

ƒ
–0
Ÿ2

0
e

Ÿ0T1
e

Ÿ[T2≠T1]
e

Ÿ0(T ≠T2) = –0
Ÿ2

0
e

Ÿ0T
· e

≠(Ÿ0≠Ÿ)(T2≠T1)
, [S86]

where we extracted the dominant exponential terms in ca(t). The optimized contribution from the aggregates is found by using
Eq. (S75a) and Eq. (S75b):

Costopt[ca, 0] ƒ
’

|ŸÕ|
= ’

Ÿ0
„(cd) . [S87]

In the case of terminal costs (see Eq. (S57)), the costs from the aggregates reads Cost[ca, 0] = T ca(T ) and the optimized
contribution using Eq. (S74) is

Costopt[ca, 0] = Ÿ0T ’

|ŸÕ| �(A = T ) = T ’

1 + Ÿ0T
„(cd) . [S88]
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Due to the exponential growth, integrated and terminal costs only di�er by a multiplicative factor. So we focus on integrated
cost with � = 1 (Eq. (S74)) for the remaining discussions without the loss of generality.

In the case of integrated the total cost is is approximately given as
Cost[ca, cd] = Cost[0, cd] + Cost[ca, 0]

ƒ ’cd(T2 ≠ T1) + –0
Ÿ2

0
e

Ÿ0T
· e

≠(Ÿ0≠Ÿ)(T2≠T1)
, [S89]

and the corresponding optimized cost is
Costopt[ca, cd] = Costopt[0, cd] + Costopt[ca, 0]

ƒ ’„(cd)
5

T + 1
Ÿ0

≠
1
Ÿ0

ln
3

’Ÿ0„(cd)
–0�

46
. [S90]

Case Ÿ(cd) = Ÿ0 and Ÿ
Õ = 0 corresponding to the drug protocol Eq. (S68):

Following similar steps as outlined above we find for the total cost

Cost[ca, cd] ƒ
–0 ≠ –

Ÿ2
0

e
Ÿ0(T ≠T2) + –

Ÿ2
0

e
Ÿ0T + ’cdT2 . [S91]

The optimal cost is then
Costopt ƒ

–

Ÿ2
0

e
Ÿ0T + ’cd

Ë
T + 1

Ÿ0
≠

1
Ÿ0

ln
1

’Ÿ0cd
–0 ≠ –

2È
+ –0 ≠ –

Ÿ2
0

. [S92]

S3.4.4. Sensitivity of optimal control. Here we discuss the sensitivity to find the optimal treatment. As an example we restrict
ourselves to the case –(cd) = –0 and –

Õ = 0 corresponding to the drug protocol Eq. (S67) and integrated costs.
The cost function is given by Eq. (S89):

Cost[ca, cd] = ’cd(T2 ≠ T1) + –0
Ÿ2

0
e

Ÿ0T
· e

≠(Ÿ0≠Ÿ)(T2≠T1)
. [S93]

Minimization of this cost function with respect to treatment duration, T2 ≠ T1, i.e.,
ˆCost[ca, cd]
ˆ(T2 ≠ T1) = ’cd ≠

–0(Ÿ0 ≠ Ÿ)
Ÿ2

0
e

Ÿ0T
· e

≠(Ÿ0≠Ÿ)(T2≠T1) = 0 , [S94]

yields the optimal treatment duration

T2 ≠ T1 = 1
Ÿ0 ≠ Ÿ

5
Ÿ0T ≠ ln

3
’Ÿ

2
0cd

–0(Ÿ0 ≠ Ÿ)

46
, [S95]

which, consistently, is equivalent to Eq. (S75b) obtained by the optimal control recipe. In addition, we can determine the
curvature of the cost function,

ˆ
2Cost[ca, cd]
ˆ(T2 ≠ T1)2 = –0(Ÿ0 ≠ Ÿ)2

Ÿ2
0

e
Ÿ0T

· e
≠(Ÿ0≠Ÿ)(T2≠T1)

,

which reads at the optimal treatment duration (Eq. (S75b)):

ˆ
2Cost[ca, cd]
ˆ(T2 ≠ T1)2

----
opt

=
!
Ÿ0 ≠ Ÿ (cd)

"
’cd .

