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Localized deformation patterns are a common motif
in morphogenesis and are increasingly finding
applications in materials science and engineering,
in such instances as mechanical memories. Here,
we describe the emergence of spatially localized
deformations in a minimal mechanical system by
exploring the impact of growth and shear on the
conformation of a semi-flexible filament connected to
a pliable shearable substrate. We combine numerical
simulations of a discrete rod model with theoretical
analysis of the differential equations recovered in the
continuum limit to quantify (in the form of scaling
laws) how geometry, mechanics and growth act
together to give rise to such localized structures in this
system. We find that spatially localized deformations
along the filament emerge for intermediate shear
modulus and increasing growth. Finally, we use
experiments on a 3D-printed multi-material model
system to demonstrate that external control of the
amount of shear and growth may be used to
regulate the spatial extent of the localized strain
texture.
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1. Introduction

The deformation of spatially extended elastic structures, such as filaments, plates and shells is
often elastically constrained by the surrounding medium. The simplest formulation of this elastic
constraint is due to Winkler [1] who proposed a local linear elastic model for the medium. Since
then, there have been many variants of the Winkler model that account for both non-locality
and nonlinearity, particularly in the context of localized deformations in such systems that take
the form of creases, localized wrinkles, etc. [2-12]. These localized patterns in spatially extended
dynamical systems are not limited to elasticity; indeed they are of intrinsic interest due to their
potential role as mediators of turbulence in fluids, optics and beyond [13-16]. In the context of
elasticity, a recent proposal suggests the use of localized dimples as programmable elastic bits
(e-bits) to store memory on a featureless elastic shell that requires minimal substrate infrastructure
[17], and raises the question of whether there are alternatives that take advantage of substrate
elasticity to confine deformations and thus generalize these ideas to a much broader class of
systems.

In this paper, we address this question by studying the appearance of localized structures
in a minimal model system of an extensible growing adherent filament that is attached to a rigid
substrate by a set of stretchable and shearable springs. Using a combination of theory, simulations
and experiments, we show that this minimal system can give rise to robust spatial localization as a
function of growth and shear. More specifically, we derive explicit scaling relationships describing
the extent and amplitude of localized deformations, as well as a phase diagram describing the
range of mechanical parameters that admit localized structures. We then demonstrate these rules
in practice using a 3D-printed multi-material model system. Our results identify the physical
parameters that control the extent of localization, suggesting a strategy for easy and robust
programming of mechanical deformations at multiple scales.

2. Theory

Our physical model of geometric localization is a flexible filament that can swell or grow in
length, but is constrained by an elastic substrate to which it is attached. The filament can bend
transversely and stretch longitudinally, while the substrate resists lateral shear and transverse
stretch induced by the filament. We consider two limits of this problem: (i) a discrete version,
where the filament is assumed to be made of a set of rigid links with soft connectors that resist
bending, connected to a substrate via a set of discrete springs that resist changes in their natural
length and orientation relative to the rigid rods (figure 1), and (ii) a continuum version, which
maps onto the growth of a filament embedded in an elastic medium. In either case, we seek
the solution with minimal total elastic energy for a filament with initial rest length L which has
grown/swollen to a total length of L(1 + €), where ¢ measures the relative growth (i.e. strain) of
the filament.

(a) Discrete rod model

The discrete rod model consists of a flexible filament made of 1 discrete segments of rest length
£p attached to a solid substrate through a set of N Hookean springs that can extend vertically and
shear horizontally (figure 1). The total energy of the discrete rod model is

é N anfl f( N G N
E=— "y — >+ — 1 — cos® =S —he)? + = 2 2.1
260;“' 0) +€o ;( cos n,n+1)+2b§(z 0) +2§% 2.1

where S denotes the filament stretching stiffness, B is the bending rigidity of the filament, K is
the spring stiffness and G is the shear modulus of the springs. Moreover, ¢, is the length of the
n-th filament segment, b =L/N is the spacing between the adherent springs, where L =nsf is
the total length of the supporting filament. In equation (2.1), the first two terms correspond to
the stretching and bending energies of the filament, while the last two terms correspond to the
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Figure 1. Schematic of the discrete rod model of geometric localization. A flexible filament (with stretching stiffness S and
bending stiffness B) is attached to a rigid substrate through an array of springs that can extend vertically (with spring stiffness )
and shear horizontally (with shear modulus G). The flexible filament undergoes uniform growth, such that its rest length
increases to L(1 + €), where € is the growth strain. Depending on shear modulus G, filament growth € can result in the
formation of localized deformation patterns. Understanding the conditions for the emergence of such localized deformations
as a function of mechanical parameters is the subject of this paper. (Online version in colour.)

stretching and shear energies of the springs connecting the filament to the rigid substrate. The
bending energy is consistent with the semi-flexible approximation valid for weak bending, where
cosbiy1 = t t,+1, i=1,...,ns, with t being the unit tangent vector of the i-th filament segment,
o; denoting the angle that the i-th spring makes with the vertical, hence measuring the amount of
shear; h; being the vertical extension of the i-th spring and hy is the rest length of the springs.

The procedure we use to ‘grow’ the filament is as follows: we start with a configuration where
the springs are in their rest configuration and vertical, and the filament is straight and horizontal.
We then increase the rest length of the filament segments ¢y by a small amount €y, i.e. £y —
£o(1+€). Since thin rods are much easier to bend than to stretch, we focus our analysis
on filaments with S>> K; some extensibility is retained for increased numerical stability. To
minimize the total energy £ of the system, we either use Newton’s method, present in the
FindMinimum routine, or a global energy search present in the NMinimize routine, implemented
in MATHEMATICA (see electronic supplementary material, S2).

(b) Continuous model

To determine how localized filament deformations emerge during growth, we map the discrete
rod model onto a set of coupled differential equations that describe the growth of the adhering
filament in the continuum limit, valid for small deformations. To this end, we consider the elastic
energy equation (2.1) in the limits b, £p — 0 and N, ns — oo with Nb = nsfp = L being constant. In
this limit, the total elastic energy £ of the system with continuous horizontal U(x) and vertical
W(x) displacements as functions of the arclength x is given by (see electronic supplementary
material, S1):

s [U/(x) +

J- W/(x)Z
L(1+e€) 2

2

2
_e} FOWGP W+ SR | dx @)

The elastic constants in the continuum model relate to those in the discrete model (denoted
with bar) through G = G/ (h%b), K=K/b%, S=5b/ty and B = B/hy (see electronic supplementary
material, S1). The various energy terms in equation (2.2) have a straightforward physical
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interpretation: the first term is the stretching energy of the filament and is proportional to the
square of the elastic strain €o] = €0t — €, Where € is the total strain and € is the growth strain. The
second term in equation (2.2), proportional to the square of the local curvature W’ (x), describes
the bending energy of the filament. The last two terms in equation (2.2) correspond to the energy
contributions associated with the stretching and the shear of the substrate; these contributions are
proportional to the squares of the vertical and horizontal displacement fields, respectively.

