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Kirigami, the creative art of paper cutting, is a promising paradigm
for mechanical metamaterials. However, to make kirigami-inspired
structures a reality requires controlling the topology of kirigami
to achieve connectivity and rigidity. We address this question by
deriving the maximum number of cuts (minimum number of links)
that still allow us to preserve global rigidity and connectivity of
the kirigami. A deterministic hierarchical construction method
yields an efficient topological way to control both the number of
connected pieces and the total degrees of freedom. A statistical
approach to the control of rigidity and connectivity in kirigami with
random cuts complements the deterministic pathway, and shows
that both the number of connected pieces and the degrees of free-
dom show percolation transitions as a function of the density of
cuts (links). Together, this provides a general framework for the
control of rigidity and connectivity in planar kirigami.
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K irigami, the traditional art of paper cutting, has inspired the
design of a new class of metamaterials with novel shapes (1–

5), electronic/mechanical properties (6–11), and auxetic behavior
(12–14). In these studies, typically, the geometry (the shape of
the deployed kirigami) and the topology of cuts (spatial distri-
butions of the cuts) are prescribed. Recently, we have shown
how to modulate the geometry of the kirigami structures (15) by
varying the size and orientation of the cuts to solve the inverse
problem of designing kirigami tessellations that can be deployed
to approximate given two- and three-dimensional (3D) shapes.
However, in these and other studies, the topology of the cuts
is not a variable that can be changed to achieve a prescribed
shape or mechanical response. Here, we relax this constraint and
allow the topology of the kirigami structures to be a design vari-
able that we can control in either a deterministic or a stochastic
way to achieve a given connectivity or rigidity in aperiodic planar
structures.

We start by considering cutting a thin sheet of material
(width = height =l) to obtain a planar kirigami system, that is, an
initial structure that has cuts that allow it to be transformed into
a new shape using local rotations with no energy cost. Since cuts
at random locations with random directions and random lengths
are unlikely to lead to a system that can respond via purely rota-
tional modes, we start with a quad kirigami structure (1), a simple
fourfold symmetric auxetic structure as shown in Fig. 1A. To con-
strain the infinite phase space of cuts to a finite combination,
we adopt the following assumptions: 1) We only allow horizontal
and vertical cuts on grid lines with equal spacing d . There are
L= l/d horizontal and L vertical grid lines. 2) The sheet is cut
along all of the grid lines, except in the vicinity of vertices where
the grid lines intersect (Fig. 1A). 3) Since kirigami is deploy-
able, the quads need to rotate around their corner hinges, and we
assume that the width of hinges is infinitesimally small. Around
internal vertices, there are four infinitesimally small segments
which we can independently decide to cut or not, as illustrated
by the dashed lines marked as to in Fig. 1A. For boundary
vertices, there is only one segment ( to in Fig. 1A). 4) The
quads connected by the corner hinges can rotate freely without

any energy. These assumptions and simplifications allow us to
transform the cutting problem into a linkage problem, as shown
in Fig. 1B, where all of the quads are separated, and each pair
of neighboring corners (nodes) of quads can be connected via a
link. This is a one-to-one mapping, as each link in Fig. 1B has a
unique corresponding segment for cutting in Fig. 1A. Note that
the links do not have actual length—they only force the corners
of two quads to be connected (with the same spatial coordinates).
With this setup, the problem of cutting to derive a kirigami struc-
ture is converted to choosing certain number of links among
the 4(L− 1)2 + 4(L− 1) = 4L(L− 1) links to be connected. By
adding and removing a specific set of links, one can manipu-
late the number of degrees of freedom (DoF) and number of
connected components (NCC) in the system. Moreover, one can
even control the types of floppy modes associated with internal
rotational mechanisms (Fig. 1 C and D) and rigid-body modes
coming from additional pieces (connected components) (Fig. 1
E and F). We note that, while we focus on the quad kirigami, as
it is the simplest periodic planar structure, all of our results also
hold for kagome kirigami, a sixfold auxetic structure formed by
equilateral triangles (SI Appendix, section S5).

Having shown the equivalence between connectivity and rigid-
ity of kirigami to that in a linkage, we ask how we might vary
the number and spatial distribution of the links to control the
number of connected pieces (connectivity) and floppy modes
(rigidity) in a kirigamized sheet. We show that prescribing the
microscopic cuts in a kirigami tessellation using a hierarchical
linkage pattern yields any targeted rigidity and connectivity. Fur-
thermore, in the absence of microscopic control, if we are still
able to control just the coarse-grained density of cuts, we show
the existence of percolation transitions that allow for the control
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Fig. 1. Quad kirigami and two types of floppy modes. (A) The cuts are along edges of quads except at the vertices, so that the pattern is equivalent to a
linkage shown in B. (C–F) Removing certain links can (C and D) increase the DoF of the structure, adding some internal rotational mechanisms, or (E and F)
increase the NCC, adding translational and rotational rigid-body modes.

of both connectivity and mechanical properties in an exquisitely
sensitive way, similar, in some aspects, to rigidity percolation in
both planar networks and origami (16–20). (Here we note that
the “rigidity” represents the DoF [or number of floppy modes]
introduced above, which is different from the “rigidity percola-
tion” transition that describes a global change in the network;
e.g., see Fig. 3.)

The connectivity and rigidity of a kirigami tessellation is con-
trolled by the geometrical constraints associated with preserving
the four edge lengths and one diagonal length on the four ver-
tices of each quad in a unit cell shown in Fig. 1. These can be
written in the form

gedge (xi,xj) = ‖xi−xj‖2− d2 = 0, [1]

where node i and node j are connected by an edge in a quad,
i , j ∈{1, . . . , 4L2}. Additionally, the introduction of rigid links
at coincident vertices (Fig. 1) implies that there are constraints
on the coordinates of the two vertices for each link connecting
node i and node j written as

glinkx (xi,xj) = xi1 − xj1 = 0, [2]
glinky (xi,xj) = xi2 − xj2 = 0, [3]

where xi = (xi1 , xi2) and xj = (xj1 , xj2). These sets of constraints
determine the range of motions associated with infinitesimal
rigidity in terms of the rigidity matrix A where Aij = ∂gi/∂xj ,
so that the DoF is related to the rank of A via the relation (21,
22) (SI Appendix, section S1)