Hence, at low drug concentration cd or low drug toxicity ’, the curvature of the cost function at the optimal treatment is
smaller. A low curvature around the optimal treatment implies that the optimal treatment is easier to find. In other words, at
low toxicity or drug concentration, the optimal treatment is less sensitive to deviations from the optimal value.

S3.4.5. Life-time expectancy. By means of the cost function we can discuss how the life time expectancy, denoted as T
life, changes

as the treatment is not optimal or in the case without drug treatment. To define the life expectancy, we introduce a critical
value of the cost, Costc. If the the cost is above this critical value, the cell (for example) dies. Without drug treatment (use
Eq. (S82)), we find that the life expectancy is

T
life
◊ = 1

Ÿ0
ln

3
Costc Ÿ

2
0

–0

4
. [S96]

Similarly, the life expectancies T
life with drug treatment of optimized duration and fixed drug concetration is determined by:

Costc ƒ ’„(cd)
5

T
life + 1

Ÿ0
≠

1
Ÿ0

ln
3

’Ÿ0„(cd)
–0�

46
, [S97]

where we used Eq. (S90) thus considered the case –(cd) = –0 and –
Õ = 0 corresponding to the drug protocol Eq. (S67)). The

life time gain by an optimized drug treatment relative to no treatment is then given as

T
life

≠ T
life
◊ ƒ

Costc

’„(cd) ≠
1
Ÿ0

+ 1
Ÿ0

ln
3

’„(cd)
Ÿ0�Costc

4
. [S98]
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S3.4.6. Comparing strategies: Inhibition of primary nucleation against inhibition of secondary nucleation and growth at ends. Interestingly,
Eq. (S92) shows that targeting the primary nucleation pathway only does not get rid of the exponential term e

Ÿ0T in the total
cost. This is in contrast to the situation when Ÿ is targeted (see Eq. (S90)). Thus, we expect that for large Ÿ0T targeting
primary nucleation only is more costly than targeting Ÿ. This observation can be formalised by comparing Eq. (S92) with
Eq. (S90) finding that a�ecting primary nucleation only is more favourable than targeting Ÿ when the cost associated with the
inhibition of primary nucleation is lower than that associated with the inhibition of secondary nucleation:

–

Ÿ2
0

e
Ÿ0T + ’cd

5
T + 1

Ÿ0
≠

1
Ÿ0

ln ’Ÿ0cd
(–0 ≠ –)

6
+ –0 ≠ –

Ÿ2
0

< ’cd
Ÿ0

Ÿ0 ≠ Ÿ

5
T + 1

Ÿ0
≠

1
Ÿ0

ln
3

’Ÿ
2
0cd

–0(Ÿ0 ≠ Ÿ)

46
. [S99]

We can simplify the above expression for –0≠–
Ÿ2

0
π e

Ÿ0T , ln(...) π Ÿ0T π 1, leading to:

–

Ÿ2
0

e
Ÿ0T + ’cdT <

’cdŸ0T

Ÿ0 ≠ Ÿ
. [S100]

Hence, inhibiting primary nucleation is to be preferred over the inhibition of secondary nucleation when:

e
Ÿ0T

Ÿ0T
<

’cdŸ

Ÿ0 ≠ Ÿ

Ÿ0
–

ƒ
’cdŸ

–
. [S101]

S3.5. Optimal drug concentration. For a fixed treatment duration, the cost function exhibits a minimum as a function of drug
concentration. For the inhibition of primary nucleation, the optimal drug concentration is obtained by minimizing

Cost[ca, cd] ƒ
–0 ≠ –

Ÿ2
0

e
Ÿ0(T ≠T2) + –

Ÿ2
0

e
Ÿ0T + ’cdT2 . [S102]

with respect to cd, while for the inhibition of secondary nucleation or fibril elongation, it emerges from the minimization of

Cost[ca, cd] = ’cd(T2 ≠ T1) + –0
Ÿ2

0
e

Ÿ0T ≠(Ÿ0≠Ÿ)(T2≠T1)
. [S103]

