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Fig. 3. Connectedness and rigidity of kirigami patterns. (A-C) For an L L= 4 4 planar kirigami, links are added randomly. The largest connected
component becomes dominant just after a few links are added (orange quads in B and C). The number of internal modes first increases, then decreases.
The number of quads with internal mechanisms (not marked by stripes) first increases before decreasing (A to C). (D) The NCC T() decreases as link density

increases, first linearly, then exponentially at some intermediate (Right Inset) before flattening out. This exponential behavior is independent of system
size L—if T is scaled by Tmax (Left Inset). (E) The change of DoF (m()) shows a similar linear-sublinear transition, exponential decay (Right Inset ) and the scale
independence (Left Inset) as NCC. The number of internal mechanisms increases, reaches a peak at ;= 0:26, and approaches the myt while decreasing. (F)
The size of the largest cluster (N) has a percolation behavior near = 0:298. The transition becomes sharper for larger L. (G) The second derivative of total
DoF has a peak at the rigidity percolation threshold. The blue dots represent the peak of each curve, the values of which converge to 0.429. (H) The ratio
of the number of internal mechanisms and the number of total mechanisms as a function of . The internal mechanism dominates from 2 (0:4, 0:8). (/) An
example showing how the links can affect DoF (rigidity) and T (connectivity) in planar kirigami. From the initial state 1, adding the orange link in state 2

reduces one internal DoF ( ;= 1,

= 0). In state 3, the green links reduces the NCC, but there is one more internal mechanism ( ;=+1,
state 4, the red link freezes the two internal mechanisms, making the system rigid ( ;= 2,

= 3).In
r= 0). Finally, in states 5 and 6, the link added is redundant.

Neither type of DoF is changed ( ;= 0, ,= 0). (J) For a system of size L = 30, as links are added randomly, their influence on DoF is shown in terms of the

proportion of each type of link in A during this process.

almost fully connected, while the number of internal mechanisms
remains large (similar to the diluted rotating square system as
described in a recent paper (19); see SI Appendix, section S3 for
more details). Indeed, from the ratio of the internal DoF and
the total DOF mint/meot (Fig. 3H), we see that the fraction of
internal DoF is large for a range of link density, consistent with
the intuition that there are more rotational modes within each
connected component of kirigami than rigid-body modes of the
component.

Constraint Redundancy. We have seen that, when links are added
to the system, they do one of three things: change the total DoF,
change the internal DoF, or are simply redundant. This notion is
generic to a number of different systems made of discrete com-
ponents with constraints; indeed, recently, we showed that this is
also true for origami (20). To address the question here, instead
of randomly generating link patterns, we start with no links and
add links one by one. At each step, if the DoF of the system does
not change after a link is added, we define this link as a redun-
dant link. Otherwise, we define it to be nonredundant. We can
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further classify these nonredundant links by examining how they
change the internal DoF. We denote the change of total DoF as
Ay, the change of rigid-body DoF (type b) as A, and the change
of internal DoF (type a) as A;. It turns out that the only possible
combinations of (A;, A,) are (—2,0),(—1,0),(0,0), (+1,—3),
the third of which is defined as redundant (S Appendix, section
S3). In Fig. 31, we show a schematic of the four types of links
classified above. Starting from the original configuration (step
1), there are two connected components, each with three type b
DoF. The larger component also has two internal DoF. The
orange link, after being added to the kirigami system, reduces
one internal DoF (Fig. 3/, step 2). The green link connects the
two components afterward, so A, =—3, and A; =+1. There
is one more internal mode (Fig. 3/, step 3). In step 4, the red
link freezes the two rotational modes simultaneously, making the
whole system rigid. Finally, in steps 5 and 6, the links added are
redundant, as they do not change DoF.