To find the system configurations of minimal total energy, we consider the Euler-Lagrange
equations associated with equation (2.2), £/§W(x) =68€/8U(x) =0, which read (see electronic
supplementary material, 51.6):

m |: / W,(x)z i| 1 ’
BW"(x)+S|e—U'(x)— > W' (x) + KW(x) — GU(x)W'(x) =0 (2.3a)
and
S [U”(x) + W’(x)W”(x)] — GU(x)=0. (2.3b)

We used a shooting algorithm to numerically solve the nonlinear system equation (2.3) subject
to clamped boundary conditions U(—L/2)=U(L/2)=0, W(-L/2)=W(L/2)=0, W/(-L/2)=
W(L/2) =0 (see electronic supplementary material, S2). Note that these equations decouple and
are fully integrable in two limits: (i) for G — oo, and (ii) for G = 0. Both situations lead to a uniform
wrinkling solution with characteristic wavelength A = (B/K)Y/* (see electronic supplementary
material, S3.2 and S3.3).

3. Analysis

Before turning to an approximate analytical approach to the nonlinear system equation (2.3), we
describe the results of numerical simulations of the discrete and continuous problems that shed
light on the conditions for the existence of spatially localized solutions.

(a) Lowering shear modulus induces localization

Simulating the discrete rod model under different conditions of growth € and shear modulus G for
clamped and free filament edges, we see that for the case of clamped edges, increasing ¢ above a
critical threshold €* and for large shear modulus G, results in a uniform periodically buckled state
(figure 2a). This situation is consistent with the solution with the classical Winkler foundation [1],
corresponding to the case when G — oo, i.e. the springs can extend only vertically. If we decrease
G, allowing for the adherent springs to rotate, we find that, upon uniform growth e, the vertical
displacement field along the filament is not uniformly periodic, but rather becomes localized
(figure 2b). Since the filament itself is effectively inextensible (S/K =103), this localized strain
solution is accompanied by a shear field of the adherent springs, accompanied by a non-uniform
horizontal displacement of the substrate. While the buckling wavelength remains unaltered, we
find that localization is favoured by increasing € (figure 2c) or decreasing G (figure 2d). Decreasing
the shear modulus further leads to an increase of the localization width. Eventually, for vanishing
shear modulus G =0, we again recover the uniform periodically buckled solution that exists over
the entire length of the filament.

Changing the boundary conditions changes the results; e.g. releasing the edges results in the
occurrence of localized structures that occur near the filament edge and upon further growth
travel inward. In electronic supplementary material, S2, we discuss this aspect further.

(b) Localized deformations as solutions to the continuous equations

To rationalize the emergence of spatial localized deformations in terms of specific combinations of
the underlying physical parameters, we set out to solve the continuous equations, equation (2.3),

0LE06107 5L ¥ 705§ 2014 edsi/feusnolBio‘Buiysijgnd/iaposiefor H



(a) high shear modulus G (b) low shear modulus G

A (AT

S 5 uniform 'S 5 1 localized
FRCE NAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAS x 0'~A/V\/\ﬁ’~
E Z 51
=0 e ] )
= -10 =10 1 W
-20 20 +
0

0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
position x/L position x/L
(©) (d)

B 2
5 E
= =]

5
E £
= Z
z 3
g °

Figure 2. Computer simulations of discrete rod model. (a—b) Depending on the shear modulus of the springs, filament
growth results in uniform buckling for high shear modulus G = 0.01 (a), and localized deformations for low shear modulus
G = 0.0002 (). Inboth cases N = 100,n, = 316,b =1,hy =1,k = 0.1,5 = 100,B = 0.4and € = 3.8%. (a,b) The curvature
(W” x 10°, top purple line) and strain (U, bottom blue line) fields along the filament. (c—d) Filament deformations for
increasing growth strain € (c), and decreasing shear modulus for the springs G(d).In(c), growth strain is € = 0.0004, 0.012,
0.059 and 0.075 (bottom to top) at constant shear rate G = 0.002. In (d), the shear modulus is G = 0.05, 0.01,0.005 and 0.002
(bottom to top) for e = 0.075. In both (c,d), N = 50. (Online version in colour.)

analytically in the limit of low shear modulus G by employing weakly nonlinear analysis [18].
We construct this solution on the half-axis 0 < x < L/2 by employing the mirror-symmetry of the
vertical displacement around the midpoint x = 0 (see electronic supplementary material, S3).

(i) Linear theory and bifurcation analysis

As a first step, we study the linearized equations BW””(x) + SeW” (x) + KW(x) =0, SU" (x) =
GU(x) subject to the boundary conditions associated with clamped edges (see electronic
supplementary material, S3.1). For € < €*, where

€= @, (3.1)

S

we find that the only solution consistent with the boundary conditions is W(x) = U(x) =0, i.e. no
deformation. However, for € > €*, we find a non-trivial, uniformly periodic wrinkling solution
for the vertical displacement; the wavelength of wrinkling is A = (B /K)1/4, consistent with the
classical literature [19,20]. Thus, analysis of the linearized equations implies a bifurcation point
when e =¢€* (figure 3b). The physical interpretation of €* is the maximal amount of strain that
can be accommodated by filament stretching (compression) without causing any bending and
spring deformation. Indeed, €* is inversely proportional to S; decreasing S leads to a higher
strain threshold e€*. Above the critical swelling/growth strain €*, the excess strain € —€* is
accommodated by filament buckling.

(ii) Weakly nonlinear theory

The linear theory implies that localized deformations exist for equation (2.3) only for € > €*;
we thus consider the nonlinear terms in equation (2.3) as a perturbation of the linearized
equations in excess strain € — €*. To do so, we rescale variables as X =x/A, W= Je—e AW and
U(x) = (¢ — e*) 1 U, solve the resulting equation for U(x) exploiting (G/S)/B/K <« 1 and insert this
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Figure 3. Theoretical analysis of geometric localization. (a) Vertical displacement field W(x) obtained by numerical
integration of equation (2.3) (solid line) and comparison to the analytical perturbation solution, equation (3.5) (black dotted
line). Parameters: G =5 x 107>, =10, 8=10.2, K =0.01, ¢ = 9.5 x 1073, L = 23 x A. (b) Bifurcation diagram for
equation (2.3) as a function of growth strain €. For € < €*, there is no deformation, while for € > €* either uniform or
localized deformations emerge. For € > €*, the amplitude of deformations increases in proportion to /€ — €*, as predicted
by equation (3.5) (solid line). The figure also shows the width w and wavelength A of localized deformations as a function of €,
with solid lines indicating the theoretical predictions. Data points are from numerical simulations of the discrete rod model for
the following parameters: N = 80, S =100, b =1, n; = 316, K = 0.1, B = 0.4 and G = 0.001. (c) Double logarithmic plots
of amplitude A and width w of localized solutions as function of shear modulus G. The solid lines, which have slopes of 1/4,
respectively, —1/4, are the theoretical predictions of equations (3.7) and (3.6), A o< G"*, w oc G="/*, Simulation parameters:
§$=10,B=1K=1,¢ =021,L =20 x A.(d—e) Above the bifurcation point €*, uniform or localized deformations are
selected depending on their relative energies, as described by (Ejgc — Euni) / Euni, Where Ejy is the energy of the localized
state and &y is the energy of the uniform state. (d) Shows that, at constant G, there is a critical value for € above which the
localized solution has lower energy compared to the uniform buckled solution. The critical € increases with increasing G. (e)
Shows that, at constant €, there is a critical shear modulus G, below which the localized solution is lower in energy than the
uniform deformation. The ritical G increases with increasing €. Simulation parameters for (d—e) are: N = 50, S = 100, b =1,
n, =197,k = 0.1,B = 0.4, G = 0.001,0.0025 and ¢ = 0.1, 0.13 as indicated on the graph. (Online version in colour.)

solution back into equation (2.3). This procedure (detailed in electronic supplementary material,
53.5) yields at leading order:

_ _ _ Y —1L/2)2 _

W (3) + 2W" (%) + W(T) — 8 % W’ (x) =0, (3.2)
where the relevant perturbation parameter of the problem emerges as § =(G/K)(e — €*) < 1. In
equation (3.2), we recognize the linear part, which yields uniform buckling with wavelength A; as
expected, we obtain a new term, proportional to §, which comes from the excess strain € — €* and
varies slowly on distances of scale A. This problem is analogous to the WKB approximation to the
Schrodinger equation with a slowly varying potential. The form of equation (3.2) thus suggests
the following envelope-type ansatz for the vertical displacement

W(x) = A(8/*%)e™ + c.c. (3.3)
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where A is a slow-varying amplitude (envelope) function that depends on the slow variable X =
81/4% and c.c. stands for complex conjugate. Inserting this ansatz into equation (3.2) and collecting
terms at various orders in §'/4, we arrive at the following amplitude equation describing the
long-scale behaviour of the solution (see electronic supplementary material, S3.6):

PAX) (X —X,)?
ax2 8

A(X), (3.4)

where X, =8"4L/x. The amplitude equation is a particular case of the Weber differential
equation y”’(z) + (v + 1/2 — 22 /4)y(z) = 0 with v = —1/2, whose solution is expressed in terms of
the parabolic cylinder function y(z) = D_1,2(z) [21]. Hence, the final perturbation solution for the
vertical displacement is given by:

1/4
W(x) oc /€ — €*A cos (;) D_12 |:(e — e*)1/4 <%) <x _ L>:| . (3.5)
The solution has the form of the uniform wrinkled solution cos(x/A) modulated by an
envelope function A(X), which depends on the slow variable X = (¢ — €*)1/4(G/B)!/4x. Note that,
independently of growth strain € or shear modulus G, the solution always selects the wavelength
A. The accuracy of equation (3.5) against numerical integration of equation (2.3) is shown in
figure 3a and in electronic supplementary material, figures S7-S10.

(iiii) Scaling laws for localized solution

With a perturbative solution to the continuous equations equation (2.3) at hand, we can now
predict the scaling behaviour of a number of key observables, such as the width w, the wavelength
) and the amplitude A of the localized deformations. In particular, from equation (3.5), the width
w of the localization scales as:

—1/4
% a8 VA= (e —er)1/A (%) . (3.6)

Hence, increasing growth strain € beyond the bifurcation point €*, or increasing G favours
localization (figure 3b,c). The wavelength of the localized deformation A = (B/ K)/4is independent
of growth strain € and shear modulus G (figure 3b). Finally, the amplitude A of the localization

scales as
A " G\ /4 1\ 12
Zox(e—ent2(2 ). 7
Caxe-en2 () (5 (67)

We have tested these scaling predictions using numerical realizations of the continuous
equations (2.3) obtained with a shooting algorithm. As shown in figure 3b,c and electronic
supplementary material, figure S11, the scaling relationships of equations (3.6) and (3.7) with
€ and G are verified by numerical analysis, thus confirming that we can capture the key aspects
of the localized solutions.

(c) Energetics of localized solution

Turning from the form of the solutions to their stability requires us to study the relative energetics
of the localized and uniform buckled solutions (see also electronic supplementary material, S2 for
details on the energy calculation procedure). In figure 3d, we plot the energy difference between
localized and uniform buckling deformations, (£joc — Euni)/Euni, as a function of the excess strain
€ — €™ at fixed values of shear modulus G. We find that there is a critical strain € above which the
localized solution has lower energy than the uniform solution; this critical strain increases with
increasing G or decreasing K. In fact, the energy difference between the localized and the uniform
states is set by the interplay between shear energy and extensional energy of the substrate springs;
localizing the strain of the filament increases the amount of shear, while decreasing the extensional
energy of the substrate springs (see electronic supplementary material, S3.7).
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Figure 4. Phase diagram as a function of shear modulus G /K and growth strain € separating regions where uniform or localized
buckling deformations are minimum energy solutions. (a) In the purple region, bounded by the theoretical lines (G/K ot
and (G/K)*, localized deformations exist and have lower energy than uniform solutions. Diagram calculated for the same
parameters as in figure 3d. (b) Phase diagram in high G regime obtained from numerical simulations of discrete rod model
for the parameters of figure 3d and comparison with theoretical prediction (solid line). Circles indicate localized deformations,
triangles indicate uniform deformations. At the crosses, we detected bistability. (c) Phase diagram inlow G regime obtained from
numerical simulations of continuum model for the parameters of electronic supplementary material, figure S5 and comparison
to the theoretical prediction equation (3.9) (solid line, which has slope —1). (Online version in colour.)

Similarly, we can also select a solution for a given € and study how varying G impacts its total
energy. Since we do not perturb the solution, it will remain trapped in the local minimum. We
find that below a critical G, the energy difference between localized and uniform states becomes
negative, i.e. the localized state has a lower energy compared to the uniform solution (figure 3e).
The critical G increases for increasing €, hence expanding the window of values for shear modulus
for which we can expect to find localized states.

(d) Phase diagram for localized deformations

Our analysis implies that localized deformations are stable solutions for intermediate values of
shear modulus G (figure 4). By analysing the energy of uniform and localized solutions, we found
that decreasing G from the G — oo limit below a critical value Gt causes localized deformations
to have a lower total energy than the homogeneous buckled solution. This critical value is given
by (see electronic supplementary material, S3.7)

crit
(%) xe—€¥; (3.8)

it increases with increasing €. Moreover, our perturbative solution, equation (3.5), valid for low G,
shows that, in this limit, decreasing G causes the width w of localization to increase; eventually,
localization disappears when w approaches system size L; using equation (3.6), we find that this

occurs below A
(i) (e — )1 (%) . (3.9)

These two effects give rise to the phase diagram in figure 4a, where localized deformations emerge
for intermediate values of G. We have verified these relationships using computer simulations
both in the high G (figure 4b) and low G regimes (figure 4c).

We note that our system displays bistability. If we prepare the homogeneous state at G = 0.001,
which is well below the value at which only localized solutions exist (figure 4b), we find that
small perturbations of the filament relax back to the homogeneous state, while large amplitude
perturbations can persist as localized solutions.
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Figure 5. Experimental realization of geometric localization using 3D printing. (a) Schematic of the experimental realization of
the system using a multi-material 3D-printed plastic model for the growth of a filament attached to a shearable substrate. The
ends of the flexible filament are clamped. (b,c) Images of swelling 3D-printed samples placed in isopropyl alcohol showing the
development of localized deformations over time: the number of vertical springs is n; = 28 (b), and n; = 56 (c). The different
spacing between ‘springs’ allows us to control the mechanical parameters G, K, S, hence the form of localized deformations.
Scale bar, 1cm. (d) Measured amplitude of deformations for the samples in (b,c) as a function of growth strain € — €* is
compared to theory, equation (3.7) (solid line). (Online version in colour.)