S3.6. Optimal controls for pre-aged systems: role of initial concentration. So far, we have focussed on the situation when the
initial aggregate concentration is zero, i.e. the patient is initially healthy (see Eq. (S65)). We now relax this assumption and
compute the optimal drug administration protocol when

ca(0) = c
0
a [S104]

This situation corresponds to patients that are pre-aged in terms of progression of aggregation. Our goal is to understand
how an initial concentration of aggregates impacts the optimal drug administration protocol. With this understanding we can
decide which inhibition strategy (inhibition of primary respectively secondary nucleation) is preferred depending on the initial
concentration of aggregates, i.e. the level of pre-ageing in the patient. We follow the same conceptual steps as in Secs. S3.2-S3.4.
For simplicity, we focus on the situation when � = 1 (integrated cost).

S3.6.1. Optimal control. In the presence of an initial concentration of aggregates, the solution for the aggregate concentration is
(see Eq. (S71) for comparison):

ca(t) = –0
Ÿ0

#
e

Ÿ0t
≠ 1

$
+ c

0
ae

Ÿ0t
, 0 Æ t Æ T1 , [S105a]

ca(t) = –(cd)
Ÿ(cd)

5
e

Ÿ(cd)[t≠T1]
≠ 1

6
+ ca(T1) e

Ÿ(cd)[t≠T1]
, T1 < t Æ T2 , [S105b]

ca(t) = –0
Ÿ0

5
e

Ÿ0[t≠T2]
≠ 1

6
+ ca(T2) e

Ÿ0[t≠T2]
, T2 < t Æ T . [S105c]

Using Eq. (S69) and Eq. (S105), we find the condition for the optimal switching times as (see Eq. (S106) for comparison):

≠’ =
5

e
Ÿ[T2≠T1]

≠ 1
Ÿ

+ � e
Ÿ0(T ≠T2)

≠ 1
Ÿ0

e
Ÿ[T2≠T1]

6
Ÿ

Õ
Ë

–0
Ÿ0

!
e

Ÿ0T1
≠ 1

"
+ c

0
ae

Ÿ0T1
È

, [S106a]

≠’ =
5

� e
Ÿ0(T ≠T2)

≠ 1
Ÿ0

6 Ë
Ÿ

Õ –0
Ÿ

!
e

Ÿ[T2≠T1]
≠ 1

"
+ Ÿ

Õ
1

–0
Ÿ0

!
e

Ÿ0T1
≠ 1

"
+ c

0
ae

Ÿ0T1
2

e
Ÿ[T2≠T1]

È
, [S106b]

The resulting two equations in Eq. (S106) can be subtracted, leading to

T1 = T ≠ T2 ≠
1
Ÿ0

ln
3

1 + Ÿ0c
0
a

–0

4
. [S107]
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Adding the two equations in Eq. (S106) leads to the condition (see Eq. (S75a)):

Ÿ0T1 + Ÿ(T2 ≠ T1) + Ÿ0(T ≠ T2) = ln
3

’Ÿ
2
0cd

–0(Ÿ0 ≠ Ÿ)

4
≠ ln

3
1 + Ÿ0c

0
a

–0

4
[S108]

such that, using Eq. (S107), the optimal switching times can be calculated to be

T1 ƒ
T

2 ≠
1

2(Ÿ0 ≠ Ÿ)

5
T Ÿ0 ≠ ln

3
’Ÿ

2
0cd

–0(Ÿ0 ≠ Ÿ)�

46
≠

1
Ÿ0

3
1 + Ÿ

2(Ÿ0 ≠ Ÿ)

4
ln

3
1 + Ÿ0c

0
a

–0

4
, [S109a]

T2 ƒ
T

2 + 1
2(Ÿ0 ≠ Ÿ)

5
T Ÿ0 ≠ ln

3
’Ÿ

2
0cd

–0(Ÿ0 ≠ Ÿ)�

46
+ Ÿ

2Ÿ0(Ÿ0 ≠ Ÿ) ln
3

1 + Ÿ0c
0
a

–0

4
. [S109b]

Hence, in the presence of an initial concentration of aggregates, T1 is decreased and T2 is increased (Fig. S4). T2 is a�ected to
a lesser extent than T1. Eventually, when c

0
a exceeds a threshold, T1 becomes negative, i.e. the drug must be administered right

away without a waiting period, i.e. the region of drug concentrations where the treatment starts right away increases with
increasing pre-aging of the system.

