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Soft elastic filaments that can be stretched, bent, and twisted exhibit a range of topologically and
geometrically complex morphologies. Recently, a number of experiments have shown how to use these
building blocks to create filament-based artificial muscles that use the conversion of writhe to extension or
contraction, exposing the connection between topology, geometry, and mechanics. Here, we combine
numerical simulations of soft elastic filaments that account for geometric nonlinearities and self-contact to
map out the basic structures underlying artificial muscle fibers in a phase diagram that is a function of the
extension and twist density. We then use ideas from computational topology to track the interconversion of
link, twist, and writhe in these geometrically complex physical structures to explain the physical principles
underlying artificial muscle fibers and provide guidelines for their design.
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The bending and twisting elastic response of soft fila-
mentous objects is a consequence of the separation of scales
inherent in their slender geometries. This realization is at the
heart of the classical Kirchhoff-Love theory [1,2], which
considers inextensible, unshearable filaments and has
spawned substantial literature [3,4]. When such filaments
are twisted strongly, they deform into plectonemic struc-
tures that consist of self-braided segments and which have
been observed across scales, fromDNA tometal wires [5,6].
The transition between the straight and plectonemic struc-
tures in inextensible filaments has been explored exten-
sively in both a deterministic and a stochastic setting [7–10]
and continues to be a topic of interest. However, filaments
made of soft elastomeric materials are also easily extensible
and shearable, and their study is interesting for a range of
applications such as biological tissue mechanics, soft
robotics, etc [11]. Among the simplest behaviors that
harnesses these modes of deformation is the controlled
transition between straight filaments and tightly coiled
helical shapes (solenoids) originally observed in textiles
[12], quantified experimentally in elastomers [13], and then
rediscovered in the context of heat-driven artificial muscles
[14]. These energy-harvesting devices rely on the conver-
sion of twist and bend into extension [15–17], as solenoids
untwist and stretch. Here we consider the interplay between
topology, geometry, and mechanics in strongly stretched
and twisted filaments and their functional consequences.
We describe a filament by a centerline position vector

x̄ ðs; tÞ ∈ R3 (s ∈ ½0; L0$ is the material coordinate of the

rod of rest length L0 at time t), while the orientation of its
cross section is defined by an initially orthonormal triad
associated with the director vectors d̄ iðs; tÞ; i ¼ 1, 2, 3,
where d̄3ðs; tÞ is normal to the material cross section of the
filament. Then, the transformation of the body-fixed frame
(quantities without overbar) to the lab-fixed frame (quan-
tities with overbar) can be written in terms of the rotation
matrix Qðs; tÞ ¼ fd̄1; d̄2; d̄3g−1 [see Fig. 1(a)].
In general, the centerline tangent ∂sx̄ ¼ x̄ s does not point

along the normal to the cross section d̄3ðs; tÞ. The deviation
between these vectors characterizes local extension and
shear σ ¼ Qðx̄ s − d̄3Þ ¼ Qx̄ s − d3 [Fig. 1(a)] and is the
basis of the Cosserat rod theory [3] that allows us to include
all six modes of deformation at every cross section
[mathematically, this is associated with the dynamics on
the full Euclidean group SE(3)]. The restriction to the
Kirchhoff theory corresponds to the case σ ¼ 0; i.e.,
the normal to the cross section is also the tangent to the
centerline, with x̄ s − d3 ¼ 0.
Since many soft materials are close to being incompress-

ible (i.e., the shear modulus is much smaller than the
bulk modulus), filaments made of such materials will
also be incompressible. Then, if e¼ jx̄ sj is the local
elongation factor and A is the local cross-sectional area,
Ae is constant locally. Accounting for this nonlinear con-
straint along with a simple materially linear constitutive law
provides is a reasonable approximation to both neo-
Hookean and Mooney-Rivlin materials (see Ref. [18] and
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the Supplemental Material [19] for model validation and
more details about the physical model and numerical
scheme, and Refs. [25–27] for alternative approaches).
Then, we may write the linear and angular momentum

balance equations as [3,4,18]

ρA · ∂2
t x̄ ¼ ∂s

!
QTSσ
e

"
þ ef̄

ρI
e
· ∂tω ¼ ∂s

!
Bk
e3

"
þ k × Bk

e3
þ
!
Q
x̄ s
e
× Sσ

"

þ
!
ρI ·

ω
e

"
× ωþ ρIω

e2
· ∂teþ ec;

where ρ is the material density, ω̄ ¼ vecð∂tQTQÞ is the
local angular velocity, k̄ ¼ vecð∂sQTQÞ is the local strain
vector (of curvatures and twist), S is the matrix of shearing
and extensional rigidities, B is the matrix of bending and
twisting rigidities, and f , c are the body force density and
external couple density (see the Supplemental Material [19]
or Ref. [18] for details).

To follow the geometrically nonlinear deformations of
the filament described by the equations above, we employ a
recent simulation framework [18], wherein the filament is
discretized in to a set of nþ 1 vertices fx̄ igni¼0 connected
by edges ēi ¼ x̄ iþ1 − x̄ i, and a set of n frames fQign−1i¼0 . The
resulting discretized system of equations is integrated using
an overdamped second-order scheme, reducing the
dynamical simulation to a quasistatic process, while
accounting for self-contact forces, internal viscous forces,
and the dynamic modification of the filament geometry and
stiffness (see Supplemental Material [19] and Ref. [18] for
details) while ignoring friction.
To track the knotlike structures that form when the

stretched and twisted filament can contact itself, we take
advantage of the Calugareanu-Fuller-White theorem [28,29]:
Lk ¼ TwþWr. Here, link is the oriented crossing number
(or Gauss linking integral) of the centerline and auxiliary
curve āðsÞ (Fig. 1) averaged over all projection directions
[30], writhe is the link of the centerline with itself [31], and
twist denotes the local rotationof the auxiliary curve about the
centerline tangent. In a discrete setting, we compute writhe,
link, and twist of the filament modeled as an open ribbon
following Ref. [32], as illustrated in Fig. 1 (see the
Supplemental Material [19] for details).
When inextensible filaments are stretched and twisted, a

range of localized and self-contacting structures arise and
have been well studied in both a deterministic and
stochastic setting [9,10,33–36]. For highly stretched and
twisted filaments, the phase space of possibilities is much
richer, and in particular, a new morphological phase
associated with tightly coiled helices (solenoids) appears
[12,13]. To characterize these morphologies, we simulate
twisting a filament clamped at one end and prestretched by
a constant axial load. We first use an axial load ∼25 times
the critical compressive buckling force of a corresponding
inextensible filament FC ¼ ðπ2EIÞ=L2

0. In Fig. 2(a), denot-
ing by a the filament rest configuration radius, we show
that when a critical dimensionless twist density Φa is
reached, the filament becomes unstable to bending, leading
to the formation of a plectoneme, converting twist to
writhe. As the twist is increased further, occasionally the
plectoneme can partially untie itself by slipping a loop over
an end point, allowing the link to escape the system (see
Fig. S3 in the Supplemental Material [19]). In Fig. 2(b), we
repeat the simulation but quadruple the stretching strain and
see that at a critical value of Φa, the filament again
becomes unstable to bending but now leads to a qualita-
tively different equilibrium configuration: a tightly coiled
helical solenoid. We note that substantial prestretch is the
crucial prerequisite for solenoid formation, while shearing
is found to be unimportant (see Supplemental Material [19]
for details). While both plectonemes and solenoids convert
twist to writhe in steps, they are otherwise quite different.
Plectonemes lead to braids made of oppositely chiral
helices, while solenoids lead to a single compact helix.

