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Controlled gliding is one of the most energetically efficient modes of transportation for
natural and human powered fliers. Here we demonstrate that gliding and landing strategies
with different optimality criteria can be identified through deep-reinforcement-learning
without explicit knowledge of the underlying physics. We combine a two-dimensional
model of a controlled elliptical body with deep-reinforcement-learning (D-RL) to achieve
gliding with either minimum energy expenditure, or fastest time of arrival, at a predeter-
mined location. In both cases the gliding trajectories are smooth, although energy/time
optimal strategies are distinguished by small/high frequency actuations. We examine the
effects of the ellipse’s shape and weight on the optimal policies for controlled gliding.
We find that the model-free reinforcement learning leads to more robust gliding than
model-based optimal control strategies with a modest additional computational cost. We
also demonstrate that the gliders with D-RL can generalize their strategies to reach
the target location from previously unseen starting positions. The model-free character
and robustness of D-RL suggests a promising framework for developing robotic devices
capable of exploiting complex flow environments.
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I. INTRODUCTION

Gliding is an intrinsically efficient motion that relies on the body shape to extract momentum
from the air flow, while performing minimal mechanical work to control attitude. The diversity
of animal and plant species that have independently evolved the ability to glide is a testament to
the efficiency and usefulness of this mode of transport. Well known examples include birds that
soar with thermal winds [1], fish that employ burst and coast swimming mechanisms, and plant
seeds, such as the samara [2], that spread by gliding. Furthermore, arboreal animals that live in
forest canopies often employ gliding to avoid earth-bound predators, forage across long distances,
chase prey, and safely recover from falls [3]. Characteristic of gliding mammals is the membrane
(patagium) that develops between legs and arms. When extended, the patagium transforms the entire
body into a wing, allowing the mammal to stay airborne for extended periods of time [4]. Analogous
body adaptations have developed in species of lizards [5] and frogs [6].

Most surprisingly, gliding has developed in animal species characterized by blunt bodies lacking
specialized lift-generating appendages. The Chrysopelea genus of snakes have learned to launch
themselves from trees, flatten and camber their bodies to form a concave cross-section, and perform
sustained aerial undulations to generate enough lift to match the gliding performance of mammalian
gliders [7]. Wingless insects such as tropical arboreal ants [8] and bristletails [9] are able to glide
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when falling from the canopy to avoid the possibly flooded or otherwise hazardous forest understory.
During descent these canopy-dwelling insects identify the target tree trunk using visual cues [10]
and orient their horizontal trajectory appropriately.

Most bird species alternate active flapping with gliding, to reduce physical effort during long-
range flight [11,12]. Similarly, gliding is an attractive solution to extend the range of micro air
vehicles (MAVs). MAV designs often rely on arrays of rotors (i.e., quadcoptors) due to their
simple structure and due to the existence of simplified models that capture the main aspects of
the underlying fluid dynamics. The combination of these two features allows finding precise control
techniques [13,14] to perform complex flight maneuvers [15,16]. However, the main drawback of
rotor-propelled MAVs is their limited flight-times, which restricts real-world applications. Several
solutions for extending the range of MAVs have been proposed, including techniques involving
precise perching maneuvers [17], mimicking flying animals by designing a flier [18] capable of
gliding, and exploiting the upward momentum of thermal winds to soar with minimal energy
expense [19,20].

Here we study the ability of falling blunt-shaped bodies, lacking any specialized feature for
generating lift, to learn gliding strategies through reinforcement learning [21–23]. The goal of the
RL agent is to control its descent toward a set target landing position and perching angle. The agent
is modeled by a simple dynamical system describing the passive planar gravity-driven descent of a
cylindrical object in a quiescent fluid. The simplicity of the system is due to a parametrized model
for the fluid forces which has been developed through simulations and experimental studies [24–26].
Following the work of Ref. [27], we augment the original, passive dynamical system with active
control. We identify optimal control policies through reinforcement learning, a semisupervised
learning framework that has been employed successfully in a number of flow control problems [19,
28–31]. We employ recent advances in coupling RL with deep neural networks [32]. These so-called
deep-reinforcement-learning algorithms have been shown in several problems to match and even
surpass the performance of classical control algorithms. For example, in Ref. [33] it was shown
that D-RL outperforms an interior point method for constraint optimization, using pre-computed
actions from a simulation to land unmanned aerial vehicles in an experimental setting. Indeed,
D-RL appears to be a very promising control strategy for perching in UAVs, a critical energy saving
process [34].

The paper is organized as follows: we describe the model of an active, falling body in Sec. II and
frame the problems in terms of reinforcement learning in Sec. III. In Sec. III A we present a high-
level description of the RL algorithm and describe the reward shaping combining the time/energy
cost with kinematic constraints as described in Sec. III B. We explore the effects of the weight and
shape of the agent’s body on the optimal gliding strategies in Sec. IV. In Secs. V and VI we analyze
the RL methods by comparing RL policies to the trajectories found with optimal control (OC) [27],
by varying the problem formulation and by comparing RL algorithms.