DoF = 8L2− rank(A). [4]

Kirigami with Prescribed Cuts
Minimum Rigidifying Link Patterns. To address the question of
rigidity control with prescribed cuts, we note that the decrease
in the total DoF by adding one link is either zero, one, or two
(SI Appendix, section S1). From a mathematical perspective,
each link adds two rows to the rigidity matrix A, and the rank
of A can increase by one or two or remain unchanged. There-
fore, we can calculate the minimum number of links (denoted
as δ(L)) required for rigidifying an L×L kirigami—having no
extra DoF besides the rigid-body motions. Define a minimum
rigidifying link pattern (MRP) to be a link pattern (a set of posi-
tions for links) that rigidifies the kirigami with exactly δ(L) links.
Note that there are 3L2 DoF if all of the links are disconnected,

and there are three DoF if all of the links are connected. Since
each link reduces the DoF by, at most, two, δ(L) links can, at
most, reduce 2δ(L) DoF and hence 3L2− 2δ(L)≤ 3. Therefore,
δ(L)≥

⌈
3L2− 3/2

⌉
, where d·e is the ceiling function rounding

up the number to the nearest integer. Note that δ(L) might be
greater than the lower bound

⌈
3L2− 3/2

⌉
, since there might be

no way that the
⌈
3L2− 3/2

⌉
links added are all nonredundant.

It is natural to ask whether this lower bound for δ(L) is achiev-
able (optimal), and, furthermore, is it always possible to find a
rigidifying link pattern with exactly

⌈
3L2− 3/2

⌉
links?

We give a constructive proof of the optimality of the above
lower bound by developing a hierarchical construction method
for constructing MRPs for any system size L, where we com-
bine the patterns for small L to construct the patterns for large
L. First, we show that, if the lower bound is achievable for two
odd numbers L=L1 and L=L2

(
i.e., δ(L1) =

⌈
3L2

1− 3/2
⌉

and
δ(L2) =

⌈
3L2

2− 3/2
⌉)

, it is also achievable for L=L1L2. The
key idea is that, if we treat an L1L2×L1L2 kirigami as L2×L2

large blocks of L1×L1 quads, we can rigidify each large block of
L1×L1 quads by an MRP for L=L1, and then link and rigidify
all of the L2×L2 large rigid blocks by an MRP for L=L2. This
gives a rigidifying link pattern for the L1L2×L1L2 kirigami, with
the total number of links being

L2
2δ(L1) + δ(L2) =L2

2

⌈
3L2

1− 3

2

⌉
+

⌈
3L2

2− 3

2

⌉
=L2

2
3L2

1− 3

2
+

3L2
2− 3

2
=

3L2
1L

2
2− 3

2
=

⌈
3(L1L2)2− 3

2

⌉
.

[5]

Therefore δ(L1L2) =
⌈
3(L1L2)2− 3/2

⌉
, and hence such a link

pattern is an MRP for L=L1L2. Similarly, if L1 is odd and L2 is
even, we can show that this relationship still holds (SI Appendix,
section S1). In fact, using the hierarchical construction method
and MRPs for small L (with the optimality of the lower bound for
those smallL cases proved using the rigidity matrix computation),
we can prove that the lower bound δ(L) is optimal for all L.

Theorem 1 For all positive integers L, δ(L) =
⌈
3L2− 3/2

⌉
.

Proof. We outline the proof here and provide the details in SI
Appendix, Theorems S1–S3. Our idea is to use perfectly periodic,
prime partitions to decompose an L×L kirigami into blocks of
kirigami with smaller size.

In Fig. 2A, we explicitly construct MRPs with exactly⌈
3L2− 3/2

⌉
links for L= 2, 3, 4, 5, 7, and an auxiliary MRP for
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a 3× 5 kirigami (SI Appendix, section S1). The rigidity of these
patterns is verified using the rigidity matrix computation Eq.
4. Then, with these small patterns, we can use the hierarchi-
cal construction to obtain an MRP for any L= 2k ∏ pni

i , where
k = 0, 1, 2 and pi are odd primes satisfying δ(pi) =

⌈
3p2

i − 3/2
⌉

(Fig. 2B and SI Appendix, Theorem S1).
We further design methods to construct MRPs for all L that

is a power of 2 (Fig. 2C and SI Appendix, Theorem S2) and for
all odd primes p≥ 11 (Fig. 2D and SI Appendix, Theorem S3) by
integer partition and hierarchical construction. Ultimately, we
can remove all conditions on L and conclude that the δ(L) =⌈
3L2− 3/2

⌉
for all L. �

Theorem 1 provides the most efficient way to rigidify quad
kirigami: placing links according to the MRPs (see SI Appendix,
section S1 for a flowchart and the algorithmic procedure of
the hierarchical construction method). Moreover, for odd L,
since every link in an L×L MRP decreases the DoF of the
kirigami system by exactly two, we can obtain a kirigami with
DoF = 2k + 3 by removing exactly k links from an MRP. By
adding a link which reduces the DoF by one to such a kirigami
system, we can obtain a kirigami with DoF = 2k + 2. For even
L, all but one links in an L×L MRP reduce the DoF of the
system by two (except one that reduces the DoF by one). By
removing k links from an MRP, we can again obtain a kirigami
with DoF = 2k + 3 or 2k + 2. Therefore, any given DoF is
achievable.

Minimum Connecting Link Patterns. For the connectivity of
kirigami, a similar question arises: What is the minimum num-
ber of prescribed links for making an L×L kirigami connected?
Obviously, when one link is added, the NCC decreases by either
zero or one. Define γ(L) as the minimum number of links
required for connecting an L×L kirigami, and a minimum con-
necting link pattern (MCP) to be a link pattern with exactly γ(L)
links which connects the L×L kirigami. Note that there are L2

connected components if all of the links are disconnected, and

one connected component if all of the links are connected. Fol-
lowing the same argument as the section above, we have L2−
γ(L)≤ 1, and thus γ(L)≥L2− 1. It turns out that, by explicit
construction, we are able to show that this lower bound is optimal
for all L.