(b)

(a)

(c)

FIG. 1. Geometry and topology of soft extensible filaments.
(a) The filament centerline x̄ ðs; tÞ and local orthogonal frame
fd̄1; d̄2; d̄3g. Shear and extension are defined by the vector
σ ¼ Qx̄ s − d3, while curvature and twist are defined by the
vector k ¼ vecðQ0QTÞ. (b) Writhe (Wr) equals the centerline’s
average oriented self-crossing number computed in terms of the
integral of the solid angle dΩ determined by the infinitesimal
centerline segments x̄ ðs1Þ and x̄ ðs2Þ (left-handed intersections are
negative). (c) Twist (Tw) is the integral of the infinitesimal
rotations dφ of the auxiliary curve ā around x̄ s. Here, the vector ā
traced out by d̄⊥1 (i.e., the projection of d̄1 onto the normal-
binormal plane) is shown in red while the curve associated with
−d̄1 is shown in yellow (see Fig. 2). For a closed curve
Lk ¼ TwþWr, where Lk (link) is the average oriented crossing
number of x̄ ðsÞ with āðsÞ.
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Furthermore, a plectoneme loop converts much more twist
to writhe than a solenoid does as it coils up (Fig. 2).
However, the tightly coiled nature of the solenoidal coil
makes it more stable under stretching.
We now turn to explain the experimental observations

and morphological phase diagram that span the twist
density-extensional strain ðΦaÞ − ðL=L0Þ phase space
[13] (L is the stretched filament length). Using randomly
sampled twist densities and extensions in this phase space,
we classify each resulting configuration on the spectrum
from plectoneme to solenoid using the average relative
alignment of tangent vectors at filament segments which
are adjoining in absolute coordinates but separated in
material coordinates, i.e., avgni¼1½sgnðēi · ēk Þ$, where k ¼
argminðjx̄ k − x̄ ijÞ subject to jk − ij > ð5na=L0Þ and
jx̄ k − x̄ ijð2þ ϵÞa, with ϵ ¼ 0.2 (empirically determined
to maximize classification accuracy). Plectoneme loops
involve two strands entwined in antiparallel directions
(alignment → −1), while segments of adjacent solenoid
loops tend to lie parallel (alignment → 1), and straight
segments do not contribute to the average. In Fig. 3 we

show four qualitatively different filament configurations:
rectilinear, plectoneme, solenoid, and a mixed state with
features of both plectonemes and solenoids. Indeed, the
distinction between solenoid and plectoneme becomes
blurred near the triple point. These simulations agree
qualitatively with experimental observations [13], as illus-
trated in Fig. 3; the small quantitative discrepancy between
experiments and simulations is likely due to our neglect of
friction. It is worth pointing out that the region of solenoid-
plectoneme coexistence can be expanded by having an
active agent (for example, a DNA-binding enzyme) capable
of either relaxing the internal axial tension and/or inducing
excess twist in the filament locally. This allows for the
formation of a plectoneme in the compressed segment, after
which, upon further twisting, a solenoid forms below the
lifted point (Supplemental Material [19] and Fig. S9), with
similarities to loop formation in chromosomes [38–40].
Our results also explain earlier observations [12] that

describe straight-plectoneme-solenoid transitions in terms
of varying twist density and correspond to tracing hori-
zontal and diagonal paths through the present extension-
twist density phase diagram (see Supplemental Material
[19]). Indeed, horizontally exiting the solenoid region in
Fig. 3 to the right, by gradually displacing the lower
solenoid end point away from the top leads to a steplike

FIG. 3. Morphological phase space. We simulate a filament
prestretched to L=L0 by a constant axial load and twisted by an
angle Φa, as in Fig. 2. By computing centerline relative align-
ment in neighboring loops, we find four phases: straight,
plectoneme, solenoid, and plectoneme-solenoid combinations.
Plectoneme alignment ≈ − 1, solenoid alignment ≈1, and tran-
sition configuration alignments approach 0 (dark green). For
L=L0 ≳ 1.1, solenoids are preferred. We expect Φcritical to scale
linearly with L=L0 at high extension, in agreement with this
plot. Our results agree qualitatively with experiments [13] (shown
in black dots; see Supplemental Material [19] for details). Hollow
symbols denote plectoneme transitions, while solid points
denote solenoid transitions; different shapes correspond to differ-
ent filament parameters (Supplemental Material [19]). Simulation
settings (Supplemental Material [19]): L0 ¼ 1 m, a ¼ 0.025L0,
E ¼ 1 MPa, G ¼ 2E=3, S¼diagð4GA=3;4GA=3;EAÞN, B ¼
diagðEI1; EI2; GI3Þ Nm2.

FIG. 2. Variation of the link, twist, and writhe as a function of
the dimensionless twist density Φa (a is the filament radius in the
rest configuration). (a) To replicate the experimental observations
in Ref. [13], we use a constant vertical load F ≈ 25FC to produce
a plectoneme (FC ¼ π2EI=L2

0 is the buckling force for an
inextensible rod; see Video S1 in the Supplemental Material
[19] and Ref. [37]). (b) We repeat the simulation with F ≈ 90FC,
stretching the filament to deformed length L ≈ 1.16L0. Increased
stretching leads to an overall similar conversion of twist to writhe
leading to tightly packed solenoidal structures (see Video S2
and the Supplemental Material [19] for plots of filament energy).
Simulation settings (see Supplemental Material [19]): length
L0 ¼ 1 m, a ¼ 0.025L0, Young’s modulus E ¼ 1 MPa, shear
modulus G ¼ 2E=3, S ¼ diagð4GA=3; 4GA=3; EAÞ N, B ¼
diagðEI1; EI2; GI3Þ Nm2.
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solenoid loss process. We track the required force and
resulting change in writhe [Fig. 4(a)]. The solenoid remains
mostly coiled, resisting stretching with a linear-force-
displacement relation, until a critical displacement at which
it uncoils by one pitch and the process starts again. This
stepwise uncoiling stems from a kinematic competition
similar to solenoid formation: stretching the filament
increases the energy required to maintain a constant
number of coils. The simulated sawtooth-force-displace-
ment pattern agrees qualitatively with experiments [13].
Finally, we use our results to quantitatively explain a

series of recent experiments on twisted-fiber-based artifi-
cial muscles [14,41–43] that exploit the connection
between twist, writhe, and link. The fundamental mecha-
nism in each of these studies is associated with the
formation of solenoids that this leads to an increase in
writhe, causing the filament to shorten and do work against
external loads. In the twisted-fiber-based artificial muscles,
the externally induced twist is replaced by the use of a
scalar field, temperature, that drives variations in the radius
and stiffness of a pretwisted filament and causes it to
untwist, producing an increase in writhe.
In Fig. 4(b), we simulate this in a minimal setting by

showing the effects of (temperature-induced) increase in
the elastic modulus of a prestretched, twisted, and loaded
filament. To increase writhe, the solenoidal state progres-
sively invades the straight state, lifting its lower end point
toward the clamped end, qualitatively reproducing exper-
imental observations of the linear actuator [14]. The sheath-
run artificial muscles [41] work similarly by relying on the

conversion of untwist to writhe, while the strain-program-
mable artificial muscles [42] generate a tensile stroke via
temperature-induced differential expansion in a bilayer that
is tantamount to changing the natural curvature of a
filament dynamically. Finally, the torsional actuator [43]
generates torque by inserting twist into a filament and then
quickly lowering the filament’s intrinsic twist until it
vanishes. Rather than replicate all the different variants
of the fiber-based artificial muscles, here we limit ourselves
to just two simple cases: the linear actuator [14] and the
rotary or torsional actuator [43].
To capture the mechanics of the linear actuator, we

initialize a filament with intrinsic twist and numerically
anneal the filament into a uniform coil with space between
adjacent loops, replicating the plastic deformation process
by which twisted and coiled polymer muscles are formed.
The fibers used in Ref. [14] expand radially and contract
axially when heated; however, as noted quantitatively in
Ref. [44], considering radial growth with fixed fiber length
is sufficient. While our model applies to an isotropic
filament, we can simulate anisotropic expansion-driven
untwist by following the mechanical analogy in Ref. [14].
Imagine winding an inextensible string around a fiber,
attaching it on both fiber ends. To keep the length of the
string constant, the fiber would have to untwist to expand.
Mathematically, this requires ak 3 to stay constant. Hence,
we prescribe a radial growth rate and continuously update
the intrinsic twist k̂ 3 to keep ak̂ 3 constant [45]. For a
homochiral coil, the resulting untwist leads to contraction
(Fig. 4), but in a heterochiral coil, untwisting leads to