II. MODEL

The motion of falling slender elliptical bodies involves rich hydrodynamics which have inspired
much research [24,25,35–38]. Depending on its size, shape, density, and initial orientation, the
ellipse’s descent follows motion patterns classified as steady-fall, fluttering (side-to-side oscillation
of the horizontal motion), tumbling (repeated rotation around the out-of-plane direction), or tran-
sitional patterns. The aforementioned studies show that these descent patterns can be qualitatively
described by a simple model consisting of ordinary differential equations (ODEs) for the ellipse’s
translational and rotational degrees of freedom (see Fig. 1). This ODE-based model relies on the
assumption that the descent is essentially planar (i.e., the axis of rotation of the elliptical body is
orthogonal to its velocity), and it has been derived on the basis of inviscid fluid dynamics [39] with a
corrective parametric model to account for viscous effects. We employ here the dimensionless form
of the ODEs as originally proposed by Ref. [24] for the gravity-driven descent of a cylindrical ellipse
of density ρs with semiaxes a and b in a quiescent fluid of density ρ f . The nondimensionalization
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FIG. 1. Schematic of the system and degrees of freedom modeled by Eqs. (1) to (6). The position (x-y) of
the center of mass is defined in a fixed frame of reference, θ is the angle between the x axis and the major axis
of the ellipse, and the velocity components u and v are defined in the moving and rotating frame of reference
of the ellipse.

is performed with the length scale a and the velocity scale
√

(ρs/ρ f − 1)gb, obtained from the
balance between gravity and quadratic drag [36]. The resulting set of equations depends on the
dimensionless parameters β = b/a and ρ∗ = ρs/ρ f , with I = βρ∗ the nondimensional moment of
inertia:

(I+β2)u̇ = (I+1)vw − �v − sin θ − Fu, (1)

(I+1)v̇ = −(I+β2)uw + �u − cos θ − Fv, (2)
1
4

[
I (1+β2) + 1

2 (1−β2)2
]
ẇ = −(1−β2)uv − M + τ, (3)

ẋ = u cos θ − v sin θ, (4)

ẏ = u sin θ + v cos θ, (5)

θ̇ = w. (6)

Here u(t ) and v(t ) denote the projections of the velocity along the ellipse’s semiaxes, (x(t ), y(t )) is
the position of the center of mass, θ (t ) is the angle between the major semiaxis and the horizontal
direction, and w(t ) is the angular velocity. Closure of the above system requires expressions for the
fluid forces Fu, Fv , the torque M, and the circulation �. A series of studies [24–26,38], motivated by
studying the motion of falling cards, have used experiments and numerical simulations to obtain a
self-consistent and nondimensional parametric model for these quantities:

F = 1

π

[
A − B

u2 − v2

u2 + v2

]√
u2 + v2, (7)

M = 0.2(μ + ν‖w‖)w, (8)

� = 2

π

[
CRw − CT

uv√
u2 + v2

]
. (9)

Here, A = 1.4, B = 1, μ = ν = 0.2, CT = 1.2, and CR = π are nondimensional constants obtained
from fitting the viscous drag and circulation to those measured from numerical simulations. Wang
and coauthors show that such parametrization, while it may not be sufficient to precisely quantify
the viscous fluid forces, enables the ODE model to qualitatively describe the regular and irregular
motion patters, such as fluttering and tumbling, associated with falling elliptical bodies. The values
chosen for this study were obtained (by Wang and coauthors) to approximate the fluid forces at
intermediate Reynolds numbers O(103) [27], consistent with that of gliding ants [8]. The authors of
Ref. [27] focus their optimal control study to β = 0.1 and I = 20, which represents the inertia of
both the ant’s body and the fluid contained inside the body-fitted ellipse. However, independently
from β and I , the parametrized model for the viscous fluid forces will be consistent with Reynolds
numbers Re ≈ O(103).
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In active gliding, we assume that the gravity-driven trajectory can be modified by the agent mod-
ulating the dimensionless torque τ in Eq. (3), introduced by Ref. [27] as a minimal representation
of the ability of gliding ants to guide their fall by rotating their hind legs [40]. Alternatively, the
control torque could be achieved by the glider deforming its body to displace the center of mass or
by extending its limbs to deflect the incoming flow. This leads to a natural question: How should the
active torque be varied in time for the ant to achieve a particular task such as landing and perching
at a particular location with a particular orientation, subject to some constraints, e.g., optimizing
time, minimizing power consumption, or maximizing accuracy. This is a problem considered by
Ref. [27] in an optimal control framework. Here we consider an alternative approach inspired by
how organisms might learn, that of reinforcement learning [23].

III. REINFORCEMENT LEARNING FOR LANDING AND PERCHING

The tasks of landing and perching are achieved by the falling body by employing a reinforcement
learning framework [21–23] to identify their control actions.