Theorem 2 For all positive integers L, γ(L) =L2− 1.
(See SI Appendix, section S2 for the detailed proof.) Similar

to the construction of MRPs, the construction of MCPs can be
done by hierarchical construction. Besides, since every link in an
MCP decreases the NCC by exactly one, we can obtain a kirigami
with k + 1 connected components by removing k links from an
MCP. Therefore, Theorem 2 provides us with an efficient way for
constructing a kirigami system with any given NCC.

From Theorems 1 and 2, we can easily see that, for L≥ 2,

δ(L) =

⌈
3L2− 3

2

⌉
>L2− 1 = γ(L). [6]

This implies that there is no MRP which is also an MCP for
L≥ 2. It also suggests that, in general, rigidifying a kirigami
requires more effort (links) compared to connecting the quads
in kirigami. We remark that, by using MRPs and MCPs, we can
achieve a certain level of simultaneous control of rigidity and
connectivity. For instance, we can achieve an L×L system with
NCC = d2 and DoF = 3d2 precisely if d is a factor of L (see SI
Appendix, section S4 for a detailed discussion).

Enumeration of Minimum Link Patterns. It is noteworthy that the
constructions of MRPs and MCPs are not necessarily unique.
Denote the number of MRPs and MCPs in an L×L kirigami
by nr (L) and nc(L), respectively. To obtain nr (L), note that
the total number of links in an L×L kirigami is 4L(L− 1), and

hence there are
(

4L(L− 1)⌈
3L2− 3/2

⌉)possibilities to examine. As this

number grows rapidly with L, obtaining nr (L) by direct enumer-
ation is nearly impossible. Nevertheless, we can make use of the
hierarchical construction to obtain a lower bound of nr (L) (SI

3 35

3

5

3

2 x 2

3 x 3

4 x 4

5 x 3 5 x 5

7 x 7

A

B C D

Fig. 2. The construction of MRPs. (A) Explicit construction of MRPs for L = 2, 3, 4, 5, 7, and for 3× 5. (B) The construction of an MRP for L = 6 using
hierarchical construction. The 6× 6 kirigami is decomposed into four large blocks of size 3× 3. Each large block is rigidified using an MRP for L = 3 (red
links), and then the four large rigid blocks are linked and rigidified using an MRP for L = 2 (purple links). (C) The construction of an MRP for L = 2k, k≥ 3
using hierarchical construction. A 23× 23 kirigami is decomposed into large blocks of size 3× 3, 5× 5, and 3× 5. Each large block is rigidified using an MRP
(red links), and then the four large rigid blocks are linked and rigidified using an MRP for L = 2 (purple links). (D) The construction of an MRP for odd primes
p≥ 11 using hierarchical construction. A 11× 11 kirigami is decomposed into large blocks of size 3× 3, 5× 5, and 3× 5. Each large block is rigidified using
an MRP, and then the four large rigid blocks are linked and rigidified using an MRP for L = 3 (purple links).
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Appendix, section S1 and Table S1). Similarly, for nc(L), there
are

(4L(L−1)

L2−1

)
possibilities to examine, which becomes impossi-

ble for enumeration for large L. This time, we can make use
of the Kirchhoff’s matrix tree theorem (23) to obtain nc(L) (SI
Appendix, section S2 and Table S2). Comparing nr (L) and nc(L),
we observe that there are many more MCPs than MRPs, suggest-
ing that it is much easier to connect a kirigami than to rigidify a
kirigami.

Note that both nr (L)/

(
4L(L− 1)⌈
3L2− 3/2

⌉) and nc(L)/
(4L(L−1)

L2−1

)
become extremely small as L increases (SI Appendix, Tables S1
and S2). This suggests that, for large L, it is almost impossible to
obtain an MRP (or MCP) by randomly picking

⌈
3L2− 3/2

⌉
(or

L2− 1) links. Thus, our hierarchical construction is a powerful
tool for rigidifying or connecting a large kirigami, and for further
achieving a given DoF or NCC, with the minimum amount of
materials (links).

Kirigami with Random Cuts
Controlling the link patterns (locations) according to MRPs and
MCPs is a powerful tool to control rigidity and connectivity, but
requires exquisite control of every link at the microscopic level,
which is difficult to achieve. A natural question that then arises
is, what if we cannot control the microscopic details of the link
patterns? Could we still achieve connectivity and rigidity control
by only tuning the fraction of randomly added links in the linkage
graph?

Connectivity Percolation. We start by defining the link density for
an L×L kirigami to be ρ(L) = c/cmax, where c is the number
of randomly added links and cmax = 4L(L− 1) is the maximum
number of links. Furthermore, we state that two quads are con-
nected as long as one of the links between them is present, and a
connected component is defined as a set of quads among which
every two of the quads are connected by a series of links. To
study the NCC in quad kirigami with c random links (or equiva-
lently, (cmax− c) random cuts), we denote the NCC in the L×L
kirigami by T , noting that, when c = 0, T =Tmax =L2, while,
when c = cmax, T =Tmin = 1.

To understand what happens at intermediate values of the
density, we randomly generate link patterns and calculate T (ρ)
(Fig. 3 A–C). Initially, each of the randomly added links simply
connects two quads, so T decreases by one as each link is added,
that is, linearly (Fig. 3D). Eventually, however, they are more
likely to be added within one connected component rather than
between two connected components, as there are more possi-
ble positions for adding links within each connected component,
and, indeed, the decrease of DoF becomes sublinear (Fig. 3D).
If we rescale T by Tmax, we see an exponential decay starting at
ρ= 0.3, finally approaching 1/L2 (Fig. 3 D, Right Inset). We also
see that the linear–sublinear transition is universal regardless of
the system size L (Fig. 3 D, Left Inset).

Furthermore, we notice that, at the onset of the exponen-
tial decay region, the size of the largest connected component
(denoted by N ) shows percolation behavior. If we rescale N
by Nmax =L2, we see that N /L2 switches from zero to one as
the largest connected component suddenly becomes dominant
(Fig. 3 A and B, orange quads), and the transition becomes
sharper with increasing system size L. Numerically, using the
curve for L= 100, we find that the critical transition point is at
ρ∗c ≈ 0.298 (Fig. 3F).