S3.6.2. Comparison between inhibition of primary or secondary nucleation depending on initial aggregate concentration. We now use the
optimal control calculated in the presence of an initial concentration, Eq. (S109), to understand how the pre-aging level of the
patient impacts the decision to inhibit primary or secondary nucleation (see Sec. S3.4.6). To this end, we first estimate the
total cost associated with the optimal inhibition of secondary nucleation, which reads

Cost2nd[ca, cd] = ’cd(T2 ≠ T1) + –0
Ÿ2

0

3
1 + Ÿ0c

0
a

–

4
e

Ÿ0T
· e

≠(Ÿ0≠Ÿ)(T2≠T1)
. [S110]

Using Eq. (S109), we find

Cost2nd[ca, cd] = ’cd

5
Ÿ0T

Ÿ0 ≠ Ÿ0
≠

1
Ÿ0 ≠ Ÿ0

ln
3

’Ÿ
2
0cd

–0(Ÿ0 ≠ Ÿ)�

4
+ 2Ÿ ≠ Ÿ0

Ÿ0(Ÿ0 ≠ Ÿ) ln
3

1 + Ÿ0c
0
a

–0

46

+ –0
Ÿ2

0

3
1 + Ÿ0c

0
a

–

4 C
›Ÿ

2
0cd

–(Ÿ0 ≠ Ÿ) +
3

1 + Ÿ0c
0
a

–

4 Ÿ0≠2Ÿ
Ÿ0

D
. [S111]

The total cost associated with inhibition of primary nucleation is similarly calculated as (see Eq. (S92)):

Cost1st[ca, cd] ƒ
–0 ≠ –

Ÿ2
0

e
Ÿ0(T ≠T2) + –

Ÿ2
0

3
1 + Ÿ0c

0
a

–

4
e

Ÿ0T + ’cdT2 . [S112]

The optimal cost for inhibition of primary nucleation is then

Cost1st[ca, cd] ƒ
–

Ÿ2
0

3
1 + Ÿ0c

0
a

–

4
e

Ÿ0T + ’cd

Ë
T + 1

Ÿ0
≠

1
Ÿ0

ln
1

’Ÿ0cd
–0 ≠ –

2È
+ –0 ≠ –

Ÿ2
0

. [S113]

Keeping the leading order terms in Eq. (S111) and Eq. (S113), the condition

Cost1st[ca, cd] < Cost2nd[ca, cd] [S114]

becomes
–

Ÿ2
0

3
1 + Ÿ0c

0
a

–

4
e

Ÿ0T + ’cdT <
’cdŸ0T

Ÿ0 ≠ Ÿ
. [S115]

Hence, inhibiting primary nucleation is to be preferred over the inhibition of secondary nucleation when:

e
Ÿ0T

Ÿ0T
<

’cdŸ

Ÿ0 ≠ Ÿ

Ÿ0

–

1
1 + Ÿ0c0

a
–

2 ƒ
’cdŸ

–

1
1 + Ÿ0c0

a
–

2 . [S116]

We note that increasing c
0
a favours the choice of inhibiting secondary nucleation over primary nucleation. Increasing the initial

level of aggregates c
0
a successively reduces the first no treatment phase in the optimal protocol for secondary nucleation (see

Fig. 3b of main text).
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Treat full 
time

No treatment

Treatment

Treatment 
duration

No initial aggregate concentration B

Treat full 
time

Treatment

Treatment 
duration

Initial aggregate concentration  
(pre-aged system)

Fig. S4. Effect of initial aggregate concentration (pre-aged system) on optimal protocol for inhibition of secondary nucleation or growth. (a) Optimal protocol (start and end
times) in the absence of initial concentration of aggregates. (b) Optimal protocol in the presence of an initial concentration of aggregates (Ÿ0c0

a/–0 = 0.5). Dashed lines are
optimal switching times in the absence of an initial concentration of aggregates, for comparison. The parameters are the same as in Fig. 2b of the main text.
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Case