FIG. 4. Actuation of fiber-based artificial muscles that use the straight-solenoid transition. (a) Passive extension via solenoid loss. We
displace the unclamped end x̄ n of a solenoid formedas inFig. 3with a load≈99FC a distanceΔU in the direction x̄ n − x̄ 0 and plot force on x̄ n
qualitatively reproducing experiments [13] (inset; see Video S13 in the Supplemental Material [19]). Simulation settings (Supplemental
Material): L0 ¼ 1 m, a ¼ 0.025L0, E ¼ 1 MPa, G ¼ 2E=3, S ¼ diagð4GA=3; 4GA=3; EAÞ N, B ¼ diagðEI1; EI2; GI3Þ Nm2.
(b) Active work done by changing the temperature, which effectively increases filament rigidity, here simply modeled by increasing
theYoung’smodulusE of thematerial. This leads to the formation of a solenoidal loop in a stretched twisted filament as in Fig. 3with a load
≈116 FC as E0 increases gradually from 1 MPa, showing displacement ΔU of x̄ n and increase in writhe ΔWr from initial coil writhe,
reproducing experiments [14] (inset; see Video S3 in the Supplemental Material [19]). (c) Contraction of twisted and coiled nylon polymer
muscle formed by inserting twist and annealing into a helix. Filament radius doubles from initial radius a0 ¼ 0.01 m, while twist decreases
to keep ak 3 constant. Numerical slope and onset of self-contact (shown as a point) agree closely with experimental results [14]
(see Supplemental Material [19] for details). Beyond self-contact, radial growth pushes adjacent loops farther apart leading to helix
elongation. Note thatΔTwþ ΔWr < 0 in the inset. Indeed, link escapes from the free boundary due to revolution of the free filament end
point around the helix axis, reducing the number of loops in the helix (see Supplemental Material [19] Fig. S7 and Videos S4 and S5).
Simulation settings (Supplemental Material [19]): L0 ¼ 1 m, a ¼ 0.025L0, E ¼ 30 GPa,G ¼ 2E=3, S ¼ diagð4GA=3; 4GA=3; EAÞ N,
B ¼ diagðEI1; EI2; GI3Þ Nm2. Note that pitch P, α ¼ 100, number of loops, and helix radius determine L0.
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elongation (Supplemental Material [19] Fig. S8 and Videos
S6 and S7). In Fig. 4(c), we show the change in Wr and
contraction for a simulated coil with initial nonzero twist
density. The coils contract at the same scaled rate as
experiments until adjacent loops come into contact (see
Supplemental Material [19] for details of varying P=a0). To
capture the mechanics of the rotary actuator [43], we
initialize the filament with intrinsic twist which is then
rapidly decreased to mimic the effect of annealing via
heating leading to rotary motion (see Supplemental
Material [19] Sec. S7, Video S14).
Altogether, our study links topology, geometry, and

mechanics to explain the complex morphology of soft,
strongly stretched, twisted filaments, Additionally, we
showed how twist, link and writhe can be interconverted
via either external loads or temperature variations, thus
allowing us to quantify recent experiments on artificial
muscle fibers, setting the stage for the study of complex
braided, knotted, and twisted filament configurations in a
range of new settings.
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Supporting Information for “Topology, geometry and mechanics of strongly stretched
and twisted filaments” by N. Charles, M. Gazzola and L. Mahadevan

S1. SIMULATION METHOD

A. Mathematical Model

We model our filament using the Cosserat rod theory [1] and follow a similar notation to [2] and [3]. In this context,
we describe the filament by a centerline x̄(s, t) 2 R3 and rotation matrix Q(s, t) 2 SO(3) which relates the local di

and global frames d̄i via di = Qd̄i where Q(s, t) = {d̄1, d̄2, d̄3}�1. We define s 2 [0, L0] as the material coordinate of
our (unstretched) length L0 rod and t as time. We denote the stretched filament length by L. Vectors expressed in
the global frame are denoted by bars.

If the rod is unsheared, d̄3 points along the centerline tangent x̄s while d̄1 and d̄2 span the normal-binormal plane.
Shearing and extension shift d̄3 away from x̄s, which we quantify with the shear vector � = Q(x̄s � d̄3) = Qx̄s � d3

in the local frame.
The curvature (and twist) vector k̄ = vec(@sQ

TQ) encodes Q’s rotation rate along the material coordinate @sd̄i =
k̄ ⇥ d̄i, while the temporal rate of change of the rotation matrix characterizes the angular velocity vector !̄ =
vec(@tQ

TQ) and allows us to write @td̄j = !̄ ⇥ d̄j , where vec(M) denotes the vector corresponding to a skew-
symmetric matrix M . Note that the following identities hold for rotation matrices:

Q (@tx̄) = @tx+ ! ⇥ x Q (@sx̄) = @sx+ k ⇥ x

We also define the velocity of the centerline v̄ = @tx̄ and, in the rest configuration, the bending sti↵ness matrix B,
shearing sti↵ness matrix S, inertia matrix I, cross-sectional area A, and mass per unit length ⇢.

Having characterized the kinematics of the geometry and motion of the filament, we turn to characterizing the
dynamics of the filament. We assume that the filament is circular with a second area moment of inertia I, cross-
sectional area A and mass per unit length ⇢.

We assume the material of the soft filament is incompressible, so that Ae is constant, where e = |x̄s| is the elongation
factor. This allows us to use a simple materially linear constitutive law that is a good compromise between neo-Hookean
and Mooney-Rivlin (see section S1C for validation, and a discussion of the role of irreversible deformations in the
context of experiments).

In particular, the (cross-sectionally integrated) stress resultant F and moment resultant M are proportional to the
curvature and shear vectors, i.e. F = (S/e)�,M = (B/e

2)(k/e) where the shearing (and stretching) sti↵ness matrix
S and bending (and twisting) sti↵ness matrix B are scaled by the filament’s local extension, and k is scaled by e to
obtain curvature with respect to deformed arclength.

Referring to [2], we obtain the equations:

@tx̄ =v̄ (S1)

@td̄j =
⇣
QT!

⌘
⇥ d̄j (S2)

⇢A · @2
t x̄ =@s
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e
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e2
· @te+ ec� ⌫r! (S4)

where e = |x̄s|, f is the external force line density, c is the external couple line density, ⇢A is the mass line density,
⇢I is the mass second moment of inertia per unit length, and j 2 {1, 2, 3}. We have also explicitly included external
damping terms �⌫tv and �⌫r!, following [2]. For all simulations in this letter, we set ⌫t = ⌫r ⌘ � and vary � between
simulations. We modify the equations of [2] by adding internal damping (see section S3).

Consistent with our stress-strain relations, we take energies to be quadratic in displacements from the filament rest
configuration, again noting that sti↵ness depend on local strain. Referring to [2], the shear and stretch (ES), bending
and twist (EB), translational (ET ) and rotational (ER) energies are:

ES =
1

2

Z L0

0

�TS�

e
ds (S5)
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EB =
1
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Z L0

0

kTBk

e3
ds (S6)

ET =
1

2

Z L0

0
⇢Av̄T · v̄ds (S7)

ER =
1

2

Z L0

0

⇢!T I!

e
ds (S8)

To separate ES into the components coming from shear and stretch (which is required to generate Fig. S1, S8b,
S7b and S6b), we note that �3 encodes stretch, while �1 and �2 capture shear along d1 and d2, respectively. Thus for

diagonal shear/stretch matrices Estretch = 1
2

R L0

0
(�3)

2S33

e ds where S33 is the (d3,d3) component of S. ES�Estretch =

Eshear. Similarly, for diagonal bending/twist matrices Etwist = 1
2

R L0

0
(k3)

2B33

e3 ds and Ebending = EB � Etwist. In
Fig. S1 and S2 we show evolution of energy over twist density corresponding to the geometric changes shown in Fig. 2
and 4b of the main text.

FIG. S1: Twisting and total internal energy of a filament and total internal energy of an equivalently twisted and stretched
straight filament over dimensionless twist density �a of an equivalently twisted and stretched straight filament. (a) corresponds
to Fig. 2a and (b) to Fig. 2b. Energies (V ) are plotted relative to VTC = B33(2⇡Rcrit)

2/2, the maximal twisting energy before
deformation of an equivalent straight inextensible rod under a tensile force F = 125 N ⇡ 41FC . Here R2

crit = B11(B11⇡
2 +

FL2

0)/(B
2

33⇡
2), B33 is twisting sti↵ness, and B11 is bending sti↵ness [4, 5]. Jumps in internal and twisting energy correspond

to the formation of loops. Notice in (b) that stretching energy contributes nontrivially to the total filament energy, rea�rming
that increased stretching leads to a qualitatively di↵erent energy balancing scenario than plectoneme formation. See Movies
S1, S2.

B. Numerical Method

To implement the physical model numerically, we follow the spatial and temporal discretization schemes of [2] and
[3]. We describe the filament centerline via n+1 vertices {x̄i}ni=0 connected by n edges {ēi}n�1

i=0 where ēi = x̄i+1� x̄i.
The matrices {Qi}n�1

i=0 describe the local frames associated with the edges. Translational velocities v̄i and rotational
velocities !i give the time derivatives of x̄i and Qi respectively. Pointwise concentrated masses at each vertex are
denoted by mi, and F i give external forces on each vertex. Quantities associated with the vertices are described by
lower indices, and quantities associated with the edges by upper indices.