We now apply this link-by-link examination to a larger kirigami
system with L =30. We define the redundancy r in the system
as the ratio of the number of redundant links over the number
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Fig. 4. (A and B) The change in the total DoF m and the internal DoF
mint by randomly removing or adding links, starting from (A) an MRP or a
random link pattern and (B) an MCP or a random link pattern. (C and D) The
change in the total NCC T by randomly removing or adding links, starting
from (C) an MRP or a random link pattern and (D) an MCP or a random link
pattern.

of all unconnected links. Initially, most of the links are nonre-
dundant, as they are all independent, and each of them adds
one internal mode, since they connect two disconnected com-
ponents (such as Fig. 3/, steps 2 and 3). After the connectivity
percolation, the links that reduce the internal DoF become dom-
inant, and, eventually, most additional links become redundant.
The fraction of redundant links nr.ink /7max has a transition near
p = 0.45 (Fig. 3/), consistent with the rigidity percolation thresh-
old p,, suggesting that, after the rigidity percolation, most of the
links become redundant. This observation shows how each added
link affects the rigidity of kirigami; for example, when p~ 0.4,
each added link reduces the internal rotational DoF, rather than
connecting two connected components, and, when p~ 0.6, the
system is almost connected and rigid because most new links
added will be redundant.

Combining Two Approaches. Deterministic control enables us to
achieve certain DoF and NCC precisely based on MRPs and
MCPs, while statistical control makes it possible to achieve more
combinations of DoF and NCC but only in a random sense. It is
natural to ask whether we can combine these two approaches
to take advantage of both of them. Given a link density p,
we start with an MRP (or MCP) and randomly add/remove
AL(L—1)|p— ps| (or 4L(L —1)|p — p|) links. The experiment
is repeated 100 times, and the average mint, muot, 1, and N for
different p are recorded.

For DoF, since all links in MRPs are nonredundant, randomly
removing links from them results in a linear change of mot
(Fig. 44). More interestingly, starting from an MCP, both adding
and removing links randomly result in a decrease of the internal
DoF mint (Fig. 4B), which can be explained by our construction
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of MCPs (SI Appendix, Fig. S3). In fact, this is the largest inter-
nal DoF that can be achieved. For NCC, T increases gradually
as links are removed from MRPs (Fig. 4C). By contrast, a sharp
transition of 7" can be observed as links are removed from MCPs
(Fig. 4D). Overall, by combining the deterministic and statistical
control, we can achieve a wider range of DoF and NCC, and var-
ious behaviors under a perturbation of link density (SI Appendix,
section S4).

Discussion

Our study of rigidity and connectivity in kirigami was made pos-
sible by the realization of a one-to-one mapping between the
cutting problem and an equivalent linkage problem. This allowed
us to provide a bottom-up hierarchical algorithm to construct
MRPs and MCPs, which allow us to rigidify and connect kirigami
tessellations optimally. The MRPs and MCPs also provide us
with a simple method for obtaining a kirigami system with any
given DoF or NCC. Overall, this suggests that we can exquisitely
control the rigidity and connectivity of kirigami with the topology
of prescribed cuts.

At a more coarse-grained level, we also show how to con-
trol connectivity and rigidity by tuning the density of links. We
find three critical thresholds: the density for maximum internal
DoF (p;), for connectivity percolation (p.), and for rigidity per-
colation (p,), with p; < p. < pr, providing guidance for tuning
the link density to achieve different mechanical properties. For
example, one can control the ratio of high-frequency and low-
frequency modes by choosing the link density above or below the
connectivity percolation, since the low-frequency mode sets in
when p > p., and the remaining high-frequency modes decrease
significantly once p > p., the rigidity percolation threshold, with
relevance for mechanical allostery (25, 26). Alternatively, since
more and more links become redundant when p > p;, it is pos-
sible to change the DoF by rearranging the positions of links.
For example, according to Fig. 3/, if we remove redundant links
(brown) and add links that reduce the internal DoF by 1 (red),
we reduce the total DoF by 1 while keeping the total num-
ber of links the same, thereby changing the DoF information
using the same amount of materials; indeed this might allow for
click kirigami (i.e., with reversible links) to be a substrate for
mechanical information storage, similar to origami (20).

In a broader context, our theoretical study on the rigidity and
connectivity in kirigami complements recent developments in the
design and fabrication of physical kirigami structures (8, 27-30),
by providing guidelines for their control via internal rotational
mechanisms, similar to that seen in origami (31). Two natu-
ral future paths are to investigate functional devices that might
exploit this and to explore the generalization of these arguments
to 3D kirigami with polyhedra (32) in the context of architectural
and structural design.

Data Availability Statement. Codes related to this paper have
been deposited in the GitHub repository (https://github.com/
garyptchoi/kirigami-control).
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