Optimal protocol

�� = 0�� = 0

Optimal protocol

BCaseA

Fig. S5. Schematic representation of the optimal protocols for the inhibition of primary nucleation (a) and secondary nucleation or growth (b) for a non-linear cost function. The
resulting optimal protocols are “smoothed-out versions” of the bang-bang controls that emerge in the linear case (dashed lines).
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S3.7. Optimal protocols emerging from non-linear cost functions. In the main text, we have opted for a cost function that is
linear in the drug and aggregate concentrations. This choice for the cost function resulted in optimal bang-bang controls and a
key finding was that inhibition of primary nucleation requires early administration, while inhibition of secondary nucleation or
growth requires late administration. We now show that this finding is robust in the sense that it remains valid also when the
cost function is non-linear; the resulting optimal protocols are smoothed out versions of the bang bang control that emerges
from the linear cost function. The function L(cd, ca) can be expanded as Taylor series in the variables cd and ca. Hence, it is
su�cient to focus on a cost function of the following form:

Cost[cd, ca] =
⁄ T

0
dt

3
ca(t)m + ’ cd(t)n

4
, [S117]

where m, n Ø 1. To solve the resulting optimal control problem, we apply again the variational recipe as introduced in
section S3.1 and consider the Hamiltonian function, which is defined in Eq. (S55) and with a non-linear cost function Eq. (S117)
reads:

H[cd(t), ca(t), ⁄(t)] = ca(t)m + ’ cd(t)n + ⁄(t)
#
– (cd(t)) + Ÿ (cd(t)) ca(t)

$
, [S118]

The optimal control corresponds to a minimum of the Hamiltonian with respect to the drug concentration

ˆH

ˆcd
= 0 , [S119]

which yields the following condition

ˆH

ˆcd
= n’cd(t)n≠1 + ⁄(t)

#
–

Õ(cd(t)) + Ÿ
Õ(cd(t)) ca(t)

$
= 0 . [S120]

Let us now consider the situations when the drug a�ects – or Ÿ only separately.

• When the drug a�ects only primary nucleation, we have Ÿ
Õ = 0, and so the optimal protocol is obtained as solution to

the following equation
cd(t)n≠1

|–Õ(cd(t))| = ⁄(t)
n’

. [S121]

The function –(cd) is a monotonically decreasing function of cd without points of inflection. Hence, the expression on the
left-hand side of Eq. (S121) is a monotonically increasing function g of drug concentration cd, which can therefore be
inverted to yield the optimal protocol:

cd(t) = g
≠1

3
⁄(t)
n’

4
. [S122]

Since g is a monotonically increasing function, also its inverse g
≠1 is monotonically increasing (follows directly from the

inverse function theorem). The co-state variable ⁄(t) is a monotonically decreasing function of time with ⁄(t = T ) = 0.
Hence, from Eq. (S122) it follows also that the optimal protocol cd(t) is a monotonically decreasing function of time,
which is maximal when t = 0 and equals zero when t = T (note that g(cd = 0) = 0; hence g

≠1(0) = 0). Thus, inhibition
of primary nucleation always requires an early administration optimal protocol irrespective of the exponent n in the cost
function (Fig. S5(a)).

• When the drug inhibits secondary nucleation or growth, i.e. –
Õ = 0, the optimal protocol is obtained by solving the

following equation
cd(t)n≠1

|ŸÕ(cd(t))| = ⁄(t)ca(t)
n’

. [S123]

Using similar arguments as for the inhibition of primary nucleation only, we introduce a function h(cd) = c
n≠1
d /|Ÿ

Õ(cd)|
and the optimal protocol emerges as

cd(t) = h
≠1

3
⁄(t)ca(t)

n’

4
. [S124]

The concentration of aggregates satisfies ca(t = 0) = 0, while the co-state variable ⁄ satisfies ⁄(t = T ) = 0. Thus, the
optimal protocol is a non-monotonic function of time, which is zero at the start t = 0 and at the end t = T and has a
maximum in between 0 and T . Thus, inhibition of secondary nucleation or elongation requires a late administration
optimal protocol (Fig. S5(b)).
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with such a difference, the levels of aggregates monitored using the
fluorescence intensity of the amyloid-specific dye NIAD-4 (47) differ
significantly between the two models, with essentially no aggregates
being detected on the same day the worms reached adulthood in
the Ab worm model in the presence of bexarotene (Fig. 6, C and D).