Discrete curvatures are defined as the rotation needed to move from one frame to the next: e
kidiQi = Qi+1,

or equivalently ki =
log

⇣
Qi+1QiT

⌘

di
, where di = 1

2 (l
i + l

i+1) is the Voronoi domain associated with a vertex, and

l
i = |ēi|. Discrete shears are �i = Qix̄i

s � di
3, where x̄i

s = ēi/|ēi0| and ēi0 is ēi evaluated when the filament is at rest.
The matrix exponential and logarithm can be computed with the Rodriguez rotation formulas [2, 6]. In summary,
quantities associated with each vertex are: x̄i, v̄i, mi and F̄ i. Quantities associated with material frames (hence
edges) are: Qi, ēi, li, x̄i

s, e
i = |x̄i

s|, �i, !i, Ai, J i, Bi, Si, Ci, where area cross-section, inertial moments, and
sti↵ness matrices are defined as in the continuum model, and Ci is the external couple. Quantities associated with
internal vertices ({x̄}n�1

i=1 = {x̄(int)}n�2
i=0 ) are: di, Ei, ki, Bi, where Ei is the Voronoi domain dilatation factor and Bi

is the Voronoi domain bending/twist sti↵ness matrix (see [2]). These quantities allow the governing equations to be
discretized:

@tx̄i =v̄i (S9)
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FIG. S2: Active actuation of solenoidal artificial muscle. We reproduce Fig. 4b from the main text, now showing writhe,
twist, and displacement of the bottom filament endpoint toward the top as we gradually increase Young’s modulus (over a
larger domain than that shown in Fig. 4b). Changes in writhe and twist are equal and opposite in accordance with the CFW
theorem. As the solenoid approaches the maximum coil density allowed without self-intersection, it ceases to form new loops
and increases writhe by tightening existing loops. As the solenoid continues approaching maximum coil density, tightening
existing loops becomes more di�cult, leading to slowed contraction in agreement with experiment [7] (see inset). We naively
overlay our simulated data for comparison. The bumps in our simulated data come from new loops forming. This phenomenon
is not seen in [7] since the coil is annealed before sti↵ening in [7]. See Movie S3.
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where i 2 {0, ..., n}, k 2 {0, ..., n� 1}, and j 2 {1, 2, 3}. We define the discrete operators �h and Ah by:

Yi=0,... ,n = �h(Xk=0,... ,n�1) =

8
><

>:

X0, i = 0

Xi �Xi�1, 0 < i  n� 1

�Xn�1, i = n

Yi=0,... ,n = Ah(Xk=0,... ,n�1) =

8
><

>:

X0
2 , i = 0
Xi+Xi�1

2 , 0 < i  n� 1
Xn�1

2 , i = n

We then integrate the system forward in time using a second order position Verlet time integration scheme. Ex-
plicitly, the algorithm is
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✓
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2
v̄j (S13)
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v̄j(t+ �t) =v̄j(t) + �t · dv̄j
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x̄j(t+ �t) =x̄j
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·Qi (t+ �t) (S18)

where j 2 [0, n] and i 2 [0, n� 1]. Discrete energies are given in [2].
For more information about the physical model and simulation scheme used, see [2].

C. Stress-strain Relation Validation and Plasticity

We compare the maximum local strains exhibited in our simulations to experimentally determined and theoretically
modeled stress-strain curves for materials with a comparable Young’s modulus to the one used in simulation. For all
simulations except those used in Fig. S7, S4, S5 and Fig. 4c of the main text, we set Young’s modulus to 1 MPa,
so we compare the maximum strains of those simulations to the stress-strain curves of rubber. The authors of [8, 9]
show that uniaxial extension is reversible to at least 350% strain, well above the maximum local strain obtained by
any simulation with E = 106 MPa. Since our simulations lie in the purely elastic regime, we validate our model by
comparison to Neo-Hookean and Mooney-Rivlin hyperelastic models. Referring to Appendix B of [2], our model’s
stress-strain relations fall between Neo-Hookean and Mooney-Rivlin models and remain close to both through 130%
strain, the highest achieved by any rubber simulation used in the main text (Fig. S3).

We report maximum values for two types of strain in all rubber simulations: the local extension of one hemisphere
of adjoining cross-sections due to bending and stretching, and the pure extension of the centerline due to stretching.
We compute the former via ✏local = e� 1 + eã

p
k21 + k22, where ✏local is the extension of one side of a set of adjacent

cross-sections, e is the local dilatation, ã is the deformed filament radius and ki is the ith component of the curvature
vector in the material frame and with respect to the deformed arc-length.

Using this metric, we find following maximum values of |✏local| and e� 1:

TABLE S1: Max strain values (rubber simulations)

Simulations |✏local| e� 1

Fig. 2,3 (plectonemes) 1.15 0.23

Fig. 2,3 (solenoids) 1.29 0.25

Fig. 4a 1.19 0.25

Fig. 4b 1.20 0.23

Fig. S7 2.10 0.41

Fig. S6 1.57 0.31

We note that Fig. S6 and S7 have a maximum |✏local| greater than 130%, but for Fig. S7 we use a smaller E, so
the comparison to rubber is less meaningful; we include this simulation to show that stretch, rather than shear, is
critical for solenoid formation. Similarly, we include Fig S6 simply to demonstrate the qualitative e↵ects of boundary
conditions on solenoid formation.

Since the maximum extension and local strain due to bending and stretching are both within the regime of re-
versible pure elasticity and our model gives stress-strain relations comparable to a combination of Mooney-Rivlin
and Neo-Hookean hyperelastic models, we conclude that our model is su�cient for full qualitative and even accurate
quantitative comparisons of the rubber simulations and experiments discussed here.

To simulate nylon, we use E = 30 GPa [10, 11] and try modeling nylon with and without plasticity [19]. To replicate
plasticity, we allow Young’s modulus to depend on strain. Following the stress-strain curves of [10, 11], we irreversibly
reduce the local Young’s modulus (for a discretized rod the local Young’s modulus a↵ects the stretch/shear matrix
over a single edge and bending/twist matrix over a single internal node Voronoi domain) by 90% when the local
extension of one hemisphere of adjoining cross-sections due to bending and stretching (defined below) exceeds 0.15.
We show the results of simulating twisted and coiled polymer muscles without plasticity (Fig. 4b of main text) and
with plasticity (Fig. S4). Since there is little quantitative di↵erence between the two simulations, we neglect plasticity
in the main text, leading to a simpler model. Note that in both of these simulations, the filament is annealed into a
helical rest configuration early in the numerical experiment. Plasticity irreversibly and uniformly changes the Young’s
modulus of the entire filament as it is bent before annealing. However, after annealing the maximum strains due to
bending and stretching (0.041, measured with respect to the new helical rest configuration of the filament) remain
well below the plasticity threshold of 0.15.
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FIG. S3: Axial stretch comparison with Neo-Hookean and Mooney-Rivlin models [2]. Stress-strain curves as predicted by
our model and hyperelastic Mooney-Rivlin and Neo-Hookean models. Stress-strain curves are predicted using FNeo-Hookean =
2C10A

�
e� 1

e2

�
, FM-R = A

e

�
2C10

�
e2 � 1

e

�
+ 2C01

�
e2 � 1

e

�
1

e

�
and our model gives F = A

e E (e� 1). We use C10 = E/6 for the
Neo-Hookean model and C10 = C01 = E/12 for Mooney-Rivlin, with E here denoting the low-strain Young’s modulus. We
take A = ⇡ · 0.0252, since a = 0.025 for most rubber simulations.

S2. KNOT THEORY CALCULATIONS

We model the filament as an open ribbon. We define our ribbon by the curve x̄(s) and normal vectors d̄
?
1 (s) (i.e.

d̄1(s) projected onto the normal-binormal plane of x̄s). We define an auxiliary curve ā(s) as the path traced out by

d̄
?
1 (s) once d̄

?
1 (s) is translated pointwise by x̄(s) and normalized to the filament radius a. ā(s) is shown in red in

simulated filament images (the corresponding curve associated with �d̄1 is shown in yellow).
To compute link, writhe and twist of the ribbon we draw on methods from [12]. To compute writhe and link, we

apply “Method 1a” from [12]. Since writhe is the link of a curve with itself, we will describe here only the computation
of link.

We append to the centerline two edges: one extending from x̄0 to x̄0 + ↵L0d and another from x̄n to x̄n � ↵L0d,
where ↵ � 1 and d is a roughly axial direction pointing from the bottom toward the top of the filament. For all
rubber simulations (Fig. 2, 4a, 4b, S2, S8, S7, S6) we use d = x̄0�x̄n

|x̄0�x̄n| , and for nylon simulations (Fig. 4c, S4, S5)

we use d = mc,top�mc,bot

|mc,top�mc,bot| , where mc,top is the pointwise average (in this case agreeing with the center of mass) of

node coordinates {x̄i}b(n�1)/2c
i=0 and mc,bot is the center of mass of node coordinates {x̄i}ni=d(n�1)/2e. We use ↵ = 10,

empirically determined as su�ciently large to make trivial any discrepancy in the CFW theorem coming from the
centerline and auxiliary curves’ open ends. We also append a similar pair of two edges to the auxiliary curve ā(s),
extending axially away from each end of the auxiliary curve a distance ↵L0. We henceforth use x̄(s) and ā(s) to refer
to the curves including these additional edges.