In the following we provide a brief overview of the RL framework in the context of flow control
and outline the algorithms used in the present study. Reinforcement learning is a semisupervised
learning framework with a broad range of applications ranging from robotics [20,41], games [32,42],
and flow control [29]. In RL, the control actor (termed “agent”) interacts with its environment by
sampling its states (s), performing actions (a), and receiving rewards (r). At each time step (t) the
agent performs the action and the system is advanced in time for 	t , before the agent can observe
its new state st+1, receive a scalar reward rt+1, and choose a new action at+1. The agent infers a
policy π (s, a) through its repeated interactions with the environment so as to maximize its long
term rewards. The optimal policy π∗(s, a) is found by maximizing the expected utility:

J = Eπ

[
T∑

t=0

γ t rt+1

]
. (10)

Once the optimal policy has been inferred the agent can interact autonomously with the environment
without further learning.

The RL framework solves discrete-time Markov decision processes (MDP) which are defined
by the one step dynamics of the environment, described by the probability P of any next possible
state s′ given the current state and action pair (s, a), and by the probability distribution over reward
values R defined as [23]

P = P[st+1=s′ | st=s, at=a], R = P[rt+1=r | st=s, at=a, st+1=s′]. (11)

Given the current pair (s, a), the Markov assumption refers to the conditional independence of
these probability distributions from all previous states and actions. The value function for each state
V π (s) provides an estimate of future rewards given a certain policy π . For an MDP we define the
state value function V π (s) as

V π (s) = Eπ

[ ∞∑
k=0

γ krk+1 | s0 = s

]
, (12)

where Eπ denotes expected value for the agent when it performs the policy π and γ is a discount
factor (γ < 1) for future rewards. The action-value function Qπ (s, a) satisfying the celebrated
Bellman equation [43] can be written as

Qπ (s, a) = Eπ

[ ∞∑
k=0

γ krk+1 | s0 = s, a0 = a

]
. (13)

The state-value is the expected action-value under the policy π : V π (s) = Ea∼π [Qπ (s, a)].
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The Bellman equation and value functions are also intrinsic to dynamic programming (DP) [21].
RL is inherently linked to DP and it is often referred to as approximate DP. The key difference
between RL and dynamic programming is that RL does not require an accurate model of the
environment and infers the optimal policy by a sampling process. Moreover, RL can be applied to
non-MDPs. As such RL is in general more computationally intensive than DP and optimal control
but at the same time can handle black-box problems and is robust to noisy and stochastic environ-
ments. With the advancement of computational capabilities RL is becoming a valid alternative to
optimal control and other machine learning strategies [44] for fluid mechanics problems.

The functions V π (s), Qπ (s, a), π (s, a) may be approximated by tables that reflect discrete
sets of states and actions. Such approaches have been used with success in fluid mechanics
applications [20,28,29] by discretizing the state-action variables. However, flow environments are
often characterized by nonlinear and complex dynamics which may not be amenable to binning
in tabular approximations. Conversely continuous approximations, such as those employed here
in, have been shown to lead to robust and efficient learning policies [31,45]. Moreover, since
the dynamics of the system are described by a small number of ODEs that can be solved at
each instant to determine the full state of the system, in contrast with the need to solve the
full Navier-Stokes equations [31], the present control problem satisfies the Markov assumption.
Therefore, we can use a feedforward network (NN) rather than recurrent neural networks (RNN) as
policy approximators [46]. The use of RNN to solve partially-observable problems (non-MDPs) is
explored in Sec. VI.

We follow the problem definition of a glider attempting to land at a target location as described
by Ref. [27]. We consider an agent, initially located at x0 = y0 = θ0 = 0, that has the objective
of landing at a target location xG = 100, yG = −50 [expressed in units of the ellipse major
semi-axis (a)] with perching angle θG = π

4 . For most results we consider an elliptical glider with
nondimensional moment of inertia I 	 1, so that the amplitude of the fluttering motion is much
smaller than the distance from the target [24]. In such cases the spread of landing locations for the
uncontrolled ellipse is of order O(1), much smaller than the distance ‖xG − x0‖.

By describing the trajectory with the model outlined in Sec. II, the state of the agent is completely
defined at every time step by the state vector s := {x, y, θ, u, v,w}. With a finite time interval 	t =
0.5, the agent is able to observe its state st and, based on the state, samples a stochastic control policy
π to select an action at ∼ π (a|st ). The actuation period 	t is of the same order of magnitude as
the tumbling frequency for an ellipse with I ≈ O(1) [25] and is analyzed in more detail in Sec. VI.
We consider continuous-valued controls defined by Gaussian policies which allows for fine-grained
corrections (in contrast to the usually employed discretized controls). The action determines the
constant control torque τt = tanh(at ) ∈ {−1, 1} exerted by the agent between time t and t + 	t .
To provide enough diversity of initial conditions to the RL method, we initialize x(0) ∼ U [−5, 5]
and θ (0) ∼ U [−π/2, π/2]. In the case of perching and landing, each episode is terminated when
at some terminal time T the agent touches the ground yT = −50. Because the gravitational force
acting on the glider ensures that each trajectory will last a finite number of steps we can avoid the
discount factor and set γ = 1.