4. Experiments

Using a Connex500 multi-material 3D printer (Stratasys, Eden Prairie, MN), we constructed a
simple experimental realization of a growing filament bound to a shearable substrate to asses
the occurrence of localized deformations (figure 5a). The 3D-printed samples consisted of three
parts: (i) a rigid, non-swellable substrate, (ii) a flexible and swellable ‘filament” and (iii) a series
of flexible and non-swellable ‘springs” connecting the filament to the substrate [22]. During the
fabrication process, a photosensitive liquid precursor (the 3D printer ink) is deposited in a voxel-
by-voxel fashion. Several precursors are used to print multiple materials with different properties
and the resulting modulus can be tuned by varying the concentration of photo-initiator. A UV
light cross-links the liquid precursors in a layer-by-layer fashion and this process is repeated until
the full 3D model is built. Depending on the liquid precursor composition and the degree of
cross-linking, a broad range of mechanical properties can be achieved from stiff thermoplastic-
like to soft rubber-like materials. The degree of cross-linking also directly influences the swelling
capacity of the polymer, and for the experiments described here, the component formulations
were guided by previous formulations developed by Guiducci et al. [22]. Growth of the filament
is induced through swelling by submerging the sample in isopropyl alcohol, and the sample
deformations were filmed over 1 h with a digital camera. The structures were elevated off the
bottom of the container to ensure that no flexible component was in direct contact with the walls,
which would cause friction effects that could limit the motion of the filament or the springs.
The swelling experiments were conducted on two different geometries with the same filament
length L, but consisting of ns =28 and ns; =56 vertical springs (figure 5b,c), i.e. the spacing b
between springs is changed by a factor of 2 between the two experimental realizations. In both
cases, b was sufficiently large to avoid differences in solvent diffusion between the two samples.
Since the material properties as well as thickness of all components were identical for both
realizations, changing b allows us to control the stretching modulus of the filament, S = Sb, as
well as the stretching and shear moduli of the springs, K = K/b* and G = G/(h3b), while keeping
the other parameters unchanged. According to our theory, the width, wavelength and amplitude
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of localized deformations scale as woc G~ V4, L« K~V4 and A (G/K)l/ 4. hence, we predict
that reducing b results in localized deformations with overall smaller width, wavelength and
amplitude. These predictions agree with the experimental observations (figure 5b,c). Moreover,
the critical strain for the onset of deformations scales as e* = +/BK/S; hence decreasing the spacing
b between springs is expected to increase €*. This prediction is consistent with the experimental
observation that sample (c) requires a longer time for the onset of localized deformations
compared to (b). For both geometries, we measured the amplitude of deformations as a function
of excess growth strain € — €* and verified the square-root scaling of the bifurcation predicted by
equation (3.7) (figure 5d).

5. Discussion

We have described and studied a minimal realization of spatially localized deformations in a
growing filament connected to a shearable substrate using a discrete rod model, a continuum
theory, and implemented the results using experiments using a multi-material 3D printing
framework. Our main results take the form of scaling relationships for key parameters relating
to localized deformations, such as amplitude, wavelength and width, and a phase diagram for
uniform and localized deformations. These can be particularly useful as guiding principles for
designing controlled deformations with potential applications to mechanical memories. Indeed,
our work shows that the ability to achieve localized deformations in filaments bound to shearable
substrates depends on specific combinations of the mechanical parameters and the size of the
system. Upon appropriate rescaling using the scaling relationships derived in this study, localized
deformations could be appropriately designed both at the macro- and micro-scales.

Our work complements the literature in the field of spatially-dependent nonlinear dynamics,
which suggested the possibility of localized deformations, either in purely theoretical systems
[14-16] or in a variety of non-equilibrium settings [23-27]. Here, we have shown a simple
physical realization of localized deformations in a one-dimensional equilibrium mechanical
setting, obtained by exploiting substrate elasticity, simplifying further earlier work by us in two-
dimensional mechanical settings [17]. Our work also provides an example of how to employ
multi-material 3D printing as a reproducible, rapid and easily realizable method for studying
complex problems related to multiscale mechanically constrained growth. In particular, the ability
to control the deposition of material with very high resolution to create complex 3D structures
might thus provide a practical research platform for investigating mechanical feedback on growth
under different conditions, e.g. in the presence of gradients in strain or material properties. By
incorporating extensions to two-dimensional (2D) systems, our approach could move us one step
closer to understanding the two way-feedback between mechanics and growth/swelling kinetics,
which is a defining feature in the growth of spatially extended structures in both materials science
and biology.

We close by noting that our work applies in the limit when the filament and the substrate are
idealized one-dimensional systems (a1, a2 < L, where a1 and a; are the thickness and height of the
filament). In the case of thin films/substrates (a1 < a; < L) or 2D systems (11 < a, L), however,
localized deformations caused by lateral forces may yield more complex 2D patterns. Extending
our model to such situations will require accounting for the role of substrate nonlinearities on the
stability of localized deformations [28-31], with the film modelled by nonlinear plate theory [32].
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S1. Mapping the discrete rod model to the continuous
equations

In this section, we outline the conversion from the discrete
rod model (Eq. (1) of the main text) to the set of differential
equations describing the continuous rod model (Eq. (2) of the
main text). The total energy of the system in the discrete rod
model (Eq. (1) of the main text) consists of four contributions:
(i) the stretching energy of the filament (£s), (ii) the stretching
of the substrate (£ ), (iii) the shear energy of the filament (E¢),
and (iv) the bending energy of the filament (£5). Without
loss of generality, we consider the case when ns = N, hence
lo =b.

In going from the discrete to the continuous limit, we
replace the discrete index n by the continuous variable x = nb
and let b — 0, while keeping the total length of the filament
L = Nb constant. Discrete horizontal U, and vertical W,
displacements are replaced by continuous fields U (z) and W (z).
Finite differences are replaced with continuous derivatives up
to second order in b, e.g.

Up-1—Un = Uz —b) = U(z)
2
~ —bU'(x) + %U”(z) +
Un+1 7Un — U($+ )7U(CL')
b2
~bU'(z) + = U”( )+
Who1 — Wy = W(z —b) — W(z)
2
~ bW (z) + %W”(x) +oe
Wn+1 - W, — W(x —+ b) — W(z)
b2
~ bW (z) + = W "(z)+---
Wit + Who1 = 2W,, — W(z + b) + W(z —b) —2W(z)
~ W (z) + -
(1]
Finally, sums are replaced by integrals
L(1+e€)
dx
o [ e 2
0

For clarity, we will use bars to denote elastic constants in
the discrete limit. We now analyze each energy contribution
separately.

S1.1. Stretching energy of filament. The energy related to the
stretching of the filament is proportional to the square of the
strain (¢, — €o) /4o

— ng

gS*%Z(angO) )

n=1

[S3]

where, following growth, o = b(1 + ¢).
theorem and Fig. S1, we have

Using Pythagoras

&:quﬂ+mfumfmﬂf [54]

20f12

Springs

Rigid substrate

(2 + Un, ho + W)

(&= b+ Up_1,ho+ Wo1) / (2 +b+Unst,ho+ Was)

Onnt1

Fig. S1. Schematic representation of the discrete rod model for the transition to the
continuous formulation for ns = NN and definition of the angles «,, (shear) and
0n,7l+1 (bending)-

Hence, with the replacement z = nb, and Eq. (S1), we find
after keeping only the leading order terms:

Ns

€s = 2‘50 Z |:\/(b ~Un-1+Un )2 + (Wn - I/V'nfl)2 - b(]_ + 6):|

L(1+e 2
[\/ (b+ bU"(2))? + (bW (@) — b(1 + )]
2 L(1+5) 2 do
“;2’0 {\/1+2U' W ()2 — (1 + )} db
L(1+€) , )2 2
~ 260 U'( + = e] dx
L(1+e) 2
::g/ {U’()—&—W() —e] dz,
O 55

where in the second and third lines, we have used the expansion

(1419)? ~ 14 By+--- for y < 1. Hence, in the continuous
limit we have
Sb
g=3b (6]
Lo