We then explored the effect of increasing concentrations of
bexarotene added at the larval stages of the C. elegans life cycle
(Fig. 6A) and observed a concentration-dependent maintenance of
the motility of the Ab worm model. Indeed, the motility of the Ab
worms was maintained completely upon addition of 10 mM bexarotene
in two bursts at the L1 and L4 larval stages, that is, reached the level
observed in the control worms (Fig. 4, A and B). In addition, imaging
studies (see Materials and Methods) showed that the addition of
10 mM bexarotene to the Ab worms suppressed the formation of Ab42
fibrils for 9 days of adulthood (Fig. 6D). The level of Ab42 expression

in the Ab worms in the absence and in the presence of bexarotene was
found to be closely similar (Fig. 6E). This result indicates that main-
taining the level of motility in the Ab worms could be achieved by
preventing the aggregation of Ab42 by bexarotene. In accord with this
conclusion, the addition of bexarotene did not show any effects in the
control worm model (fig. S5A). The normal motility observed for the
Ab worms in the presence of bexarotene could be consistent with two
distinct scenarios. One possibility could be a strong delay in primary
nucleation, which would substantially delay the aggregation of Ab42
and hence maintain the motility of the Ab worms to values similar to
those of the control worms. Alternatively, these results could arise from
a combination of effects on primary and secondary nucleation. This
latter possibility is particularly relevant because although bexarotene
preferentially inhibits primary nucleation, it could also affect sec-
ondary nucleation when present in excess. Indeed, our experiments
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Fig. 6. Bexarotene restores the motility of C. elegans models of Ab42-mediated toxicity by preventing Ab42 aggregation. (A) Experimental
procedure for the measurement of the effects of bexarotene on the frequency of body bends and on the quantity of aggregates in C. elegans
GMC101 (that is, the Ab worm model) and CL2122 (that is, the control worm model) models. Bexarotene was given to the worms at larval stages
L1 and L4. (B) Measurements of the effect of increasing concentrations of bexarotene ranging from 5 to 10 mM on the frequency of body bends in
the Ab worm model. Normalized values with respect to day 0 are shown. The experimental data are shown for a single experiment but are re-
presentative in each case of three independent experiments. Complete recovery of the motility of the Ab worm model can be observed at 10 mM
bexarotene; the inset shows the dose dependence of the effects of bexarotene on Ab worms at day 3 of adulthood. (C) In vivo imaging of ag-
gregates stained using the amyloid-specific dye NIAD-4 in the absence and in the presence of 10 mM bexarotene; images from days 6 and 9 only are
shown for clarity. (D) Time course of the reaction of amyloid aggregates formed in the Ab worms in the absence and in the presence of 1 mM
bexarotene. Quantification of fluorescence intensity was performed using ImageJ software (see Materials and Methods). In all panels, error bars
represent the SEM. (E) Insoluble fraction of the protein extracts from C. elegans in the presence and in the absence of bexarotene with immuno-
detection of Ab and a-tubulin (see Materials and Methods).
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In vivo aggregation data
In[418]:= Aggregationerrdata =

{{{0, 100542.3}, ErrorBar[17 122.23]}, {{6, 2239096}, ErrorBar[884 789.1]},
{{9, 3 630 433}, ErrorBar[573 263.1]}, {{12, 12124400}, ErrorBar[859 419.9]}};

Aggregationerrdatabex = {{{0, 62 914.98}, ErrorBar[7550.274]},
{{6, 650 072.1}, ErrorBar[37892.45]}, {{9, 909652.8}, ErrorBar[220 503.9]},
{{12, 4125514}, ErrorBar[801019.2]}};

Aggregationcontrolerrdata = {{{0, 120084}, ErrorBar[71685.97]},
{{6, 231 973.8}, ErrorBar[57359.99]}, {{9, 549889.1}, ErrorBar[138 479]},
{{12, 1028074}, ErrorBar[318259.2]}};