We can also calculate this transition density ρc analytically
using the dual lattice method (24). In fact, this ρc is the same as
the transition density of connectivity percolation of a network, if
we consider the kirigami system as a doubly linked network, with
quads being nodes and links being edges. Since percolation in a
random connecting network is a state where there is a connected

path from one side to the other, the probability of percolation
is equal to the probability of not having percolation in the dual
lattice (SI Appendix, section S3). The probability of connecting
two quads is ρ2 + 2ρ(1− ρ), assuming that each link is equally
likely to be connected with probability ρ. The probability of these
two quads not being connected is thus (1− ρ)2. Denoting the
probability of percolation by P [x ] where x is the quad connect-
ing probability, we have P [ρ2 + 2ρ(1− ρ)] = 1−P [(1− ρ)2]. If
we let ρ2 + 2ρ(1− ρ) = (1− ρ)2, we obtain ρc = 1− 1√

2
= 0.293.

Since the percolation density of having a connected path is the
same as when the size of the largest cluster becomes dominant,
ρc coincides with the percolation threshold of N , which agrees
well with our numerical result ρ∗c ≈ 0.298.

DoF with Randomly Allocated Links. Moving from the connectivity
to the modes of motion (DoF) in the structure, we denote the
dependence of DoF on link density by m(ρ). These floppy modes
can be further classified into two types: type a, internal modes
(Fig. 1 C and D), the internal rotational modes associated with
the movement of some quads with respect to others within one
connected component, and type b, rigid-body modes (Fig. 1 E
and F), the two translational motions and one rotational motion
of each connected component.

Type a are the floppy modes that correspond to the nontrivial
internal modes of rotation which are hard to find and visual-
ize without using the infinitesimal rigidity approach. Since each
connected component has three (type b) rigid-body motions (3
DoF), the number of internal DoF is equal to the total DoF
minus the NCC multiplied by 3, that is, mint =mtot− 3T .

With varying ρ, the total DoF follows a trend similar to that
of the NCC (T ). When ρ= 0, the total DoF is 3L2. When a
few links are added initially, they are independent constraints,
each reducing the DoF by two, and so we see a linear decrease of
DoF (Fig. 3E). As more links are added, cooperativity between
the links sets in and the decrease of DoF becomes sublinear,
and shows exponentially decaying behavior similar to that of
T : log10 m ≈−6.0ρ+ 1.4 (Fig. 3 E, Right Inset). Finally, when
most links are added, the system becomes rigid, and the DoF
approaches three. If we rescale the DoF by the maximum DoF
(mmax = 3L2) for each L, all of the curves for internal modes
collapse (Fig. 3 E, Left Inset), suggesting that we can control the
internal mechanisms in a scale-free manner by simply tuning the
link density.

Given the similarity of our system to 2D random networks
(16), it is perhaps unsurprising to see this percolation behavior.
Indeed, if we plot the second derivative of m as a function of
constraint number, we can see that this value has a peak between
0.4 and 0.5. As the system size becomes larger, it converges to
ρr = 0.429 (Fig. 3G). This behavior qualitatively agrees with the
second-order transition in the generic rigidity percolation in two
dimensions (16). Quantitatively, an analogy from the MRP/MCP
might explain this: Since δ(L)/γ(L)≈ 3/2 when L is large, we
expect that ρr = 3ρc/2 so that ρr = 0.439, which agrees well with
our numerical result.

When all of the quads are separated, there are no internal
modes, while, when all of the links are connected, the whole
system is rigid, and there are no internal modes either. There-
fore, the number of internal DoF must be nonmonotonic as
links are added, with a local maximum in the number of inter-
nal DoF as a function of ρ (see the schematic plot in Fig. 3 A–C).
Indeed, as shown in Fig. 3E, the internal DoF first increases as
the number of links increases, approaches the number of total
DoF, and decreases together with the total DoF as link density
further increases. As the density ρi ≈ 0.26, there are maximal
number of internal modes, which is different from the density
ρc ≈ 0.293, when the whole system first gets almost fully con-
nected. Thus, it is in the neighborhood of ρ≈ ρc where we find a
range of interesting behaviors as the kirigami structure becomes
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Fig. 3. Connectedness and rigidity of kirigami patterns. (A–C) For an L× L = 4× 4 planar kirigami, links are added randomly. The largest connected
component becomes dominant just after a few links are added (orange quads in B and C). The number of internal modes first increases, then decreases.
The number of quads with internal mechanisms (not marked by stripes) first increases before decreasing (A to C). (D) The NCC T(ρ) decreases as link density
ρ increases, first linearly, then exponentially at some intermediate ρ (Right Inset) before flattening out. This exponential behavior is independent of system
size L—if T is scaled by Tmax (Left Inset). (E) The change of DoF (m(ρ)) shows a similar linear–sublinear transition, exponential decay (Right Inset) and the scale
independence (Left Inset) as NCC. The number of internal mechanisms increases, reaches a peak at ρi = 0.26, and approaches the mtot while decreasing. (F)
The size of the largest cluster (N) has a percolation behavior near ρ= 0.298. The transition becomes sharper for larger L. (G) The second derivative of total
DoF has a peak at the rigidity percolation threshold. The blue dots represent the peak of each curve, the values of which converge to 0.429. (H) The ratio
of the number of internal mechanisms and the number of total mechanisms as a function of ρ. The internal mechanism dominates from ρ∈ (0.4, 0.8). (I) An
example showing how the links can affect DoF (rigidity) and T (connectivity) in planar kirigami. From the initial state 1, adding the orange link in state 2
reduces one internal DoF (∆i =−1, ∆r = 0). In state 3, the green links reduces the NCC, but there is one more internal mechanism (∆i = +1, ∆r =−3). In
state 4, the red link freezes the two internal mechanisms, making the system rigid (∆i =−2, ∆r = 0). Finally, in states 5 and 6, the link added is redundant.
Neither type of DoF is changed (∆i = 0, ∆r = 0). (J) For a system of size L = 30, as links are added randomly, their influence on DoF is shown in terms of the
proportion of each type of link in A during this process.

almost fully connected, while the number of internal mechanisms
remains large (similar to the diluted rotating square system as
described in a recent paper (19); see SI Appendix, section S3 for
more details). Indeed, from the ratio of the internal DoF and
the total DoF mint/mtot (Fig. 3H), we see that the fraction of
internal DoF is large for a range of link density, consistent with
the intuition that there are more rotational modes within each
connected component of kirigami than rigid-body modes of the
component.