A. Off-policy actor-critic

We solve the RL problem with a novel off-policy actor-critic algorithm named RACER [47]. The
algorithm relies on training a neural network (NN), defined by weights w, to obtain a continuous
approximation of the policy πw(a|s), the state value V w(s) and the action value Qw(s, a). The
network receives as input s = {x, y, θ, u, v,w} ∈ R6 and produces as output the set of parameters
{mw, σ w,V w, lw} ∈ R4 that are further explained below. The policy πw(a|s) for each state is
approximated with a Gaussian having a mean mw(s) and a standard deviation σ w(s):

πw(a|s) = 1√
2πσ w(s)

exp

[
−1

2

(
a − mw(s)

σ w(s)

)2
]
. (14)
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The standard deviation is initially wide enough to adequately explore the dynamics of the system. In
turn, we also suggest a continuous estimate of the state-action value function [Qπ (s, a)]. Here, rather
than having a specialized network, which includes in its input the action a, we propose computing
the estimate Qw(s, a) by combining the network’s state value estimate V w(s) with a quadratic term
with vertex at the mean mw(s) of the policy:

Qw(s, a) = V w(s) − 1

2
lw(s)2[a−mw(s)]2 + E

a′∼π

{
1

2
lw(s)2[a′−mw(s)]2

}
, (15)

= V w(s) − 1

2
lw(s)2{[a−mw(s)]2 − [σ w(s)]2}. (16)

This definition ensures that V w(s) = Ea∼π [Qw(s, a)]. Here lw(s) is an output of the network
describing the rate at which the action value decreases for actions farther away from mw(s). This
parametrization relies on the assumption that for any given state Qw(s, a) is maximal at the mean of
the policy.

The learning process advances by iteratively sampling the dynamical system to assemble a set of
training trajectories B = {S1, S2, . . . }. A trajectory S = {o0, o1, . . . , oT } is sequence of observations
ot . An observation is defined as the collection of all information available to the agent at time t : the
state st , the, reward rt , the current policy μt = {mt , σt } and the sampled action at . Here we made
a distinction between the policy μt executed at time t and πw(a|st ), because when the data is used
for training, the weights w of the NN might change, causing the current policy for state s to change.
For each new observation ot from the environment, a number B of observations are sampled from
the dataset B. Finally, the network weights are updated through back-propagation of the policy (gπ )
and value function gradients (gQ).

The policy parameters mw(s) and σ w(s) are improved through the policy gradient estimator
[48]:

gπ =
B∑

t=1

πw(at |st )

μt (at |st )

[
Q̂(st , at ) − V w(st )

]∇w log πw(at |st ), (17)

where Q̂(st , at ) is an estimator of the action value. A key insight from policy-gradient-based
algorithms is that the parametrized Qw(st , at ) cannot safely be used to approximate on-policy
returns, due to its inaccuracy during training [46]. However, obtaining Qπ (st , at ) through Monte
Carlo sampling is often computationally prohibitive. Hence, we approximate Q̂(st , at ) with the
retrace algorithm [49], which can we written recursively as

Q̂(st , at ) ≈ Q̂ret(st , at ) = rt+1 + γV w(st+1) + γ min{1, ρ(st , at )}[Q̂ret(st+1, at+1)−Qw(st+1, at+1)].

(18)

The importance weight ρ(st , at ) = πw(at |st )/μt (at |st ) is the ratio of probabilities of sampling the
action at from state st with the current policy πw and with the old policy μt .

The state value V w(s) and action value coefficient lw(s) are trained with the importance-sampled
gradient of the L2 distance from Q̂ret:

gQ =
B∑

t=1

πw(at |st )

μt (at |st )
[Q̂ret(st , at ) − Qw(st , at )]∇wQw(st , at ). (19)

In all cases, we use NN models with three layers of 128 units each. This size was chosen to disregard
any issue with the representational capacity of the network. In fact, we found that even removing
one layer and halving the number of units does not prevent the RL method from achieving similar
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results to those shown in Sec. IV. Further implementation details of the algorithm can be found in
Ref. [47].

B. Reward formulation

We wish to identify energy-optimal and time-optimal control policies by varying the aspect and
density ratios that define the system of ODEs. Optimal policies minimize the control cost

∑T
t=1 ct

with ct = 	t for time-optimal policies and ct = ∫ t
t−1 τ (t )2dt = τ 2

t−1	t for energy-optimal policies.
The actuation cost τ 2 is used as a proxy for the energy cost for consistency with Ref. [27]. Due
to the quadratic drag on the angular velocity [Eq. (3)], consistent with Re ≈ O(103), the average
angular velocity scales as w2 ≈ τ . The input power is wτ and should scale as τ 3/2. Therefore, the
quadratic actuation cost imposes on average a stricter penalty than the input power.