We compute the link between all individual pairs of edges (ēi, ēj), where ēi is taken from x̄(s) and ēj from ā(s).
We sum the contributions from all pairs to obtain the total link between x̄(s) and ā(s):

Lk =
n+1X

i=0

n+1X

j=0

Lk(ēi, ēj) (S19)
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Note that the sum runs over n+ 2 edges in each curve, corresponding to n physical edges and two additional edges.
We define Lk(ēi, ēj) =

1
4⇡⌦i,j =

1
4⇡ ✏i,j⌦

⇤
i,j , where ✏i,j = ±1. ⌦⇤

i,j is the solid angle of view directions from which ēi
and ēj appear to intersect, with ēi closer to the viewpoint. We can compute this solid angle consistently by looking
at the four rays emanating from the endpoints of ēj and passing through the endpoints of ēi. We take four new rays
which originate at the center of our unit sphere and are parallel to the aforementioned rays. The intersection points
of these four new rays with the unit sphere form the apexes of the desired solid angle. If the oriented edges ēi and ēj
appear to form a right-handed intersection ✏i,j = 1; otherwise ✏i,j = �1. See Method 1a in [12] for details.

Since writhe is the link of the filament centerline with itself, we evaluate writhe using the same method as link,
summing over all pairs (ēi, ēj) where now both segments come from x̄(s). Note that writhe is multiplied by an implicit
factor of 2 compared with link, coming from summing (or in smooth curves, integrating) over the same curve twice.

To compute twist, we adapt techniques from “Method 2a” in [12]. Note that the additional unphysical edges used
to compute link and writhe are irrelevant to computation of twist. Thus we revert back to using ā(s) and x̄(s) to
refer to the physical centerline and auxiliary curves (i.e. without any additional edges).

We associate to each vertex x̄i the vector āi = ā(s = L0i/n)� x̄i. For i 2 1, ..., n, we define āi as d̄
i�1
1 projected

onto the plane perpendicular to ēi�1 and normalized to have length equal to the filament radius a. We define ā0

as d̄
0
1 projected onto the plane perpendicular to ē0 and normalized to a. For each pair of sequential normal vectors

(āi, āi+1) we compute the angle of rotation needed to rotate āi into āi+1. For each pair, this rotation has two steps:
one rotation around ēi�1 (the edge perpendicular to āi) and another rotation around ēi (the edge perpendicular to
āi+1). Note that ā0 = ā1, so this pair does not contribute to the total twist.

To compute these two rotations for each pair of vectors, we define a new set of vectors p̄i such that p̄i is the unique
vector of length a in the direction ēi�1⇥ ēi. If ēi�1 and ēi are parallel, we can take p̄i in an arbitrary direction. Note
that we define one vector p̄i for each interior vertex. Then we can compute the minimal rotation ↵i about ēi�1 needed
to transform āi into p̄i and the minimal rotation �i about ēi needed to transform p̄i into āi+1. The contribution to
the total twist coming from the pair (āi, āi+1) is ↵i+ �i. Finally, we sum these individual contributions to obtain the
total twist

Tw =
1

2⇡

n�1X

i=1

(↵i + �i) (S20)

Note that this method assumes all individual contributions 1
2⇡ (↵i + �i) 2 [�1/2, 1/2]. See [12] for details.

Note that the knot theory Calugareanu-Fuller-White (CFW) theorem and the above knot theoretic computation
techniques apply to closed ribbons; we applied them to open filaments and showed that the CFW theorem holds up
to a vanishingly small error. We adjusted the length of the additional edges appended to x̄(s) and ā(s) and found
that the discrepancy in the CFW theorem (i.e. Link - (Wr + Tw)) asymptotes to a small value on the order of
10�6 · Link, as the length of the additional segments becomes large compared to L0. For the simulation shown in
Movie S2 (described in figure 2b of our article) for which we compute link and writhe using additional edges of lengths
⇡10L0 as described above, sup[Lk� (Tw+Wr)] ⇡ 6.4 ·10�5. We conclude that for the deformations considered here,
artificially extending the centerline and auxiliary curve su�ces to allow meaningful application of the CFW theorem.

S3. SIMULATION SETTINGS

For all simulations except that referenced by Fig. S7, S4, S5 and Fig. 4b in the main text, we use:

TABLE S2: Simulation settings (except Fig. S4, S5, S7, S10, 4b main text):

L0 1 m

rest state radius a 0.025L0

Young’s modulus E 1 MPa

shear modulus G 2E/3

shear/stretch matrix S diag(4GA/3, 4GA/3, EA) N

bending/twist matrix B diag(EI1, EI2, GI3) Nm2

discretization elements n 100

mass line density ⇢A 1 kg/m
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TABLE S3: Fig. S7 settings (where di↵erent from above)

Young’s modulus E 0.1 MPa

shear modulus G 2E/3

shear/stretch matrix S diag(500(4GA/3), 500(4GA/3), EA) N

bending/twist matrix B diag(EI1, EI2, GI3) Nm2

Note that in Fig. 4b (main text) and S2, E = 1MPa initially but increases gradually throughout the simulation.
External dissipation constant � and time step �t vary across simulations, as described below.

Note that in Movies S11 and S12 we use the same settings as in table S2 above, except L0 = 1.5m.
See Fig. S10 caption for settings used in torsional actuation simulations.

Nylon simulation parameters (Fig. S4, S5 and Fig. 4b main text)

As described in the main text, we replicate anisotropic expansion-induced untwist by increasing filament rest
configuration radius a while modifying the third component of curvature k3 to keep a · Tw/L = ak3 constant, where
Tw is the integrated twist over the filament and L is filament length.

Note that to manipulate curvature and twist k, we must introduce an intrinsic curvature and twist vector k̂, which
defines the curvature and twist of the filament in its rest configuration. We then follow [2] and replace k with k � k̂
in all governing equations. We then manipulate k̂3 to make ak̂3 constant, producing an elastic torque on the filament
whenever ak3 starts to change. To replicate muscle actuation experiments in Baughman, we use the formula from
Love [4] for contraction of a coil due to untwist:

�U =
L0�Tw

N

where U is coil length, Tw is twist integrated over the filament, and N is number of coil loops. We define �Tw =
Tw � Tw0 to be the change in Tw from its initial value Tw0. Note that for simple coil contraction with no load,
L ⇡ L0 throughout the contraction process. In terms of initial helix radius R0 and initial helix pitch P0, the relative
change in coil length due to change in twist density is

�U

U0
=

✓
4⇡2

R
2
0

P0
+ P0

◆
�Tw

L0

To reproduce Baughman’s actuation experiment, we wish to simulate a coil with a similar value of
⇣

4⇡2R2
0

P0
+ P0

⌘
to

that in Fig. 2 of [7]. Since the coil used in [7] is microscopic, we instead simulate a precisely scaled larger helix and

compare the scaled contraction of our helix to that in [7]. In particular, since
⇣

4⇡2R2
0

P0
+ P0

⌘
= 0.00784 in [7], we

choose a helix with
⇣

4⇡2R2
0

P0
+ P0

⌘
= 0.00784↵ and compare Baughman’s contraction �U/U0 as a function of untwist

�Tw/L0 to our contraction as a function of scaled untwist ↵�Tw/L0 (Fig. 4b of the main text).
In each nylon contraction simulation, we first choose initial and final values of a, and choose P0 > 2a0 to leave

space between adjacent loops. To satisfy
⇣

4⇡2R2
0

P0
+ P0

⌘
= 0.00784↵ we set L0 = N

p
0.00784↵P0. Finally, to satisfy

arc-length conservation for an unstretched helix, we set R0 =
p
L2
0 �N2P 2

0 /(2⇡N). We initialize the filament with a
nonzero intrinsic twist density, and then anneal the filament into the specified helix shape.