S1.2. Stretching energy of substrate (springs). The contribu-
tion attributed to the stretching of the substrate (springs)
reads

@‘N'

[S7]

N
Z n = ho)?,

where hy is the rest length of the springs and using Fig. S1,

B = A/ U2 + (ho + Wy)2. [Sg]
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Keeping only the leading order term, we find (Fig. S1(a)):

EK—%Z{\/ + (ho + Wy)? hor

_> L(1+e€) [\/U h0+W( )) h0:|2d;
N K L<1+e) [\/hQ TG hor d;

I /L(1+e)
~ — .’L'

K /L(1+e)
- dz,

(S9]

where, we have used again the expansion (1+%)? ~ 1+8y+---
for y < 1. In the continuous limit, we thus have

K= [S10]

Tz\ N

S$1.3. Shear energy of substrate. The shear contribution reads

_ N
=9y a,
n=1

where the shear angle a,, is defined in Fig. S1. Using simple
geometry, we find

to= § 3 (s [ ))

n=1

—>g e arctan & Qd—x
2 o ho—l—W(x) b

G L(1+e€)
~ m/ Ul(z)’da

L(1+e)
—/ dac,

where, in the last step, we used the expansion arctan(y) ~

[S11]

[S12]

y+--- for y < 1. In the continuous limit, we thus have:
G
G=—. S13
hib [S13]

S1.4. Bending energy of filament. The bending energy reads

- N

B
Ep = 7 Z(l — co80n nt1),

n=1

[S14]

where the bending angle 0, ,+1, which is defined in Fig. S1,
is the angle formed by the tangent vectors of consecutive
filament segments. This form of bending energy is valid for
weak bending. In fact, the bending energy of an arc segment
of a worm-like chain is given by £ = (2B)/fo 0 sin(6/2),
which for small 8 reduces to (B/£o) 6%, which is approximately
(B/26) (1 — cos0). For small deflections, we can expand to
leading order 1 —cos0n ni1 ~ 07 ,,11/2. The angle 0y, n41 can
be approximated as
Wn+1 — 2Wn + Wn 1

0n1n+1 ~ b — bWH(:l?)

[S15]
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Hence,

L(1+€) . le'
eBz%Zewﬁ / oW (@)%

[S16]
L(1+e€)
= — / ” d:r.
In the continuous limit, we thus have
B
=25t 517]
Lo

S1.5. Total elastic energy in continuous limit. In summary,
the elastic energy £(s) in the continuous limit may be written
as function of the the arc length = to second order in the
displacements U(z) and W (z) as

KB e S [ W@ ]

_._EW(x)Z + %U(mf) dz,

: [S18]

which is Eq. (2) of the main text.

S$1.6. Euler-Lagrange equations. Finally, we can write down

the Euler-Lagrange equations for the energy functional £(s),
Eq. (S18). This yields

& d d2 o€
SW(z) () dx W dm2 oW (x)
— KW(z)—S [(U’( 4+ é"”) - e) W’(x)] + BW"(z)
W(z) - 8 [U’( ) el e:| W)
- S[U" (@) + W' (@)W (x)] W' (z) + BW"" (z) =0
[S19a]
and
5 98 i ( o€ )
sU(z)  0U(x) U'(z)
—GU -5 [U'( )+ Wlé‘r) ]
=GU - S [U"(z) + W (x)W"(z)] =0.  [S19b]
By utilizing Eq. (S19b) in Eq. (S19a), we arrive at
BW" () + S [e U'(2) - Wlé“/’) } W ()
+ KW (z) — GU(z)W'(x) = 0, [S20a]
S[U"(z) + W (x)W"(z)] = GU(x),  [S20b]

which are Egs. (3) of the main text.
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Increasing filament growth €
Increasing filament length L
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Fig. S2. (a) Shape of a filament with
0.05%,0.1%, 0.15%, 0.25%, 0.5%, 0.7%, 0.8%, 1%, 1.25%, 1.4%. (b)
N = 20, 40, 60, 80, 100, 120, 140, 160, 180, 200.

S2. Numerical analysis of localized deformations

S2.1. Discrete rod model. To minimize the total energy of the
system & in the discrete rod model (Eq. (1) of the main text),
we either use Newton’s method, present in the FindMinimum
routine, or a global energy search present in the NMinimize rou-
tine. Both routines are implemented in Wolfram Mathematica.
We note however, that the Newton’s iteration method only
guarantees a local minimum and that even with NMinimize
we have no guarantee of finding the actual global minimum.
Therefore care has to be taken in evaluating the growth. We
are not necessarily interested in the global minimum of the
system but in the solution that arises subsequent to growth
of the filament. The procedure we use to “grow” the flexible
filament is the following: we initiate a configuration where
the springs are in their rest configuration and no bending is
present in the filament. We then increase the rest length of the
springs ¢p that make up the rod with a small amount ¢ye such
that the new length of the segments ¢o(1 + €). We then use
our minimisation algorithm to find the energetically optimal
configuration of the filament. Since this system typically has
multiple local minima, we will explore the different solution
branches and calculate their energy and stability by adding
white noise to the initial configuration. In particular, to map
out these various branches as function the relevant parameters
G and ¢, we use a local conjugate gradient method to identify
the various local energetic minima; then by gradually increas-
ing/decreasing G and € we can probe the various solution
branches. To probe the stability of the various branches we
apply a random perturbation (white noise) to the solutions
and study how, depending on the amplitude, the solution
relaxes back to the branch or finds another minimal energy
solution.

S2.1.1. Effect of growth and filament size on localization. Using our
discrete rod model, we studied numerically how growth induces
localization and show this for a system of N = 100 connecting
springs (B = 0.1, K = 0.1 and G = 0.1) by simulating the
shape of the filament as a function of growth e (Fig. S2(a)).
We find that the width of the localized structure decreases
upon increasing €. Another way to decrease the localization
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increasing growth calculated using
Effect of increasing filament length on localization.

to bottom: € =
From top to bottom:

the discrete rod model. From top

length is to increase the size L of the system. In Fig. S2(b),
we simulated the shape of the filament for various system
sizes while keeping the relative amount of growth and the
other parameters constant. While increasing the system size
does not affect the wavelength of the perturbation, there is
an effect of system size on the width of localization. This
effect is captured by our analytical solution to the continuous
equations (see Fig. S10).

§2.1.2. Higher-order filament deformations. In the main text, we
have focussed only on the homogeneous and single localized
buckling solutions. Using our discrete rod model, we can also
examine other local energetic solutions; indeed, not unlike
many systems governed by Swift-Hohenberg type equations
(3), our system exhibits multiple stable and unstable spatially
localized and uniform branches. In Fig. S3, we find that, be-
sides the localized solution, the uniform solution as well as
solutions with multiple bumps are stable solutions for finite
shear modulus. In Fig. S3(b) we have plotted the total en-
ergy and the maximal vertical amplitude of the filament as
a function of e. All the states were obtained with identical
system parameters, but different random initial configurations
and values of €. Once we picked up a branch we incrementally
decrease/increase the amount of growth, using the previous
solution as input until the solution jumps to another branch.
This shows that, even while the shear field is not localized
along the system solutions, for certain values of G and e mul-
tiple bump solutions are stable solutions of the governing
equations.