Constraint Redundancy. We have seen that, when links are added
to the system, they do one of three things: change the total DoF,
change the internal DoF, or are simply redundant. This notion is
generic to a number of different systems made of discrete com-
ponents with constraints; indeed, recently, we showed that this is
also true for origami (20). To address the question here, instead
of randomly generating link patterns, we start with no links and
add links one by one. At each step, if the DoF of the system does
not change after a link is added, we define this link as a redun-
dant link. Otherwise, we define it to be nonredundant. We can

further classify these nonredundant links by examining how they
change the internal DoF. We denote the change of total DoF as
∆t , the change of rigid-body DoF (type b) as ∆r , and the change
of internal DoF (type a) as ∆i . It turns out that the only possible
combinations of (∆i , ∆r ) are (−2, 0), (−1, 0), (0, 0), (+1,−3),
the third of which is defined as redundant (SI Appendix, section
S3). In Fig. 3I, we show a schematic of the four types of links
classified above. Starting from the original configuration (step
1), there are two connected components, each with three type b
DoF. The larger component also has two internal DoF. The
orange link, after being added to the kirigami system, reduces
one internal DoF (Fig. 3I, step 2). The green link connects the
two components afterward, so ∆r =−3, and ∆i = +1. There
is one more internal mode (Fig. 3I, step 3). In step 4, the red
link freezes the two rotational modes simultaneously, making the
whole system rigid. Finally, in steps 5 and 6, the links added are
redundant, as they do not change DoF.

We now apply this link-by-link examination to a larger kirigami
system with L= 30. We define the redundancy r in the system
as the ratio of the number of redundant links over the number
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Fig. 4. (A and B) The change in the total DoF mtot and the internal DoF
mint by randomly removing or adding links, starting from (A) an MRP or a
random link pattern and (B) an MCP or a random link pattern. (C and D) The
change in the total NCC T by randomly removing or adding links, starting
from (C) an MRP or a random link pattern and (D) an MCP or a random link
pattern.

of all unconnected links. Initially, most of the links are nonre-
dundant, as they are all independent, and each of them adds
one internal mode, since they connect two disconnected com-
ponents (such as Fig. 3I, steps 2 and 3). After the connectivity
percolation, the links that reduce the internal DoF become dom-
inant, and, eventually, most additional links become redundant.
The fraction of redundant links nLink/nmax has a transition near
ρ= 0.45 (Fig. 3J), consistent with the rigidity percolation thresh-
old ρr , suggesting that, after the rigidity percolation, most of the
links become redundant. This observation shows how each added
link affects the rigidity of kirigami; for example, when ρ≈ 0.4,
each added link reduces the internal rotational DoF, rather than
connecting two connected components, and, when ρ≈ 0.6, the
system is almost connected and rigid because most new links
added will be redundant.

Combining Two Approaches. Deterministic control enables us to
achieve certain DoF and NCC precisely based on MRPs and
MCPs, while statistical control makes it possible to achieve more
combinations of DoF and NCC but only in a random sense. It is
natural to ask whether we can combine these two approaches
to take advantage of both of them. Given a link density ρ,
we start with an MRP (or MCP) and randomly add/remove
4L(L− 1)|ρ− ρr | (or 4L(L− 1)|ρ− ρc |) links. The experiment
is repeated 100 times, and the average mint, mtot, T , and N for
different ρ are recorded.

For DoF, since all links in MRPs are nonredundant, randomly
removing links from them results in a linear change of mtot

(Fig. 4A). More interestingly, starting from an MCP, both adding
and removing links randomly result in a decrease of the internal
DoF mint (Fig. 4B), which can be explained by our construction

of MCPs (SI Appendix, Fig. S3). In fact, this is the largest inter-
nal DoF that can be achieved. For NCC, T increases gradually
as links are removed from MRPs (Fig. 4C). By contrast, a sharp
transition of T can be observed as links are removed from MCPs
(Fig. 4D). Overall, by combining the deterministic and statistical
control, we can achieve a wider range of DoF and NCC, and var-
ious behaviors under a perturbation of link density (SI Appendix,
section S4).

Discussion
Our study of rigidity and connectivity in kirigami was made pos-
sible by the realization of a one-to-one mapping between the
cutting problem and an equivalent linkage problem. This allowed
us to provide a bottom-up hierarchical algorithm to construct
MRPs and MCPs, which allow us to rigidify and connect kirigami
tessellations optimally. The MRPs and MCPs also provide us
with a simple method for obtaining a kirigami system with any
given DoF or NCC. Overall, this suggests that we can exquisitely
control the rigidity and connectivity of kirigami with the topology
of prescribed cuts.

At a more coarse-grained level, we also show how to con-
trol connectivity and rigidity by tuning the density of links. We
find three critical thresholds: the density for maximum internal
DoF (ρi), for connectivity percolation (ρc), and for rigidity per-
colation (ρr ), with ρi <ρc <ρr , providing guidance for tuning
the link density to achieve different mechanical properties. For
example, one can control the ratio of high-frequency and low-
frequency modes by choosing the link density above or below the
connectivity percolation, since the low-frequency mode sets in
when ρ>ρc , and the remaining high-frequency modes decrease
significantly once ρ>ρr , the rigidity percolation threshold, with
relevance for mechanical allostery (25, 26). Alternatively, since
more and more links become redundant when ρ>ρi , it is pos-
sible to change the DoF by rearranging the positions of links.
For example, according to Fig. 3J, if we remove redundant links
(brown) and add links that reduce the internal DoF by 1 (red),
we reduce the total DoF by 1 while keeping the total num-
ber of links the same, thereby changing the DoF information
using the same amount of materials; indeed this might allow for
click kirigami (i.e., with reversible links) to be a substrate for
mechanical information storage, similar to origami (20).

In a broader context, our theoretical study on the rigidity and
connectivity in kirigami complements recent developments in the
design and fabrication of physical kirigami structures (8, 27–30),
by providing guidelines for their control via internal rotational
mechanisms, similar to that seen in origami (31). Two natu-
ral future paths are to investigate functional devices that might
exploit this and to explore the generalization of these arguments
to 3D kirigami with polyhedra (32) in the context of architectural
and structural design.