In the optimal control setting, boundary conditions, such as the initial and terminal positions of
the glider, and constraints, such as bounds on the input power or torque, can be included directly in
the problem formulation, as described for the present system in Ref. [27]. In RL boundary conditions
can only be included in the functional form of the reward. The agent is discouraged from violating
optimization constraints by introducing a condition for termination of a simulation, accompanied
by negative terminal rewards. For example, here we inform the agent about the landing target by
composing the reward as

rt = −ct + ‖xG − xt−1‖ − ‖xG − xt‖. (20)

Note that for a trajectory monotonically approaching xG (which was always the case in Ref. [27])
the difference between the cumulative rewards computed by RL [Eq. (10) with γ = 1] and optimal
control cost function is

∑T
t=1 rt + ct = ‖xG − x0‖ − ‖xG − xT ‖. If the exact target location xG is

reached at the terminal state, the discrepancy between the two formulations would be a constant
baseline ‖xG − x0‖, which can be proved to not affect the policy [50]. Therefore, a RL agent that
maximizes cumulative rewards computed with Eq. (20) also minimizes either the time or the energy
cost. We remark that τ , 	t and distances are consistent with the ODE model described in Sec. II
and therefore all control costs are dimensionless.

The episodes are terminated if the ellipse touches the ground at yG = −50. To allow the agent
to explore diverse perching maneuvers, such as phugoid motions, the ground is recessed between
x = 50 and x = 100 and is located at yG = −50 − 0.4 min(x − 50, 100 − x). For both time optimal
and energy optimal optimizations, the desired landing position and perching angle can be favored
through a termination bonus:

rT = −cT + K[e−(xG−xT )2 + e−10(θG−θT )2
]. (21)

The parameter K of the terminal reward is selected such that the termination bonus is of the same
order of magnitude as the cumulative control cost. Because the gravity-driven descent requires
O(100) RL turns and the time cost is 	t = 0.5, we use K = KT = 50 when training time-optimal
policies. Similarly, due to the lower numerical values of the energy-cost, we use K = KE = 20
when training for energy-optimal policies. The second exponential term of Eq. (21) is added only
if 95 < xT < 105. This avoids the possibility of locally optimal policies where the agent lands with
the correct angle θG, but far away from the target xG with minimal time/energy costs.

IV. RESULTS

We explore the gliding strategies of the RL agents that aim to minimize either time-to-target or
energy expenditure, by varying the aspect ratio β and density ratio ρ∗ of the falling ellipse. These
two optimization objectives may be seen as corresponding to the biologic scenarios of foraging
and escaping from predators. Figure 2 shows the two prevailing flight patterns learned by the RL
agent,which we refer to as “bounding” and “tumbling” flight [27]. The name “bounding” flight is
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FIG. 2. Visualization of the two prevailing locomotion patterns adopted by RL agents for the active gliding

model described in Sec. II. Trajectories on the x-y plane for (a) bounding (β=0.1, ρ∗=100) and (c) tumbling
flight (β=0.1, ρ∗=200). The glider’s snaphots are colored to signal the value of the control torque, and the
dashed black lines track the ellipse’s vertices. The grayed-out trajectories illustrate the glider’s passive descent
when abruptly switching off active control. (b), (d) Corresponding trajectories on the u-v plane. For the sake
of clarity, we omit the initial transient and final perching maneuverer. The trajectories are colored based on the
control torque and their beginning and end are marked by a triangle and circle respectively.

due to an energy-saving flight strategy first analyzed by Refs. [51,52] with simplified models of
intermittently flapping fliers.

In the present model, bounding flight is characterized by succeeding phases of gliding and
tumbling. During gliding, the agent exerts negative torque to maintain a small angle of attack
[represented by the blue snapshots of the glider in Fig. 2(a)], deflecting momentum from the air
flow which slows down the descent. During the tumbling phase, the agent applies a rapid burst of
positive torque [red snapshots of the glider in Fig. 2(a)] to generate lift and, after a rotation of 180◦,
recover into a gliding attitude.

The trajectory on the u-v plane [Fig. 2(b)] highlights that the sign of the control torque is
correlated with whether u and v have the same sign. This behavior is consistent with the goal of
maintaining upward lift. In fact, the vertical component of lift applied onto the falling ellipse is �ẋ,
with ẋ > 0 because the target position is to the right of the starting position. From Eq. (9) of our
ODE-based model, the lift is positive if u and v have opposite signs or if w is positive. Therefore, to
create upward lift, the agent can either exert a positive τ to generate positive angular velocity, or, if u
and v have opposite signs, exert a negative τ to reduce its angular velocity [Eq. (3)] and maintain the
current orientation. The grayed-out trajectory shows what would happen during the gliding phase
without active negative torque: the ellipse would increase its angle of attack, lose momentum and,
eventually, fall vertically.