To select a P0 which gives a desired untwist density �Tw/L0 before self-contact begins, we consider the changes
in deformed filament radius ã and deformed helix pitch P with respect to untwist �Tw. However, as noted above,
for simple coil contraction there is no extension of the underlying filament to speak of, so we can approximate ã ⇡ a.
Using this approximation, when P = 2a, self-contact begins. To keep ak3 constant, a = a0Tw0

Tw0+�Tw where a0 is
the initial filament rest configuration radius [20]. From Love’s formula relating untwist to coil contraction, we find
P = P0 +

�
4⇡2

R
2
0 + P

2
0

�
�Tw/L0. We assume helix radius R remains approximately constant, so that we can set

R = R0. Setting P = 2a, we find that self-contact begins at

�Twcontact = �
L0P0 + P

2
0 Tw0 + 4⇡2

R
2
0Tw0 �

q
(L0P0 + Tw0 (P 2

0 + 4⇡2R2
0))

2 � 4L0Tw0(P0 � 2a0) (P 2
0 + 4⇡2R2

0)

2 (P 2
0 + 4⇡2R2

0)
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For a given initial intrinsic twist density Tw0, we can use this to solve for the pitch P which would lead to self-contact
at a given twist density. In particular, for the contraction simulations performed here, we have

L0 = N

p
↵0.00784P0 R0 =

p
L2
0 � P 2

0N
2

2N⇡

If we further write Tw0 = ⇢0L0 and �Tw = ⇢�L0, then the initial helix pitch for which self-contact will begin at the
untwist density ⇢� is

P0 =
2a0⇢0

(⇢� + ⇢0)(1 + 0.00784↵⇢�)

We use the formula above to solve for P0 ⇡ 0.056 which should lead to self-contact onset at the same relative
untwist �Tw/L0 ⇡ �0.62 as that seen in the experiments of [7]. We show simulation results for this P in Fig. 4b of
the main text, and for this P and twice this P in Fig. S4.

For the simulations in Fig. S4, S5 and Fig. 4c of the main text, we set a = 0.01 initially and grow until a = 0.02,
and use an uniform initial intrinsic twist density of 2 rot/m (Fig. S4, 4c main text) or -2 rot/m (Fig. S5). We set the
mass line density to 20 kg/m, and construct S and B as in Fig. 2, 3, 4a and 4b of the main text (see table above).

As described above, to approximate the material properties of nylon, we set E = 30 GPa [10, 11] and try simulating
with and without plasticity. We set the Poisson ratio to 0.5 since the equations of motion are derived assuming
incompressible material, and hence use G = 2E/3. The true Poisson ratio for nylon is slightly smaller but this
parameter does not impact the contraction and expansion results of Fig. 4c, S4 and S5 since we directly control the
radial and axial expansion of the filament to mimic heat-induced anisotropic expansion.

FIG. S4: Contraction of twisted and coiled nylon polymer muscle with and without plasticity. We reproduce Fig. 4c from
the main text now modeling the nylon filament with (a) a strain-dependent Young’s modulus to allow for plasticity and (b)
no plasticity (as in Fig. 4c main text). Here we show simulation results past the onset of self-contact and for two di↵erent
initial pitches. To simulate plasticity, we decrease the local Young’s modulus by 90% when the local strain due to bending
and stretching exceeds 15%, in approximate accordance with the results of [10, 11]. As in Fig. 4c, the filament is given an
initial inserted twist density of 2 rot/m and numerically annealed into a helix with pitch P . Filament radius double from
an initial radius a0 = 0.01 m while intrinsic twist density decreases to keep ak3 constant. Untwist leads to greater writhe
Wr and hence coil contraction, until self-contact begins at which point radial expansion dominates leading to retwisting and
expansion of the coil. Note that link escapes the system throughout due to revolution of the bottom filament endpoint around
the helix axis, reducing the number of loops in the helix and leading to lower writhe during retwisting than initial untwisting.
Numerical slope and onset of self-contact for P = 0.056 m agree closely with experimental results [7]. In addition, larger initial
pitch leads to more untwist and contraction before self-contact, in agreement with the discussion in [7]. Since accounting for
plasticity causes almost no quantitative di↵erence in simulation results, we conclude that the simpler purely elastic model is
su�cient to understand solenoid contraction. See Movies S4, S5. Simulation settings (see section S3): E=30 GPa, G=2E/3,
S=diag(4GA/3, 4GA/3, EA) N, B=diag(EI1, EI2, GI3) Nm2. Note that pitch P , ↵ = 100, number of loops and helix radius
determine L0.
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FIG. S5: Expansion of twisted and coiled nylon polymer muscle. A filament with initial inserted twist density of -2 rot/m is
numerically annealed into a heterochiral helix with pitch P . Filament radius double from an initial radius a0 = 0.01 m while
intrinsic twist density becomes less negative to keep ak3 constant. Greater twist requires a decrease inWr and hence pushes coils
farther apart. Numerical slopes agree closely with those for contraction (Fig. S4, 4c main text), provided we scale twist density
�Tw/L0 by ↵ = 100, as in Fig. S4 and 4c main text. Since plasticity had little quantitative impact on contraction, we neglect
plasticity here. See Movies S6, S7. Simulation settings (see section S3): E=30 GPa, G=2E/3, S=diag(4GA/3, 4GA/3, EA)
N, B=diag(EI1, EI2, GI3) Nm2. Note that pitch P , ↵ = 100, number of loops and helix radius determine L0.

Energy dissipation

We introduce a linear internal energy dissipation mechanism not included in the original simulation framework

of [2]. We add terms to the linear and angular momentum balance equations of the forms @s

⇣
QT S̃@t�/e

⌘
and

@s

⇣
B̃@tk/e3

⌘
, respectively, where S̃ = �SS and B̃ = �BB. The internal dissipation constants �S and �B vary across

simulations:

TABLE S4: Damping and time step

simulations � �S �B �t

Fig. 2a, S1a 10 kg/ms ⇡ 5.75�char 0 0 0.0025�l

Fig. 2b, S1b 15 kg/ms ⇡ 8.62�char 0 0 0.0012�l

Fig. 3 2 kg/ms ⇡ 1.15�char 0 0 0.01�l

Fig. 4a 1 kg/ms ⇡ 0.57�char 0.12 0 0.001�l

Fig. 4b 6 kg/ms ⇡ 3.45�char 0.001 0.001 0.0025�l

Fig. 4c, S4, S5 2 kg/ms ⇡ 0.16�char 0.2 0.05 0.0025�l

Fig. S8 6 kg/ms ⇡ 3.45�char 0 0 0.0025�l

Fig. S7 11 kg/ms ⇡ 20.0�char 0.00545 0.37 0.001�l

Fig. S6 15 kg/ms ⇡ 8.62�char 0 0 0.0012�l

Fig. S2 6 kg/ms ⇡ 3.45�char 0 0 0.0025�l

Fig. S10 12.5 kg/ms ⇡ 2.7�char [21] 0 0 0.001�l

Movie S11 15.0 kg/ms ⇡ 19.40�char 0.12 0 0.0008�l

Note that the small oscillations seen in Fig. 4a and S7 come from high frequency/short wave-length inertial modes
and are irrelevant to the filament’s equilibrium configurations.

In the above table,

�char = m/(L0 · tchar), tchar = L0/vchar, vchar =
p

FCL0/m =
p
⇡2EI/(mL0), �l = L0/n

for a filament of total mass m stretched by the characteristic force FC = ⇡
2
EI/L

2
0, the critical compressive buckling
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force of an inextensible filament. Thus,

tchar =
q
4mL3

0/(Ea4⇡3) seconds, �char =
q

Ea4⇡3m/(4L5
0)

S4. COMPARISON TO EXPERIMENTAL PHASE SPACE (FIGURE 3)

The experiments from reference [13] (A. Ghatak and L. Mahadevan) shown in Fig. 3 used filaments with Young’s
modulus E = 1.3 MPa and diameter 2a = 3.175 mm (circles), E = 1.3 MPa and 2a = 6.35 mm (triangles), and
E = 2.6 MPa and 2a = 6.35 mm (squares).

Note that the authors of [14] describe the straight-plectoneme-solenoid transition with respect to twist density.
However, their experiments correspond to a combination of horizontal and diagonal paths through Fig. 3. In particular,
they begin with a highly stretched and untwisted filament (e.g. a point such as L/L0 = 1.2, �a = 0). They twist
the filament, keeping the ends fixed in space, until a little below the straight-solenoid transition (e.g. L/L0 = 1.2,
�a = 1.4). Now they let the filament contract while keeping the end frames fixed, moving toward lower L/L0 at fixed
�a and crossing the straight-solenoid transition line, ending in the solenoid region, for example around L/L0 = 1.15,
�a = 1.4. They now let the solenoid contract further, again decreasing L/L0 at fixed �a until the filament reaches the
solenoid-plectoneme transition line (e.g. L/L0 = 1.11, �a = 1.4). They note that the solenoid is unstable here, and
proceed to increase the twist. However, as shown in Fig. S6, twisting a filament with fixed ends causes an increase in
stretch as well due to filament looping. Hence, this step sends the filament on a steplike path in a generally diagonal
direction of greater L/L0 and greater �a. As can be seen from Fig. 3, this path leads back into the solenoid phase,
to a point such as L/L0 = 1.12, �a = 1.6). They again let the solenoid contract, moving toward lower L/L0 at fixed
�a and heading back toward the solenoid-plectoneme transition line.