Aggregationdata = {{0, 100542.3}, {6, 2239 096}, {9, 3 630433}, {12, 12 124400}};
Aggregationdatabex =

{{0, 62914.98}, {6, 650072.1}, {9, 909 652.8}, {12, 4125 514}};

nlm = NonlinearModelFit[Aggregationdata, a * (Exp[b * t] - 1), {a, b}, t]
nlmb = NonlinearModelFit[Aggregationdatabex, a * (Exp[0.34 * t] - 1), {a, b}, t]

Show[Plot[{nlm[x], nlmb[x]}, {x, 0, 12.5}, Frame → True, AspectRatio → 0.7,
BaseStyle → {FontFamily → "Arial", FontSize → 15}, FrameStyle → Black,
FrameLabel → {"Time (days)", "Aggregate fluorescence"}, PlotRange → All],

ErrorListPlot[{Aggregationerrdata, Aggregationerrdatabex,
Aggregationcontrolerrdata}, Frame → True, AspectRatio → 0.7,

BaseStyle → {FontFamily → "Arial", FontSize → 15},
FrameStyle → Black, PlotMarkers → {Automatic, 11},
FrameLabel → {"Time (days)", "Aggregate fluorescence"}, PlotRange → All,
PlotLegends → {"Aβ42 worms", "+ 10μM Bexarotene", "Control"}]]

Out[423]= FittedModel 200927. -1+ⅇ0.34242 t 

Out[424]= FittedModel 68436.9 -1+ⅇ0.34 t 

Out[425]=
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In vivo aggregation data
In[418]:= Aggregationerrdata =

{{{0, 100542.3}, ErrorBar[17 122.23]}, {{6, 2239096}, ErrorBar[884789.1]},
{{9, 3630433}, ErrorBar[573263.1]}, {{12, 12 124400}, ErrorBar[859419.9]}};

Aggregationerrdatabex = {{{0, 62 914.98}, ErrorBar[7550.274]},
{{6, 650072.1}, ErrorBar[37892.45]}, {{9, 909652.8}, ErrorBar[220503.9]},
{{12, 4125514}, ErrorBar[801019.2]}};

Aggregationcontrolerrdata = {{{0, 120 084}, ErrorBar[71685.97]},
{{6, 231973.8}, ErrorBar[57359.99]}, {{9, 549889.1}, ErrorBar[138479]},
{{12, 1028074}, ErrorBar[318259.2]}};

Aggregationdata = {{0, 100542.3}, {6, 2239096}, {9, 3630433}, {12, 12124 400}};
Aggregationdatabex =

{{0, 62914.98}, {6, 650072.1}, {9, 909652.8}, {12, 4125514}};

nlm = NonlinearModelFit[Aggregationdata, a * (Exp[b * t] - 1), {a, b}, t]
nlmb = NonlinearModelFit[Aggregationdatabex, a * (Exp[0.34 * t] - 1), {a, b}, t]

Show[Plot[{nlm[x], nlmb[x]}, {x, 0, 12.5}, Frame → True, AspectRatio → 0.7,
BaseStyle → {FontFamily → "Arial", FontSize → 15}, FrameStyle → Black,
FrameLabel → {"Time (days)", "Aggregate fluorescence"}, PlotRange → All],

ErrorListPlot[{Aggregationerrdata, Aggregationerrdatabex,
Aggregationcontrolerrdata}, Frame → True, AspectRatio → 0.7,

BaseStyle → {FontFamily → "Arial", FontSize → 15},
FrameStyle → Black, PlotMarkers → {Automatic, 11},
FrameLabel → {"Time (days)", "Aggregate fluorescence"}, PlotRange → All,
PlotLegends → {"Aβ42 worms", "+ 10μM Bexarotene", "Control"}]]

Out[423]= FittedModel 200927. -1+ⅇ0.34242 t 

Out[424]= FittedModel 68436.9 -1+ⅇ0.34 t 
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Fig. S6. (a) Aggregation of A—42 inside C. elegans worms as a function of time for A—42 worms (blue), A—42 worms treated with 10 µM Bexarotene, administered 72 hours
before adulthood (orange), and control worms (green). The aggregation data in untreated and treated A—42 worms are fitted to exponential increase, Ma(t) = –0