Data Availability Statement. Codes related to this paper have
been deposited in the GitHub repository (https://github.com/
garyptchoi/kirigami-control).
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S1. Rigidity of quad kirigami with prescribed cuts

Determining the DoF of a quad kirigami with a given link pattern.

Edge length constraint For each quad Q = {x1,x2,x3,x4} of an L× L quad kirigami, there are five constraints concerning
length for ensuring the quad is rigid. They consist of four edge constraints and one no-shear constraint:

gedge(x1,x2) = ||x1 − x2||2 − l2 = 0,
gedge(x2,x3) = ||x2 − x3||2 − l2 = 0,
gedge(x3,x4) = ||x3 − x4||2 − l2 = 0,
gedge(x4,x1) = ||x4 − x1||2 − l2 = 0,
gedge(x1,x3) = ||x1 − x3||2 − 2l2 = 0,

[S1]

where l is the length of the quad. Therefore, there are in total 5L2 length constraints in the L× L kirigami.

Link constraint For a given link pattern on the L×L kirigami, each link between two nodes xi and xj give one link constraint

xi − xj = 0, [S2]

which can be written as {
glinkx (xi,xj) = xi1 − xj1 = 0,
glinky (xi,xj) = xi2 − xj2 = 0, [S3]

where xi = (xi1 , xi2) and xj = (xj1 , xj2). Therefore, for a link pattern with n links, there are in total 2n link constraints.
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Calculating DoF We first show that the decrease in total DoF by adding one link is either 0, 1, or 2. Consider a simple example
of two separate quads as shown in Fig. S1a-b. Each quad has 3 DoF (2 translational and 1 rotational). When these two quads
are connected by a link (Fig. S1a), one of the vertices loses 2 translational DoF and hence the total DoF of them changes
from 6 to 4 (change of 2). When the other link is further added between the two quads (Fig. S1b), one of the quads loses 1
rotational DoF and hence the total DoF of them changes from 4 to 3 (change of 1). There are also redundant links which do
not change the DoF (change of 0) (e.g. 5 in Fig. 1B in the main text, assuming all other links are present).

In fact, Fig. S1a shows a situation where all of the constraints are independent, and removing any constraint will result in
extra DoF(s). Fig. S1b shows a situation where the edge length constraint for one of the two edges in between the quads is
redundant. This suggests that, in order to calculate the DoF, all the edge length constraints and link constraints should be put
together to determine the number of independent constraints.

Therefore, we put all edge length constraints and link constraints in the rigidity matrix A. Each constraint can be written
as g(x) = 0, where g is a function of the 8L2 coordinates of all nodes x. Define the rigidity matrix A to be a (5L2 + 2n)× 8L2

matrix where each entry of A is
Aij = ∂gi(x)

∂xj
, [S4]

and gi is a length or link constraint (i ∈ [1, 5L2 + 2n]), and j ranges from 1 to 8L2. The matrix is rather sparse, since each link
involves at most two nodes (4 coordinates), so there are at most 4 non-zero entries per row in A.

To determine the DoF of the system from the rigidity matrix A, we subtract the number of independent constraints from
8L2. In other words, we have

DoF = 8L2 − rank(A). [S5]

Detailed proof of Theorem 1. Recall that δ(L) is defined to be the minimum number of links for rigidifying an L × L quad
kirigami, and a minimum rigidifying link pattern (MRP) is defined to be a link pattern with δ(L) links which rigidifies the
L× L kirigami. Theorem 1 in the main text states that for all positive integer L,

δ(L) =
⌈

3L2 − 3
2

⌉
. [S6]

In this section, we give the detailed proof of the above theorem.
For L = 2, 3, 4, 5, 7, we have proved the equality by explicitly designing link patterns with

⌈
3L2−3

2

⌉
links (see Fig. 2A in the

main text). To verify that they are rigidifying link patterns (i.e. DoF = 3), the rigidity matrix rank computation introduced in
the previous subsection is used. The methods for obtaining these patterns are described in Section S6.

For some larger L, we observe that it is possible to construct an MRP by combining the MRPs for smaller L. For example,
for L = 6, we can treat the 6× 6 kirigami as 4 large blocks of 3× 3 quads. We take an MRP with 12 links to rigidify every
block, and then connect the 4 large blocks by an MRP with 5 links to rigidify the 4 large blocks. This results in a link pattern
to rigidify a 6× 6 kirigami (see Fig. 2B in the main text), with the total number of links being

12× 4 + 5 = 53 =
⌈

3(62)− 3
2

⌉
. [S7]

Similarly, for 9× 9 we just treat it as 9 large blocks of 3× 3 sub-patterns and we can construct a link pattern to rigidify a
9× 9 kirigami, with the total number of links being

12× 9 + 12 = 120 =
⌈

3(92)− 3
2

⌉
. [S8]

The construction of a minimum 12 × 12, 18 × 18 and 27 × 27 kirigami can be done in a similar manner, with the total
number of links respectively being

12× 16 + 23 = 215 =
⌈

3(122)− 3
2

⌉
. [S9]

120× 4 + 5 = 485 =
⌈

3(182)− 3
2

⌉
. [S10]

120× 9 + 12 = 1092 =
⌈

3(272)− 3
2

⌉
. [S11]

We call this method of constructing MRPs using the patterns with small size the hierarchical construction. More rigorously,
the hierarchical construction method suggests the following theorem:

Theorem S1 For L = 2k
∏
pni

i where k = 0, 1, 2, pi are odd primes that satisfy δ(pi) =
⌈

3p2
i−3
2

⌉
, and ni are nonnegative

integers, we have δ(L) =
⌈

3L2−3
2

⌉
.
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Fig. S1. Constructing minimum rigidifying pattern in quad kirigami. a-b An example showing that the length constraints might not be independent of the link constraints.
a When there is only one link between two quads, all of these constraints are independent. b When the other link is added, one of the edge length constraint becomes
redundant (shown in dashed line). Removing that constraint does not change the DoF. c An illustration of the 23−2 × 23−2 = 4 large blocks for a 23 × 23 quad kirigami. d
An illustration of the 24−2 × 24−2 = 16 large blocks for a 24 × 24 quad kirigami. The blocks are all with size 5 × 5, 5 × 3, 3 × 5, 3 × 3. e-h Possible ways to partition of
the 11 × 11, 13 × 13, 17 × 17 and 19 × 19 quad kirigami patterns into large blocks with size 5 × 5, 5 × 3, 3 × 5, 3 × 3.