We note that for an initially straight and untwisted filament with fixed ends, twisting can indeed send the filament
into first a plectoneme and then a solenoid phase, since buckling with fixed-end boundary conditions requires stretch-
ing. Hence, were a filament to begin at point with both L/L0 and �a lower than their values at the triple point,
twisting with fixed ends could send the filament on a step-like diagonal path first into the plectoneme regime, and
then (moving toward higher stretch and twist) into the solenoid regime. Such an experiment relies on but might not
capture the fact that L/L0 determines the filament’s buckled state at any twist density for which a straight filament
is not stable.

FIG. S6: We simulate a twisting experiment similar to those in Fig. 2 but with modified boundary conditions. We clamp
the filament’s top and bottom vertices a constant distance L0 and clamp the top frame. We twist the bottom frame axially
but require it to remain oriented vertically (i.e. parallel to x̄0 � x̄n). (a) We show link, twist and writhe over dimensionless
twist density of an equivalently twisted straight filament. (b) We show twisting and total internal energy of the filament and
the theoretical total energy of an equivalently twisted straight filament, all over dimensionless twist density. Energies (V ) are
plotted relative to VTC (see Fig. S1 caption). Note that bending subject to these boundary conditions requires stretching, and
forming the first loop stretches the filament into the solenoidal regime. As in Fig. 2b and S7, the solenoid converts twist to
writhe in a step-like process. However, modifying the boundary conditions changes the set of stable equilibrium configurations
leading to a qualitatively new deformation process. See Movie S8.

Finally, we confirm that it is stretch, rather than shear, that is essential for solenoid formation. Hence we are justified
in considering only extension and twist, neglecting shear, when studying the filament phase space. In particular, in
Fig. S7, we form a solenoid despite increasing the filament shearing rigidity by a factor of 500 greater than that
normally used for incompressible material. As seen in Fig. S7, increasing shear rigidity does quantitatively modify
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the exact steplike transitions inherent to solenoid formation, but does not a↵ect the final result: a twisted filament
with su�cient extension will buckle into a solenoid even if it is hardly able to shear.

FIG. S7: We simulate a twisting experiment as in Fig. 2b, now using a constant 35 N ⇡ 116FC axial load, lower-
ing Young’s modulus to E = 0.1 MPa, keeping G = 2E/3 and increasing only shear rigidity with rigidity matrices
S = diag(500(4GA/3), 500(4GA/3), EA) N and B = diag(EI1, EI2, GI3) Nm2. (a) We plot twist, writhe and link over
dimensionless twist density �a of an equivalently twisted straight filament. (b) We plot twisting and total energy of our
filament and the theoretical total energy of an equivalently twisted straight filament. Energies (V ) are plotted relative to
VTC , defined as in Fig. S1 caption, where we again compute VTC assuming an axial load F ⇡ 41FC , which is now 12.5 N
since the filament sti↵ness is now E = 0.1 MPa. As evidenced quantitatively by the multiple bumps in the twist, writhe and
energy curves and qualitatively by Movie S7, this extensible but highly unshearable filament still forms a solenoid rather than
a plectoneme under su�ciently high extension, rea�rming that extension, rather than shear, is the crucial prerequisite for
solenoid formation. See Movie S9.

S5. LOSS OF LINK

The boundary conditions used in simulating all plectonemes and solenoids maintain a fixed orientation of both
filament endpoints. Hence, twist cannot escape the filament. However, for su�ciently buckled filaments, we found
that link can escape the system in the form of writhe. In particular, for high buckled plectonemes, as ever greater twist
is inserted through the bottom end, the plectoneme axis rotates around the end-to-end axis, while the plectoneme
loops take up ever more of the filament. When the first plectoneme loop gets close enough to the top (clamped end)
of the filament, it flips over the top, releasing a quantum of link and reforming into a slightly less twisted plectoneme.
In Fig. S8 we show the evolution of link, twist and writhe during this process. We twist the filament su�ciently to
produce several of these link loss events. Note that once these events begin to occur, the link oscillates around a
constant maximum value. Also note that the jump decreases in writhe in Fig. S8 occur momentarily before the jump
decreases in twist: as soon as a quantum of writhe escapes, a similar amount of twist is immediately converted to
writhe, converting the lost link from lost writhe to lost twist.

S6. EXPANSION OF PLECTONEME-SOLENOID MIXED STATE REGION

We find that the plectoneme-solenoid mixed state region in Fig. 3 of the main text can be expanded by controlling
the position and orientation of a point in the middle of the filament to induce two segments of di↵erent tension in
a single filament. In particular, we prestretch a filament by an axial load su�cient to form a solenoid under the
boundary conditions of Fig. 3 of the main text. We then take inspiration from plectoneme loop extrusion in DNA
[15–17], replicating loop extrusion by two di↵erent methods which we show produce nearly equivalent results. Both
methods ultimately lead to plectoneme and solenoid coexistence in a region of phase space normally dominated by
purely solenoidal buckling.

In the first method (see Movie S11), after prestretching the filament, we choose two points along the filament, one
near the top clamped end and the other in the middle, and displace the latter towards the former, as might be driven
by a large DNA binding enzyme such as the Lac-operon. This displacement relaxes the tension in the filament and
eventually compresses the segment between the two points, causing it to buckle. When the free end of the filament
is twisted further, the buckled segment to form a plectoneme. If we continue twisting the free filament end, but
preventing the twist from entering the region between the two points associated with the clamp, the twist density in
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FIG. S8: We simulate a twisting experiment as in Fig. 2a from the article, now using a constant 50 N ⇡ 17FC axial load.
(a) We plot twist, writhe and link over dimensionless twist density �a of an equivalently twisted straight filament. During
formation of the initial plectonemic deformation, the bottom endpoint slips through a plectoneme loop, letting link escape from
the system. The plectoneme then gradually converts twist into writhe, minimizing total energy and lowering the ratio of twist
to total internal energy. After reaching a critical twist density, the plectoneme deformation slips over the top endpoint of the
filament, again letting link escape from the system. Twist density accumulates again, and the plectoneme loop repeatedly slips
over the top endpoint, creating a sawtooth pattern. Note that �a ⇠ Link so, unlike �a of an equivalently twisted straight
filament, the twist density of our filament does not increase monotonically in this process. (b) We plot twisting and total energy
of our filament and the theoretical total energy of an equivalently twisted straight filament. Energies (V ) are plotted relative
to VTC (see Fig. S1 caption). Forming a plectoneme saves energy, as does letting link escape from the system. Simulation
settings: � = 6 kg/(ms) ⇡ 3.45�char and �t = 0.0025�l. See Movie S10.

the lower stretched filament segment crosses a critical threshold and this segment buckles out of the plane, forming
solenoidal loops. As seen in Movie S11, the solenoidal loops remain somewhat unstable, traveling up and down the
bottom segment of the filament dynamically. In Movie S11, we use an axial force F = 250 N ⇡ 186FC .

In the second method (see Movie S12), we extrude a loop by a ”feeding” mechanism, more literally similar to the
extrusion mechanism observed experimentally in [15]. We again prestretch the filament by a constant axial load, but
now clamp a prescribed point near the top of the filament. We then prescribe a feeding rate of the filament through
this point. The end result is an extruded loop very similar to that produced by the first method above. After the loop
is extruded, if we continue to insert twist through the free lower end of the filament, a plectoneme forms in the region
between the feeding point and the clamped point. Further twisting of the region outside this region causes solenoidal
structures to form, leading to a plectoneme-solenoid mixed state very similar to that formed in the first method.

This procedure shows that loop extrusion in a prestretched and twisted filament can expand the region of
plectoneme-solenoid coexistence into the domain normally dominated by solenoids. In Fig. S9 we show the origi-
nal phase boundaries of a twisted and stretched filament, and plot several mixed plectoneme-solenoid states induced
by the second of the loop extrusion processes described above. We note that these mixed states formed at extensions
which, without loop extrusion, would have led to solenoid formation upon further twisting, and that our induced
mixed states lie mostly in the high extension part of the straight phase region because increasing twist in our ex-
truded system su�ciently to match the twist densities seen in pure solenoids caused the system to become unstable,
as can be seen at the end of movies S11 and S12.