2—0
(eŸ0t ≠ 1)

(solid lines). The fit to untreated worms yields Ÿ0 ƒ 0.34 days≠1; the data for aggregation with Bexarotene are fitted by keeping Ÿ0 fixed and varying –0 (rate of primary
nucleation) only. Thus, the action of Bexarotene on aggregation data in worms is consistent with inhibition of primary nucleation. (b) Frequency of body bends over time for
A—42 worms (blue), A—42 worms treated with 10 µM Bexarotene, administered 72 hours before adulthood (orange), and control worms (green). (c) Toxicity of Bexarotene in C.
elegans worms. The data show normalized reduction in frequency of body bends (relative to healthy control worms) measured in healthy C. elegans worms treated with
increasing concentration of Bexarotene. The reduction in frequency of body bends is shown at days T = 12, 6, 3, and 2 of adulthood. The toxic effects of Bexarotene increase
with Bexarotene concentration and exposure time. This is consistent with our cost functional which increases with increasing drug concentrations and integration time T .

26 of 27 Thomas C. T. Michaels, C. A. Weber, L. Mahadevan



References

1. T. P. J. Knowles et al. An analytical solution to the kinetics of breakable filament assembly. Science 326, 1533 (2009).
2. S. I. A. Cohen et al. Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments. J.

Chem. Phys. 135, 08B615 (2011).
3. T. C. T. Michaels and T. P. Knowles, Mean-field master equation formalism for biofilament growth. Am. J. Phys. 82, 476

(2014).
4. T. C. T. Michaels, et al. Chemical kinetics for bridging molecular mechanisms and macroscopic measurements of amyloid

fibril formation. Annu. Rev. Phys. Chem. 69, 273 (2018).
5. P. Arosio et al. Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones

suppress amyloid formation. Nature Comms 7, (2016).
6. T. C. T. Michaels et al. Hamiltonian dynamics of protein filament formation. Phys. Rev. Lett. 116, 038101 (2016).
7. S. I. A. Cohen et al. Proliferation of amyloid-—42 aggregates occurs through a secondary nucleation mechanism. Proc.

Natl. Acad. Sci. USA 110, 9758 (2013).
8. C. N. Hinshelwood, On the chemical kinetics of autosynthetic systems. J. Chem. Soc. (Resumed) 745 (1952).
9. S. I. A. Cohen et al. A molecular chaperone breaks the catalytic cycle that generates toxic A— oligomers. Nature Struct.

Mol. Biol. 22, 207 (2015).
10. J. Habchi et al. An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic

A—42 aggregates linked with Alzheimer’s disease. Sci. Adv. 2, e1501244 (2016).
11. J. Habchi et al. Systematic development of small molecules to inhibit specific microscopic steps of A—42 aggregation in

Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 114, E200 (2017).
12. F. A. Aprile et al. Inhibition of –-Synuclein Fibril Elongation by Hsp70 Is Governed by a Kinetic Binding Competition

between –-Synuclein Species. Biochemistry 56, 1177 (2017).
13. E. Monsellier and F. Chiti, Prevention of amyloid-like aggregation as a driving force of protein evolution. EMBO reports

8, 737 (2007).
14. S. T. Ferreira, M. N. Vieira, and F. G. De Felice, Soluble protein oligomers as emerging toxins in Alzheimer’s and other

amyloid diseases. IUBMB life 59, 332 (2007).
15. D. Eisenberg and M. Jucker, The amyloid state of proteins in human diseases. Cell 148, 1188 (2012).
16. C. M. Dobson, The Amyloid Phenomenon and Its Links with Human Disease. Cold Spring Harbor Persp. Biol. 9, a023648

(2017).
17. C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and engineers I: Asymptotic methods and

perturbation theory (Springer, 2013).
18. J. K. Nicholson, J. Connelly, J. C. Lindon, and E. Holmes, Metabonomics: a platform for studying drug toxicity and gene

function. Nature Rev. Drug Discov. 1, 153 (2002).
19. L. M. Hocking, Optimal control: an introduction to the theory with applications (Oxford University Press, 1991).

Thomas C. T. Michaels, C. A. Weber, L. Mahadevan 27 of 27