Proof. For k = 0, we construct an MRP hierarchically as described below. Suppose L1, L2 are two odd numbers satisfying
δ(L1) =

⌈
3L2

1−3
2

⌉
and δ(L2) =

⌈
3L2

2−3
2

⌉
. We construct a link pattern for L1L2 by treating the L1L2 × L1L2 quads as L2 × L2

large blocks of L1 × L1 quads. For every block of L1 × L1 quads we use an MRP for L1 to rigidify the block. Then, for the
L2 × L2 large, rigidified blocks, we can just consider them altogether as an L2 × L2 pattern and use an MRP for L2 to rigidify
them. This hierarchical construction results in a link pattern that rigidifies an L1L2 × L1L2 kirigami. Note that the total
number of links is

L2
2δ(L1) + δ(L2) = L2

2

⌈
3L2

1 − 3
2

⌉
+
⌈

3L2
2 − 3
2

⌉
= L2

2
3L2

1 − 3
2 + 3L2

2 − 3
2 = 3L2

1L
2
2 − 3

2 =
⌈

3L2
1L

2
2 − 3

2

⌉
. [S12]

This implies that δ(L1L2) =
⌈

3L2
1L2

2−3
2

⌉
. By induction, we can construct an MRP for any L =

∏
pni

i .

For k = 1, we first use the above argument to construct an MRP for L̃ =
∏
pni

i . Then, we treat the 2L̃× 2L̃ quads as 4
large blocks of L̃× L̃ quads and rigidify the 4 blocks using an MRP for a 2× 2 kirigami. The total number of links in the
entire link pattern is

22δ(L̃) + δ(2) = 4
⌈

3L̃2 − 3
2

⌉
+ 5 = 43L̃2 − 3

2 + 5 = 3(2L̃)2 − 12 + 10
2 = 3(2L̃)2 − 2

2 =
⌈

3(2L̃)2 − 3
2

⌉
. [S13]

For k = 2, we first use the above argument to construct an MRP for L̃ =
∏
pni

i . Then, we treat the 4L̃× 4L̃ quads as 16
large blocks of L̃× L̃ quads and rigidify the 16 blocks using an MRP for a 4× 4 kirigami. The total number of links in the
entire link pattern is

42δ(L̃) + δ(4) = 16
⌈

3L̃2 − 3
2

⌉
+ 23 = 163L̃2 − 3

2 + 23 = 3(4L̃)2 − 48 + 46
2 = 3(4L̃)2 − 2

2 =
⌈

3(4L̃)2 − 3
2

⌉
. [S14]

�

Corollary 1 There exists infinitely many L such that δ(L) =
⌈

3L2−3
2

⌉
.
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Proof. By explicit construction of link patterns, we have shown that δ(L) =
⌈

3L2−3
2

⌉
for L = 3, 5, 7. Therefore, the set{

pi : pi is an odd prime s.t. δ(pi) =
⌈

3p2
i−3
2

⌉}
is non-empty. Then, the result follows immediately from the above theorem. �

Remark: This hierarchical construction method may not work when the sub-patterns are with certain even size. The
reason is that the rounding error in

⌈
3(272)−3

2

⌉
may accumulate and lead to redundant links. For example, treating a 18× 18

kirigami as 9 large blocks of 6× 6 quads does not result in the optimal lower bound, since in the L = 6 case there is redundancy
when we add the 5 links for the 2× 2 construction.

It is also noteworthy that the construction of MRPs for larger powers of 2 is particularly difficult, as we cannot apply the
above idea of hierarchical construction from smaller powers of 2 due to the accumulated rounding error. To overcome this
problem, we consider generalizing the above-mentioned hierarchical construction method for rectangular blocks. We first extend
the definition of δ for general rectangular kirigami pattern by defining δ(M,N) as the minimum number of links required for
rigidifying a M ×N kirigami. It is easy to see that the lower bound for δ(M,N) is

δ(M,N) ≥
⌈3MN − 3

2

⌉
. [S15]

By explicit construction, we obtained a rigidifying link pattern for 3× 5 quad kirigami with 21 links (see Fig. 2A in the
main text) and hence we have δ(3, 5) = 21 =

⌈ 3(3×5)−3
2

⌉
. With this result, we are ready to prove the following theorem:

Theorem S2 For any positive integer n, we have

δ(2n) =
⌈

3(2n)2 − 3
2

⌉
. [S16]

Proof. We have already proved the case for n = 1, 2 by manual construction. We prove the statement for the remaining n by
induction. Suppose the statement is true for n = k − 2, i.e.

δ(2k−2) =
⌈

3(2k−2)2 − 3
2

⌉
. [S17]

For n = k, we treat the 2k × 2k kirigami as 2k−2 × 2k−2 large blocks with size 5× 5, 5× 3, 3× 5, 3× 3 (see Fig. S1c-d for
an illustration for k = 3 and k = 4). By taking an MRP for rigidifying each of the blocks and an MRP for rigidifying the
2k−2 × 2k−2 large blocks, we obtain a link pattern for rigidifying the 2k × 2k kirigami. The total number of links is

2k−2 × 2k−2

4 × (δ(3) + δ(5, 3) + δ(3, 5) + δ(5)) + δ(2k−2)

= 22k−6 × (12 + 21 + 21 + 36) +
⌈

3(2k−2)2 − 3
2

⌉
= 45(22k−5) + 3(22k−5)− 1 = 48(22k−5)− 1 = 3(2k)2 − 2

2 =
⌈

3(2k)2 − 3
2

⌉
.

[S18]

This implies that δ(2k) =
⌈

3(2k)2−3
2

⌉
. By induction, the statement holds for all n. �

Combining Theorem S1 and Theorem S2, it follows that δ(L) =
⌈

3L2−3
2

⌉
for L =

∏
pni

i where pi = 2, 3, 5, 7, . . . are primes

that satisfy δ(pi) =
⌈

3p2
i−3
2

⌉
and ni are nonnegative integers. Note that here we still need to assume the optimality of δ for a

prime pi so as to construct the MRPs for its multiple. To further relax this assumption, we make use of the following lemma:

Lemma 1 Any odd number L ≥ 11 can be written as

L = 3m+ 5n [S19]

where m and n are nonnegative integers.