§2.1.3. Edge buckling. We also studied buckling of a growing
filament attached to a solid filament, where the end-points
of the filaments are free. For simplicity we only considered
inextensible filaments here (S = 1000K) with vanishing shear
modulus G = 0. As can be seen in Fig. S4(a) for a filament
with N = 50 during the initial growth the filament stretches
parallel to the solid substrate. Above a critical extension €*,
the filaments starts to buckle at the edge. The exact value of
€* as well as the buckling wavelength A strongly depend on the
value of B/K. To enhance the stability of our minimization
algorithm we minimize half of the space for the non-periodic
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Fig. S3. (a) Homogeneous solution, symmetric localized solution, asymmetric single bump solution and double bump solution. Note that these branches occur and are stable at
different values of growth €. (b) Energy and corresponding amplitude of the various branches. The colors correspond to the various solutions in (a) (N = 40, S = 100,
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Fig. S4. (a) The equilibrium shape for a filament with free edges as function of growth e. (b) The equilibrium shape for a filament for various ratios of bending modulus and
spring stiffness B /K from 1072 to 1 after a growth of e = 0.15 for a system with N' = 50 springs.

filament. We assume that the minimal energy solution is
symmetric around the midline of the system, this is achieved
by fixing the x-position of the midpoint segment and equating
the y-coordinate of the last two segments. We have verified
that this approach yields the same equilibrium shape as when
we would consider the whole space, at least for large systems.
For small systems, the antisymmetric solutions are excluded
by construction.

Fig. S4 (b) shows a filament that is adhered with 50
springs corresponding to an extension € = 0.15. Similar to
what we observed for the buckling of a periodic filament we
find that decreasing B/K, decreases the wave length of the
edge buckling.

S2.2. Numerical evaluation of continuous limit equations us-
ing shooting algorithm. The Euler Lagrange equations Eq. (520)
are transformed into a set of 6 first order ODEs for wo = W,
wr = W, wa = W', w3 = W" up = U, ug = U'. This
system of ODEs is solved solved using a shooting algorithm
and once we find a solution branch we follow it by slightly
perturbing our shooting parameters. These coupled nonlinear
differential equations are typically hard to solve and, simi-
larly to the discrete rod model, we cannot guarantee that
the obtained solutions is the energetically most favourable
one. To simplify this shooting algorithm we only consider the
solution on the half-interval 0 < z < L/2; hence, we shoot
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from the edge of the domain towards the centre of the domain
and use the symmetry around z = 0 to find the full solution
(ensuring that U(L/2) = W'(L/2) = W''(L/2) = 0). Since
coupled fourth order differential equations typically have a
wealth of possible solutions, finding the right initial guesses
for the shooting algorithm corresponding to a solution is not
straightforward. However, close to the bifurcation point €*
we were able to obtain solutions that satisfied the boundary
conditions. We show a set of these localized solutions obtained
from numerical evaluation of the continuous Euler-Lagrange
equations Eq. (S20) for various values of shear modulus G' and
growth strain € in Fig. S5. Note that the spatial extend of the
localized solution, obtained from the continuous differential
equations decreases upon increasing €, highly similar to what
we found for the discrete rod model. Moreover, increasing the
shear modulus G, decreases the width of the localized solution.
Note that, close to €*, we find higher order solutions, which
are all different solution branches, not unlike those observed
in the discrete rod model. A full analysis of the full parameter
space, however, is out of the scope of this paper and is left for
a future study.

S3. Asymptotic analysis of continuous equations

In this section, we provide the mathematical details pertaining
to the weakly non-linear analysis of continuous equations,
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Fig. S5. Solutions for the vertical displacement W (z) from Eq. (S20a) and Eq. (S20b) for a system width width 20 x X and for the following parameters: (a) K = 1,
B =1,5 =100, e = 0.021 and varying G; (b) K = 1, B =1, G = 0.01 and varying e — €*.
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Egs. (3) in the main text. We will solve these equations on
the half-interval « € [0, L/2] with the boundary conditions
U(L/2) = W(L/2) = W/(L/2) = 0 and U(0) = W'(0) =
w"(0) = 0.

S3.1. Analysis of linearized equations. The first step in this
analysis is to consider the linearized Euler-Lagrange equations,
which read

BW""(z) + SeW" (z) + KW(z) =0
SU"(z) = GU(x)

[S21a]
[S21b]

subject to the boundary conditions U(L/2) = U(0) = W(L/2) =
W'(L/2) = W'(0) = W"(0) = 0. Eq. (S21b) has a general
solution of the form U(z) = CieV G/S2 4 Che™V G/Sz; the
boundary conditions necessarily imply C1 = C> = 0, hence
in the linear regime the horizontal displacement vanishes,

U(z) = 0. To solve equation Eq. (S21a) we make the Ansatz
W = e*, which yields

Se

B " Se
2vVBK

2
B 1/4
~1, A= (7) .
2V BK K
[S22]
From this equation we see that €2 is purely imaginary when
the argument of the inner square root is positive

2 —
)—1>O = e>e*:2§K.

A==+

Se
(2 VbR [S23]
When € < €, Q has a real part; together with the boundary
conditions, this implies W (z) = 0. When ¢ > €*, we get
periodic wrinkling, and a non-zero solution exists. Note that
the bifurcation point €*, which we have obtained from the
linearized system, is the same for the non-linear system.

§3.2. Uniform wrinkling solution for large shear modulus. We
pause our analysis here to discuss two special cases of particular
interest: (i) the limit of large shear modulus G — oo and (ii)
the limit of zero shear modulus G = 0 (see Sec. S3.3). The
limit G — oo recovers the classical Winkler foundation (2). In
both limits, we find uniformly wrinkling solutions.

In particular, when G — oo, Eq. (S20b) implies U(z) = 0,
i.e. there is no shear field. Substituting this into Eq. (S20a)
yields

BW/W(I) + 5 |:E _ W’§$)2:| W”(ZI»‘) + KW(z) =0. [824]

From the above analysis of the linearized equations, we know
that strains smaller than ¢* can be accommodated through
filament stretching. Hence, we write € = (e — €*) + €* to yield

BW""(x) + SeW" (z) + KW (z)

W/(xq W (x) = 0.

+S [e e [S25]

Inextensibility of the filament beyond €*, implies € — ¢* —
’ 2
W2)” ~ 0; hence, W (z) satisfies the linear equation BW"” (z)+
Se*W" (z) + KW (z) = 0, which has solution
1/4
A= (5) .
K

W(z) = A cos (;) , [S26]

Thomas C. T. Michaels, R. Kusters, C. Storm, A.J. Dear, J.C. Weaver, L. Mahadevan

The constant of integration A can be determined from the
inextensibility condition

2
e—e*—A—:O = A~/2(e—e")\

272
[S27]

. W’(I)Q

€—€ ————
2

$3.3. Uniform wrinkling solution for low shear modulus. We
now consider the opposite limit of vanishing shear modulus
G = 0, which, as we will show here below, also yields a uniform
wrinkling solution. When G = 0, Eq. (S20b) implies

W/(I)Q

U'(z) + W (@)W'(z)=0 = U'(z)+ = const
[S28]

Substituting this into Eq. (S20a) with G = 0 yields

BWNH(l’) + 5 |:E _ U'(a:) _ VV’éCL‘)Q] W/’(J,’) + KW(I) =0.