S7. APPLICATION TO TORSIONAL/ROTARY ACTUATORS

As we were revising the current manuscript, a new paper [18] was published regarding the use of twist and coiled
fiber-based artificial muscles as torsional actuators. The physical model and numerical framework we used to study
filament buckling and actuation of twisted coils can also be applied to model torsional actuators. To demonstrate this,
we qualitatively reproduce the twisting experiment performed in [18]. In particular, we initialize a straight filament,
clamped at one end and stretched by a constant axial load at the other end. We initialize the filament in its rest state
with a high intrinsic twist. We then rapidly decrease the intrinsic twist to zero, replicating the heating process by
which the twisted filament in [18] was actuated. To relax elastically to its new rest state, the highly twisted filament
rapidly untwists until it reaches its new zero-twist rest state. In Fig. S10 we show a filament’s recovered twist angle
as a function of time for two rates of decreasing intrinsic twist (i.e. two ”heating” rates)—our plot is analogous to
Fig. S3 in [18]. Our plots agree with experiments in [18], noting that we decrease intrinsic twist over less than two
seconds—much faster than the time spent heating the experimental filaments to their programming temperature.
This di↵erence in heating causes the inflection point in our untwist curves to occur at much earlier times, as seen by
comparing Fig. S10 and Fig. S3 in [18]. Indeed, as noted in [18], the inflection point in our curves and the experimental
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FIG. S9: We reproduce the original phase space from Fig. 3 of the main text, now showing new plectoneme-solenoid states
induced by loop extrusion. Straight (”rectilinear”) states are denoted by R, solenoids by S, plectonemes by P and mixed states
by P +S. Loop extrusion allows formation of mixed states for extensions which would allow only solenoids or rectilinear states
without loop extrusion. We note that mechanical instabilities at higher twist densities limits the amount of twist we can insert
in forming these mixed states.

ones occurs at approximately the time at which heating is finished (i.e. for us, the time at which the intrinsic twist
reaches 0; for experiments, the time at which the filament temperature reaches the programming temperature).
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FIG. S10: Torsional actuation of twisted filament. A straight filament is initialized in its rest state with intrinsic twist 7500
turns/m. After relaxing for 4 seconds, we start decreasing the intrinsic twist to 0, completing this process in (a) 0.2 and (b) 1.2
seconds. The filament untwists as it relaxes elastically to its new rest state. The inflection point in the untwist curve occurs
approximately at the time at which intrinsic twist reaches 0. Taking this moment to be equivalent to the time in [18] at which
an experimental filament is heated to its programming temperature, our results agree qualitatively with experiments. Note that
the maximum recovered twist angle and overall shape of the untwist curve also agrees with experiments. Filament parameters
were chosen to replicate experiments on single-walled carbon nanotube-doped PVA fibers in [18]. An axial load F = 0.7 N
⇡ 1.7 · 104FC was applied to increase stability to buckling. Simulation settings: E = 13.5GPa, G = 2.3GPa, � = 12.5 kg/(ms)
⇡ 2.7�char (see table S4), �t = 0.001�l, L0 = 0.02 m, a = 2 · 10�5 m. See Movie S14.

S8. MOVIE CAPTIONS

Movie S1: Plectonemic deformations of a filament clamped at one end and stretched by a constant 75 N ⇡ 25FC

axial load at the other end (Fig. 2a and Fig. S1a, see section S3 for simulation parameters).

Movie S2: Solenoidal deformations of a filament clamped at one end and stretched by a constant 270 N
⇡ 90FC axial load at the other end (Fig. 2b and Fig. S1b, see section S3 for simulation parameters).

Movie S3: Active actuation of a solenoidal coil (Fig. 4b and S2, see section S3 for simulation parameters).
A solenoid is generated as in Movie S2, except with a constant 350 N ⇡ 116FC axial load. Maintaining this constant
load, we gradually increase Young’s modulus E from E0 = 1 MPa to Ef = 2.5E0. Bend and twist rigidities scale in
parallel both with E and A, allowing this simulation to qualitatively reproduce the e↵ect of heat-induced anisotropic
expansion [7]. Since the simulated rubber coil is not annealed around a mandrel, new loops form to increase writhe,
leading to a steplike contraction process characteristic of solenoid formation.

Movie S4: Contraction of nylon helix with inserted twist by anisotropic expansion-induced untwist. Before
start of movie, the filament is given an intrinsic twist density of 2 rot/m and annealed into a helix with pitch
P = 0.056 m. During simulation, the filament radius double from an initial a0 = 0.01 m while intrinsic twist
decreases to keep ak3 constant, reproducing the anisotropic expansion-induced untwist used to activate twisted and
coiled polymer muscles in [7]. Top of filament is clamped, leading to slight tilt of helix during contraction. Rate of
contraction with respect to untwist density �Tw/L0 and untwist density at which self-contact begins agree closely
with experiment [7]. After onset of self-contact, radially expansion causes the helix to elongate, forcing untwist
despite an ever-decreasing intrinsic twist. Note that the free end of the filament revolves around the helix axis,
reducing the number of loops in the helix and decreasing the system’s total link. Plasticity is not included in the
numerical model here since numerical experiments showed almost no quantitative e↵ect from including plasticity (see
Fig. S4 and Fig. 4c of the main text for comparison of models with and without plasticity, section S3 for simulation
parameters).

Movie S5: Contraction of nylon helix with inserted twist by anisotropic expansion-induced untwist (Fig. S4). The
same simulation procedure as in Movie S4 is used; we now set initial pitch P = 0.11 m (see Fig. S4, section S3 for
simulation parameters).

Movie S6: Expansion of nylon helix with inserted twist by anisotropic expansion-induced untwist (Fig. S5).
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The same simulation procedure as in Movie S4 is used, but here we reverse the sign of the filament’s initial inserted
twist density, setting the initial twist density to -2 rot/m (see Fig. S5, section S3 for simulation parameters).

Movie S7: Expansion of nylon helix with inserted twist by anisotropic expansion-induced untwist (Fig. S5).
The same simulation procedure as in Movie S6 is used, but here we use initial pitch P = 0.11 (see Fig. S5, section S3
for simulation parameters).

Movie S8: Formation of a solenoid with both endpoints clamped a fixed distance L0 apart. Formation of
the first loop causes the filament to stretch, bringing it into the solenoid regime (Fig. S6, see section S3 for simulation
parameters).

Movie S9: Formation of a solenoid in an unshearable filament (Fig. S7, see section S3 for simulation param-
eters).

Movie S10: Link non-conserving plectonemic deformations of a filament clamped at one end and stretched
by a constant 50 N ⇡ 17FC axial load at the other end (Fig. S8, see section S3 for simulation parameters).

Movie S11: Mixed plectoneme-solenoid state induced in a filament with extension and twist density usually
characteristic of purely solenoidal deformations. The plectoneme state is produced by replicating loop extrusion in
the top half of the filament by drawing together two filament points, one near the top and the other in the middle
of the filament, before twisting begins. This extrusion-like displacement of filament points creates two regions of
di↵erent tensions in the filament: the top segment between the two chosen points is compressed beyond the buckling
threshold while the lower segment remains stretched by the axial load. After the filament is su�ciently twisted to
form a plectoneme, the orientation of the middle point is fixed so that further twisting increases the twist density
only in the lower stretched segment of the filament, leading to solenoid formation in this segment. Throughout
the process, the filament is clamped at the top and stretched by a constant 250 N ⇡ 186FC axial load at the other end.

Movie S12: We reproduce the process shown in Movie S11, this time using a ”feeding” mechanism to ex-
trude a loop. In particular, to induce planar buckling in the top part of the filament, we clamp a preselected point
near the top of the filament, and prescribe an upward velocity at a point slightly lower on the filament. As the
lower part of the filament translates upward, we slide the point of prescribed velocity down the filament at an equal
and opposite rate to the filament’s translational velocity, keeping the region through which the filament is being
fed approximately fixed in lab coordinates. This method more faithfully reproduces the loop extrusion mechanism
shown in [15]. However, we note that the final result is very similar to that shown in Movie S11, showing the near
equivalence of the two methods in producing an extruded loop and mixed plectoneme-solenoid state.

Movie S13: Passive actuation of a solenoidal coil (Fig. 4a, see section S3 for simulation parameters). The filament
is clamped at the top and subjected to a constant 300 N ⇡ 99FC axial load at the bottom end. The bottom end is
twisted to form a solenoid, after which we displace the bottom endpoint 0.42 L0 = 0.42 m away from the top endpoint.

Movie S14: Torsional actuation of a twisted filament. A filament with length L0 = 0.02 m and radius
a = 2 · 10�5 m is initialized in its rest state with intrinsic twist 7500 turns/m. The filament is clamped at the top
and stretched by axial load F = 0.7 N ⇡ 1.7 · 104FC at the bottom. The filament relaxes to its stretched state for 4
seconds. We then decrease the intrinsic twist to 0 at a constant rate over a period of 1.2 seconds. To reach its new
zero-twist rest state, the filament rapidly untwists, qualitatively reproducing experiments from [18]. See section S7.
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