Tumbling flight, visualized in Figs. 2(c) and 2(d), is a much simpler pattern obtained by applying
an almost constant torque that causes the ellipse to steadily rotate along its trajectory, thereby
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FIG. 3. Optimal solutions by sweeping the space of dimensionless parameters ρ∗ and β of the ODE model
outlined in Sec. II. (a) Flight pattern employed by time-optimal agents. Triangles refer to bounding flight and
squares to tumbling. The policy for ρ∗=100 and β=0.4, marked by a star, alternated between the two patterns.
The optimal (b) time-cost and (c) energy cost increase monotonically with both β and ρ∗. The symbols are
colored depending on the value of ρ∗: red for ρ∗=25, orange ρ∗=50, yellow ρ∗=100, lime ρ∗=200, green
ρ∗=400, blue ρ∗=800.

generating lift. The constant rotation is generally slowed down for the landing phase to descent
and accurately perch at θG.

In Fig. 3 we report the effect of the ellipse’s shape and weight on the optimal strategies.
The system of ODEs described in Sec. II is characterized by nondimensional parameters β and
I = ρ∗β. Here we independently vary the density ratio ρ∗ and the aspect ratio β in the range
[25, 800] × [0.025, 0.4]. For each set of dimensionless parameters we train a RL agent to find both
the energy-optimal and time-optimal policies. The flight strategies employed by the RL agents can
be clearly defined as either bounding flight or tumbling only in the time-optimal setting, while
energy-optimal strategies tend to employ elements of both flight patterns. In Fig. 3(a), time-optimal
policies that employ bounding flight are marked by a triangle, while those that use tumbling flight
are marked by a square. We find that lighter and elongated bodies employ bounding flight while
heavy and thick bodies employ tumbling flight. Only one policy, obtained for ρ∗ = 100, β = 0.4
alternated between the two patterns and is marked by a star. These results indicate that a simple
linear relation ρ∗β = I ≈ 30 [outlined by a black dashed line in Fig. 3(a)] approximately describes
the boundary between regions of the phase-space where one flight pattern is preferred over the other.
In Figs. 3(b) and 3(c) we report the optimal time costs and optimal energy costs for all the com-
binations of nondimensional parameters. Fig. 3(c) shows that, the control torque magnitude (which
we bound to [−1, 1], Sec. III) required to reach xT increases with I . In fact, we were unable
to find time-optimal strategies for I > 160 and energy-optimal strategies for I > 80. While the
choice of objective function should not affect the set of reachable landing locations, the energy cost
discourages strong actuation strategies.

Once the RL training terminates, the agent obtains a set of opaque rules, parametrized by a neural
network, to select actions. These rules are approximately optimal only for the states encountered
during training, but can also be applied to new conditions. In fact, we find that the policies obtained
through RL are remarkably robust. In Fig. 4(a) we apply the time-optimal policy for ρ∗ = 200
and β = 0.1 to a new set of initial conditions along the x coordinate. Despite the agent never
having encountered these position during training, it can always manage to reach the perching
target. Similarly, in Fig. 4(b) we test the robustness with respect to changes to the parameters of
the ODE model � = {A, B, μ, ν,CT ,CR}. At the beginning of a trajectory, we vary each parameter
according to �̂i = �i · ξ where ξ is sampled from a log-normal distribution with mean 1 and
standard deviation σξ . The color contour of Fig. 4(b) represent the envelopes of 104 trajectories
for σξ = 0.1 (blue), 0.2 (green), and 0.4 (orange). Surprisingly, even when the parameters are
substantially different from those of the original model, the RL agent always finds its bearing and
manages to land in the neighborhood of the target position. These results suggest that the policies

093902-9



NOVATI, MAHADEVAN, AND KOUMOUTSAKOS

-20 0 20 40 60 80 100
x

-50

-40

-30

-20

-10

0

y

(a)

0 20 40 60 80 100
x

-50

-40

-30

-20

-10

0

y

(b)

FIG. 4. Robustness of the trained RL agent. The agent is able to land in the neighborhood of the target xG

despite (a) starting its trajectory from initial conditions not seen during training or (b) applying proportional
noise to the parameters of the model outlined in Sec. II. The color contours of panel (b) represent the envelopes
of 104 trajectories for different values of standard deviation of the proportional log-normal noise. The blue
contour corresponds to σξ = 0.1, green to 0.2, orange to 0.4. These results are obtained with the time-optimal
policy for β=0.1 and ρ∗=200.

learned through RL for the ODE system may be employed to land the glider at the target position
within more accurate simulations of the surrounding flow or in experimental setups.