[S29]
Once again, the filament will be able to accommodate strain up
until €* through filament stretching. Writing € = (¢ — €*) + €*
yields

BW""(x) + S&W" (x) + KW (x)
W/(J,’)2
2

+S [e —e = U'(z) - } W' (z) = 0. [S30]
Inextensibility of the filament beyond €¢*, implies € — ¢* —

’ 2
U/(CC) _w ;x)
regime

~ 0; hence, we recover the uniform wrinkling

BW""(x) + SeW" (x) + KW (x) = 0. [S31]

In conclusion, the analysis of the limits G = 0 and G —
oo shows that in both cases there is no localization. Shear
localization emerges for intermediate (but small) values of G.

S3.4. Energy contributions for uniform deformation. We now
analyze the different contributions to elastic energy in the
case of a uniform deformation. This analysis will be useful
for comparing the elastic energies of localized and uniform
deformations (see Sec. S3.7). We focus on the limit G — cc.
In this case, the horizontal displacement field is zero, U =
0; hence, the shear energy is zero and the total energy is
associated with the stretching and bending of the filament and
the vertical stretching of the springs. Up until €*, the strain €
is accommodated into stretching energy with U = W = 0; the
stretching energy reads therefore:

S 2 *
552{36 *L2 fore<e* 932]
S(e)°L fore>e
Accordingly, for € < €* there is no bending or spring energy
and the total energy constitutes only of the stretching energy.
Above €*, the stretching energy ceases to increase with ¢ and
the excess strain € — €* is accommodated into bending and
spring energy. The bending energy can thus be estimated as

L/2 2
B 1, N2 B (A\N“L +BK N
= — 4% ~— =) =~ — € )L
fr =3 /_m (@) de = 3 (/\2) 2 5 e~k

[933]
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Fig. S6. Theoretical diagram illustrating the total, filament stretching, filament bending,
spring stretching and shear energies as a function of strain € in the G — oo
limit, Eq. (S37). Calculation parameters are: S = 10, B = 0.2, K = 0.01,
€ =19.5 x 1073, L = 23 x A. In this limit, there is no shear; the filament stretches
until the bifurcation point e*. Stretching energy becomes constant above ¢* and
excess strain ¢ — €* is accommodated as filament bending and spring stretching
energy.

where we used that f L , COS 2(x/N)dx = M L for

large L. Since A\ = (B/ K )1/ 4, the same asymptotic result is
obtained by considering the stretching energy of the springs

g = & W (z)de ~ rak
2 ) 1) 2
A’ L. VBK
~B_ =~ —€")L. 4
V) : (e—€") [S34]

For € > €, the filament stretching energy is constant and can
be re-written as

Es ~ g(e*)QL ~ VBKe* L. [$35]
Thus, the total energy of the system for € > €* is
E~Es+Ep+Ek
~ VBKe L+ g(lf — €))L+ \/27(6 —€)L
= VBKeL. [S36]

Hence, the total energy of the system behaves as a function of
e as (Fig. S6)

for e < €*

gN §€2L
" |\VBKeL fore>¢€

It increases quadratically with € below the bifurcation point
€* and increases linearly with € for ¢ > €¢*.

[S37]

S§3.5. Rescaled Euler-Lagrange equations. We now turn our
attention back to the solution of the Euler-Lagrange equations
Eq. (S20) for a non-vanishing but small shear modulus G. In
order to perform a weakly non-linear analysis of these equa-
tions, it is convenient to reformulate the problem in a way that
the non-linear terms appear as a perturbation to the linearized
theory. To so do, we first rewrite Eq. (S20) in dimensionless
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form by rescaling x, W and U by the characteristic length
scale A = (B/K)'* of the uniform periodic state
T = W ~ U

I = W=—, U

Doing so, we obtain the following rescaled Euler-Lagrange
equations

W////( ) +ole— ﬁ/(a_s) B W’;f) W”(f)
+W(@) -y U@W' (2) =0,
o (U"(@) + W' @W" (7)) 7 U(x) =0, [539a]

where ' = d/dZ and we have introduced the parameters

S G

which represent rescaled stretching and shear moduli. We
then write € = (e — €*) 4 €* to consider deviations from the
bifurcation point €*; using oe¢* = 2, we obtain

[S40]

W////( )+2WH( )+W( )
o lte-e) - 0@ - L W@ - 0@w @) =o,

This form of the continuous equations suggests considering
€ — € as a small perturbation parameter (the exact form of
the relevant perturbation parameter in the problem will be
determined below); to achieve this goal, we introduce the
following rescalings of the vertical and horizontal displacement
fields W and U:

o (U"(z)+ W' (@)W (z))

W=vVe—e W, U=(e—€)T, [S42]
i.e. ~ ~
W=XVe—e W, U=Ae—€e)U [S43]

This transformation yields Eq. (5) of the main text

W (@) +2W" (z) + W (2 )+0(6—6*)[W"( ) = U' (@)W ()

W ) - Lo@i@)] =0 (sada
U"(z) + W' (z)W"(z) - U() 0. [S44b]

Eq. (S44a) is particularly convenient, since it appears as the

sum of the linear part and o(e — €*) times all non-linear terms.

To continue, we notice that the situation of interest is when

a = /o < 1. This suggests solving Eq. (S44b) perturbatively

in «, by seeking a perturbation solution of the form

U=Up+al; +--- [S45]

with the boundary conditions U(L/2) =0and U'(L/2) =1,
where L = L/\. At first oder in «, we find:

0+ ¢ PN i )

g : [S46]

The accuracy of the perturbative expansion Eq. (S46) against
numerical solution of Eq. (S20) is discussed in Fig. S8(b). Note
that Eq. (S46) implies that, in the presence of localization,
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Fig. S7. (a) Comparison between numerical solution (solid line) for horizontal displace-
ment U and the perturbative outer solution Eq. (S47) (dashed line). (b) Comparison
between numerical solution (solid line) and perturbative expansion (dashed line) for
U’ 4+ (W')2/2, Eq. (S46). The parameters are: S = 10, B = 0.2, K = 0.01,
G=5x10"%e=95x10"3L =23 x A

there is a conversion of filament stretching energy into sub-
strate shear energy (see Sec. S3.7). Note also that, away from
the localized deformation, this perturbation Eq. (S46) corre-
sponds to the outer solution for the horizontal displacement
(see Fig. S8(a)):
~ _ T /9\3

U:(;zfi/z)+a(x_%+m, [S47]
corrected by the term —(W')2/2.

We obtain the outer expansion solution for U as follows:
outside of the localization region, we can neglect terms asso-
ciated with vertical displacement, W. hence, from Eq. (S44b)
we obtain U”(Z) = 2U(z), which has the solution

sinh [\/a(i’ — E/Q)]
T )
which can be expanded in power series to yield Eq. (S47)
sinh [\/a(:? - E/2)] N
Ja )
[S49]

From this solution, we obtain the following approximation for
the filament tension

w’?

U=

[948]

U= :(f—i/2)+a7@*§/z)3

b (&~ L/2)?