V. COMPARISON WITH OPTIMAL CONTROL

Having obtained approximately optimal policies with RL, we now compare them with the
trajectories derived from optimal control (OC) by Ref. [27] for ρ∗ = 200 and β = 0.1. In Fig. 5, we
show the energy optimal trajectories, and in Fig. 6 we show the time optimal trajectories. In both
cases, we find that the RL agent slightly surpasses the performance of the OC solution: the final
energy-cost is approximately 2% lower for RL and the time-cost is 4% than that of OC. While in
principle OC should find locally optimal trajectories, OC solvers (in this case GPOPS, see Ref. [27])
convert the problem into a set of finite-dimensional subproblems by discretizing the time. Therefore
the (locally) optimal trajectory is found only up to a finite precision, in some cases allowing RL,
which employs a different time-discretization, to achieve better performance. The finding that deep
RL may surpass the performance of OC is consistent with the results obtained by [33] in the context
of landing policies for unmanned aerial vehicles.

The RL and OC solutions qualitatively find the same control strategy. The energy-optimal
trajectories consist in finding a constant minimal torque that generates enough lift to reach xG by
steady tumbling flight. The time-optimal controller follows a “bang-bang” pattern that alternately
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FIG. 5. Energy-optimal (a) x-y trajectory, (b) angular velocity, and (c) control torque of the present gliding
model obtained by reinforcement learning (blue lines) and optimal control by Ref. [27] (black lines) for β = 0.1
and ρ∗ = 200.
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FIG. 6. Time-optimal (a) x-y trajectory, (b) angular velocity, and (c) control torque of the present gliding
model obtained by reinforcement learning (blue lines) and optimal control by Ref. [27] (black lines) for β = 0.1
and ρ∗ = 200.

reaches the two bounds of the action space as the glider switches between gliding and tumbling
flight. However, the main drawback of RL is having only the reward signal to nudge the system
towards satisfying the constraints. We can impose arbitrary initial conditions and bounds to the
action space (Sec. III), but we cannot directly control the terminal state of the glider. Only through
expert shaping of the reward function, as outlined in Sec. III B, can we train policies that reliably
land at xG with perching angle θG. The precision of the learned control policies may be evaluated
by observing the distribution of outcomes after changing the initial conditions. In Fig. 7 we perturb
the initial angle θ0. We find that the deviation from xG and θG are both of the order O(10−2) and that
the improvement of RL over OC is statistically consistent for all initial conditions.

One of the advantages of RL relative to optimal control, beside not requiring a precise model
of the environment, is that RL learns closed-loop control strategies. While OC has to compute
de novo an open-loop policy after any perturbation that drives the system away from the planned
path, the RL agent selects action contextually and robustly based on the current state. This suggests
that RL policies from simplified, inexpensive models can be transferred to related more accurate
simulations [45] or robotic experiments (for example, see Ref. [53]).

VI. ANALYSIS OF THE LEARNING METHODS

The RL agent starts the training by performing actions haphazardly, due to the control policy
which is initialized with random small weights being weakly affected by the state in which the
agent finds itself. Since the desired landing location is encoded in the reward, the agent’s trajectories
gradually shift towards landing closer to xG. To have a fair comparison with the trajectories obtained
through optimal control, the RL agents should be able to precisely and reliably land at the prescribed

 
T

(a)

 X
T

(b)

T

(c)

E

(d)

FIG. 7. (a) Landing angle, (b) position, (c) time cost, and (d) energy cost of the energy-optimal (blue lines,
corresponding to Fig. 5) and time-optimal (orange lines, corresponding to Fig. 6) policies after varying the
initial angle θ0. The dashed lines correspond to the trajectory found by optimal control for θ0 = 0 by Ref. [27].

093902-11



NOVATI, MAHADEVAN, AND KOUMOUTSAKOS

106

(a)

106

(b)

106

(c)

106

(d)

FIG. 8. Distribution (mean and contours of one standard deviation) of (a) landing position, (b) angle,
(c) time-cost, and (d) energy-cost during training of the time-optimal policy with varying the actuation
frequency. Time between actions 	t = 0.5 (purple), 	t = 2 (green), 	t = 16 (blue), 	t = 64 (red).

target position. In general, the behaviors learned through RL are qualitatively convincing, however,
depending on the problem, it can be hard to obtain quantitatively precise control policies.

In this section we explore how the definition of the RL problem, as well as the choice of learning
algorithm, affects the precision of the resulting policy. In Fig. 8 we show the effect of the time-
discretization 	t of the RL decision process. For example, for 	t = 64 the agent performs only
two or three actions per simulation. In this case, the actions need to be chosen precisely because
the agent has few opportunities to correct its descent. For this reason, it is more challenging for
the RL algorithm to find these optimal actions, which can be observed by the increased training
time required for the agent to reliably land around xG. Greater actuation frequency allows higher
time-resolution of the optimal policy and therefore, in this case, lower optimal time-cost. We note
that we perform one training step (gradient update) per agent’s action. Therefore, training with
	t = 0.5 is faster than training with 	t = 64 because simulating each action requires 128 times
fewer simulated time steps.

In Sec. III A we defined an agent being able to observe all the state variables of the ODE
(s := {x, y, θ, u, v,w}), satisfying the assumption of Markovian dynamics required by RL. This
assumption is often voided in practical application of RL where only partial information (e.g., sensor
measurements) are available to the agent (examples with fluid dynamics include [19,29,31,45]).
Moreover, a smaller state representation has the potential benefit of the policy/value NN having
fewer parameters which can be trained more effectively by avoiding the curse of dimensionality. We
explore this idea with Fig. 9, where we measure the training outcomes when hiding the velocities
{u, v,w} from the agent. Hiding these quantities may be biologically plausible because velocities
are more difficult to accurately measure from visual information. Figure 9 indicates that despite the

106

(a)

106

(b)

106

(c)

106

(d)

FIG. 9. Distribution (mean and contours of one standard deviation) of (a) landing position, (b) angle,
(c) time-cost, and (d) energy-cost during training of the time-optimal policy for the fully observable problem
defined in Sec. III (purple), by an agent that observes its state as {x, y, θ} (orange), and by an agent which
observes {x, y, θ} and models its policy and value function with a RNN (green).
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FIG. 10. Distribution (mean and contours of one standard deviation) of (a) landing position, (b) angle,
(c) time-cost and (d) energy-cost during training of the time-optimal policy with three state-of-the-art RL
algorithms: RACER (purple, Sec. III A), normalized advantage functions [56] (blue), and proximal policy
optimization [57] (orange). RACER reliably learns to land at the target position by carefully managing the
pace of the policy update.

smaller parametrization of the NN, it is more difficult for an agent to find accurate landing policies
from partial information. A common work-around employed in the machine-learning community
is to swap the conventional feedforward NN with recurrent NN (RNN), specifically here we use
the LSTM model [54]. RNNs learn to extrapolate hidden state variables from the time-history of
states. Here it is straightforward to see how velocities may be approximated from a time-history
of positions. However, RNNs are notoriously harder to train [55]. The RNN agent does learn to
accurately land at xT , but it requires more iterations to find the correct perching angle θT or reach
the time-cost of an agent with full observability.

Most RL algorithms are designed to tackle video-games or simulated robotics benchmarks. These
problems challenge RL methods with sparse rewards and hard exploration. Conversely, RACER was
designed for problems modeled by PDEs or ODEs with the objective of obtaining precise optimal
control policies with the potential downside of reduced exploration. In fact, RACER relies on the
agent having an informative reward function (as opposed to a sparse signal). In Fig. 10 we show
the learning progress for three state-of-the-art RL algorithms. RACER manages to reliably land in the
proximity of xG, after the first 1000 observed trajectories. The precision of the distribution of landing
locations, obtained here by sampling the stochastic policy during training, can be increased when
evaluating a trained policy by choosing deterministically at every turn the action corresponding to its
mean m(s) (as in Fig. 7). Normalized advantage function (NAF) [56] is an off-policy value-iteration
algorithm which learns a quadratic parametrization of the action value Qθ (s, a), similar to the one
defined in Eq. (16). One of the main differences with respect to RACER is that the mean mθ (s) of the
policy is not trained with the policy gradient [Eq. (17)] but with the critic gradient [Eq. (19)]. While
the accuracy of the parametrized Qθ (s, a) might increase during training, mθ (s) does not necessarily
correspond to better action, leading to the erratic distribution of landing positions in Fig. 10.
Proximal policy optimization (PPO) [57] is an on-policy actor-critic algorithm. This algorithm’s
main difference with respect to RACER is that only the most recent (on-policy) trajectories are used
to update the policy. This allows estimating Qπ (s, a) directly from on-policy rewards [58] rather
than with an off-policy estimator (here we used retrace 18), and it bypasses the need for learning
a parametric Qθ (s, a). While PPO has led to many state-of-the-art results in benchmark test cases,
here it does not succeed to center the distribution of landing positions around xG. This could be
attributed to the high variance of the on-policy estimator for Qπ (s, a).

VII. CONCLUSIONS

We have demonstrated that reinforcement learning can be used to develop gliding agents that
execute complex and precise control patterns using a simple model of the controlled gravity-driven
descent of an elliptical object. We show that RL agents learn a variety of optimal flight patterns and
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perching maneuvers that minimize either time-to-target or energy cost. The RL agents were able
to match and even surpass the performance of trajectories found through Optimal Control. We also
show that the the RL agents can generalize their behavior, allowing them to select adequate actions
even after perturbing the system. Finally, we examined the effects of the ellipse’s density and aspect
ratio to find that the optimal policies lead to either bounding flight or tumbling flight. Bounding
flight is characterized as alternating phases of gliding with a small angle of attack and rapid rotation
to generate lift. Tumbling flight is characterized by continual rotation, propelled by a minimal almost
constant torque. Ongoing work aims to extend the present algorithms to three dimensional Direct
Numerical Simulations of gliders and using lessons learned from these simulations for the perching
and gliding of UAVs.
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