[S50]
Combining Eq. (S46) with Eq. (S44a) (and keeping only
the leading order terms in o = v/0), we arrive at:”

~ T 2 _
W2 W (e - ) Ty g

*Note that in deriving Eq. (S53), we neglected the contribution coming from the term
20 (z)W'(2) in Eq. (S44a). The full expression for Eq. (S53) is:

= T on2
(z - L/2) w
2

= cosh [\/E(i - E/2)] =1l+a

S53]

W 1 2W" 4+ W — y(e — %) —y(e—e)N@—L/2)W' =0
[S51]
The difference between Eq. (S51) and Eq. (S53) is the term proportional to W’. We now
argue that this term can be neglected in front of the other ones. This can be seen as follows:
introducing § = v(e — €*), X = §'/% and X, = 61/4L/2, as in Eq. (S57), we can
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Fig. S8. (a) Comparison between numerical solution (solid line) for horizontal displace-
ment U and the perturbative outer solution Eq. (S47) (dashed line). (b) Comparison
between numerical solution (solid line) and perturbative expansion (dashed line) for
U’ + (W’)2/2, Eq. (S46). The parameters are: S = 10, B = 0.2, K = 0.01,
G=5x10"%€e=95x10"3L =23 x A

which is Eq. (6) of the main text.

S3.6. Weakly non-linear perturbation. Eq. (S53) clearly high-
lights the relevant perturbation parameter in the problem
as

J=qle-€e)x1 [S54]
such that

(@—L/2)

2
W2 W — 5 W —0.  [S55]

We now solve Eq. (S55) perturbatively, by means of the fol-
lowing Ansatz

W (z) = A(0"*2)e™" + c.c. [S56]

where A is a slow-varying amplitude function that depends
on the slow variable X = §'/*Z and c.c. stands for complex
conjugate. By the chain rule, we have

W'(Z) = (iwA + §*0x A)e'™ + c.c. [S57a)

W (Z) = (—w?A + 2iwd"*0x A + V0% A)e™™ + c.c.
[S57D]
W (z) = (W' A — 4iw®6*0x A — 6w V60% A+
4iws® 9% A 4 60% A)e'™ + c.c. [S57c]

where 0x = 0/0X. We then insert Eq. (S57) into Eq. (S55),
collect terms at various orders in 6%/ and obtain the following
equations:

06%: (W'-20+1)A=0=> w=+1 [S58)
OV —4idx A+ 4i9xA=0 = OK [S59]
X — X.)?
O(Y?): —60%A+20%A+ K =Xy 0, [S60]
rewrite Eq. (S51) as:
V_V”N+2V_V” +W— 51/2 (X *2Xe)2 w' — 53/4(X _ Xe)V_VI -0 [S52]

Thus, the last term in Eq. (S52) enters our weekly non linear analysis only at order §3/4 and
consequently does not contribute to the order 5t/2 amplitude equation Eq. (S61).
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where X, = 6/*L/2. From the O(8°) equation, we obtain
w = 1, which implies that the oscillating part of the solution
is e'®; in terms of the original units, this means e"®/X ie. the
wavelength of the oscillating field is A. The order §'/* equa-
tion is trivial. The order /2 equation corresponds to the
amplitude equation (describing the long-scale behavior):

(X — X.)?

%A= <

A, S61]

which is Eq. (8) of the main text. This amplitude equation is
a particular case of the Weber differential equation

2

Y (2) + (u +1- Z4> () =0 1562]

with v = —1/2, whose solution is expressed in terms of the
parabolic cylinder function (sometimes called Weber function)

y(2) = Du(z) [S63]
Hence the envelope function is:
X - X.
AX) =€ Do (St 1S64]

Inserting the amplitude function back into Eq. (S56) and
transforming back to the original variable x, we find the final
solution for the vertical displacement:

W(z) = C Ve — e* X cos (;)

D_1)s {(e _ eyt (%)1/4 (:r - ;)} . [365]

The accuracy of the analytical approximation against numerics
is shown in Figs. S9 and S10.

S3.7. Energy scalings for localized solution. We now discuss
in detail the effect of geometric localization on the various
contributions to elastic energy.

S3.7.1. Shear energy. The shear energy is zero for € < €*; for
€ > €* it can be estimated using the outer solution for U(z),
Eq. (S47), yielding:

L/2 L/2 2
o = ¢ Ulz)de ~ G/ (e —€")? (w - £> dx
2 ) Ly 0 2
3
~ G (e — e*)zL— [S66]

24"

Thus, localization leads to a shear energy proportional to shear
modulus G above €, Fig. S12(a).

§3.7.2. Filament stretching energy. Until the bifurcation point €*,
the stretching energy of the filament increases as

Eg ~ geQL [S67]
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Fig. S9. Comparison between numerical solution (solid line) for horizontal displace-
ment W and the perturbative solution Eq. (S65) (black dotted line) for different
values of shear modulus (between G = 3 x 10~° and G = 1.5 x 10~ %). The
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Fig. S10. Comparison between numerical solution (solid line) for horizontal displace-
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B=02K=0.0l,¢e=9.5x 1073,
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To estimate the stretching energy in the localized state beyond
€*, we use Eq. (S46) and find

S * * !
3 {e +(e—€)-U'(x) —

S soa(z—L)2)?]

—2{6_(6_ e 2 }

NS a2 *a(aj—L/2)2 .

@) ST e+

S w2 S, .02 G (z—LJ2)?° .

—5(6) —5( ) 7T,Bf(€—€)+'“ [S68]

where we used o = /0 and € = 2/0. Hence, in the local-
ized state, stretching energy above the bifurcation point €*
is reduced by an amount proportional to G compared to the
uniform wrinkled solution. The stretching energy for € > €* is
thus estimated as

1— LE( —
VBEK 24

Localization reduces the filament stretching energy by an
amount proportional to G, Fig. S12(b).

Eg ~ g(e*)Q L ). [S69]

§3.7.3. Filament bending and spring energies. Filament bending
and spring energies are zero for € < €*; for € > €*, they can be
estimated as

L/2 2
Ep = B W (z)?dx ~ B (é) min{w, L}, [S70]
2 ) 1 2\
respectively,
L/2
g K W(2)de ~ K A minfw, L} [$71]
2 ) 1 2

where A is the amplitude of the localized state, w its width.
Since A = (B/K)*, we find that g = £k, hence we focus
only on spring energy. Using Eq. (S65), we find

1/2 —1/4
e~ By B _ ey (9) AL (c—e)Y/4 (g)

2 2 K
1/4
\/BK(E—G*)3/4<G> I

B

~

T2

K

Localization modifies the dependence of bending and spring en-
ergy on e—¢*, Fig. S12(c). To understand the conditions under
which the localized solution has lower energy than the uniform
one, we compare the expression Eq. (S72) with Eq. (S34); due
to the different dependencies on € — €*, there is a critical value
for the strain € above which localized deformations become
energetically favorable (Fig. S12(c)):

\/27(676*)[1: \/%7(676*)3/4 (%)1/4

[S72]

L

G
= (€= € )arit Ve [S73]
Thus, upon increasing ¢, the localized solution becomes ener-
getically more favorable than the uniformly wrinkled solution.
The critical value of € above which the localized solution has
lower energy depends on the values of G and K increasing
G or decreasing K increases the value of € at which the local-
ized solution will branch off. This conclusion is confirmed by
numerical simulations (Fig. S13).
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Fig. S11. Scaling behavior of amplitude (a) and width (b) with excess strain ¢ — €*
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and (10) of the main text. These predict: the amplitude scales as (e — €*)*/2, while
the width scales as (e — %)~ 1/4.
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are: G =5x107°,8 =10,B=0.2, K = 0.01,e = 9.5x 1073, L = 23 x \.
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Fig. S13. (a) Three solution branches: (i) uniform buckling, (ii) symmetric localized
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function of the growth strain e for (b) various shear moduli G and (c) various substate
stiffness K. The black solid line is the uniform solution (i), the colored lines are the
symmetric solutions (ii) and the dashed lines are the antisymmetric (iii).
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