Proof. Note that 11 = 3 + 3 + 5, 13 = 3 + 5 + 5, 15 = 5 + 5 + 5 and 17 = 3 + 3 + 3 + 3 + 5. Also, for odd L ≥ 19, we can express
L = (L− 8) + 3 + 5. The result follows easily from induction. �

We then prove the following theorem:

Theorem S3 For all primes p ≥ 11,

δ(p) =
⌈

3p2 − 3
2

⌉
. [S20]
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Proof. We prove the theorem by induction. Suppose equality holds for all primes less than p. By Lemma 1, there exists
nonnegative integers m,n such that 3m+ 5n = p. Since p is odd, m+ n is also odd. Also, since m+ n < 3m+ 5n = p, m+ n
is either an odd prime or a product of odd primes which are smaller than p. It follows from the induction hypothesis, Theorem
S1 and Theorem S2 that

δ(m+ n) =
⌈

3(m+ n)2 − 3
2

⌉
. [S21]

Now, we treat the p× p kirigami as (m+ n)× (m+ n) large blocks with size 5× 5, 5× 3, 3× 5, 3× 3 (see Fig. S1e-h for
examples of constructing kirigami with L = 11, 13, 17, and 19). By taking an MRP for rigidifying each of the blocks and an
MRP for rigidifying the (m+ n)× (m+ n) large blocks, we obtain a link pattern that rigidifies the entire p× p kirigami. The
total number of links is

m2δ(3) + n2δ(5) +mnδ(5, 3) +mnδ(3, 5) + δ(m+ n)

=12m2 + 36n2 + 42mn+
⌈

3(m+ n)2 − 3
2

⌉
=12m2 + 36n2 + 42mn+ 3(m+ n)2 − 3

2 = 3(9m2 + 25n2 + 30mn)− 3
2 = 3(3m+ 5n)2 − 3

2 =
⌈

3p2 − 3
2

⌉
.

[S22]

It implies that δ(p) =
⌈

3p2−3
2

⌉
. By induction, the theorem holds for all primes p ≥ 11. �

Finally, using Theorem S1, Theorem S2, Theorem S3 and by induction, we have proved that δ(L) =
⌈

3L2−3
2

⌉
for all L: If

L = 2k
∏
pni

i where k ≤ 2, by Theorem S1 we are done. If k ≥ 3, we can construct an MRP for
∏
pni

i ×
∏
pni

i and an MRP for
2k× 2k using the three theorems above. Then, we treat the L×L quads as 22k large blocks of

∏
pni

i ×
∏
pni

i rigid kirigami and
rigidify the 22k blocks using an MRP for a 2k × 2k kirigami. The total number of links in the entire rigidifying link pattern is

22kδ
(∏

pni
i

)
+ δ(2k) = 22k

⌈
3
(∏

pni
i

)2 − 3
2

⌉
+
⌈

3(2k)2 − 3
2

⌉

= 22k
3
(∏

pni
i

)2 − 3
2 + 3(2k)2 − 2

2

=
3
(
2k
∏
pni

i

)2 − 3(22k) + 3(2k)2 − 2
2

= 3L2 − 2
2 =

⌈
3L2 − 3

2

⌉
.

[S23]

This completes the proof of Theorem 1 in the main text.
As a remark, by Theorem 1 we have

lim
L→∞

δ(L)
Total number of links in an L× L quad kirigami = lim

L→∞

⌈
3L2−3

2

⌉
4L(L− 1) = lim

L→∞

3L2/2
4L2 = 3

8 . [S24]

This implies that for large L, the MRPs for an L× L quad kirigami use approximately 3/8 of the total number of links.

Algorithmic procedure of the hierarchical construction. As illustrated by the flowchart in Fig. S2, given an arbitrary positive
integer L ≥ 2, the procedure for constructing an MRP for an L× L quad kirigami is as follows:

1. (Prime factorization) Compute the prime factorization L = 2k
∏m

i=1 p
ni
i where p1, p2, . . . , pm are distinct odd primes,

k ≥ 0 and ni ≥ 1 for all i (see Fig. S2, top left).

2. (MRPs for odd primes) For pi = 3, 5, 7, take the explicitly constructed MRP for pi × pi given in Fig. 2A in the main text.
For each pi ≥ 11, use the method in the proof of Theorem S3 to construct an MRP for pi × pi with the aid of blocks with
size 5× 5, 5× 3, 3× 5, and 3× 3 (see Fig. S2, top right).

3. (MRP for the product of all odd prime powers) Use the method in the proof of Theorem S1 to construct an MRP for
pni

i × p
ni
i for each i, and subsequently construct an MRP for

∏m

i=1 p
ni
i ×

∏m

i=1 p
ni
i using the hierarchical construction

(see Fig. S2, bottom right).

4. (MRP for the entire kirigami) If k = 0 we are done. If k = 1, 2, take the explicitly constructed MRP for 2k × 2k given in
Fig. 2A in the main text. If k ≥ 3, use the method in the proof of Theorem S2 to construct an MRP for 2k × 2k with the
aid of blocks with size 5× 5, 5× 3, 3× 5, and 3× 3. Finally, apply the method in the proof of Theorem S1 again to
construct an MRP for L× L by rigidifying the 2k × 2k large blocks with size

∏m

i=1 p
ni
i ×

∏m

i=1 p
ni
i (see Fig. S2, bottom

left).
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5 x 5

...

..
.

...

..
....

2200 = 23 x 52 x 11

11 x 11

5 x 5

5 x 5

2200

2200

(52 x 11) x (52 x 11)

11 x 11

23 x 23

2200 x 2200

5 x 5

5 x 5

11 x 11

Fig. S2. A flowchart of the hierarchical construction algorithm. To construct an MRP for an L × L = 2200 × 2200 quad kirigami, we first compute the prime factorization
2200 = 23 × 52 × 11 (top left). Then, we take the explicitly constructed MRP for 5 × 5 given in Fig. 2A in the main text, and construct an MRP for 11 × 11 using the method
in the proof of Theorem S3 (top right). After getting MRPs for all prime factors, we construct an MRP for (52 × 11) × (52 × 11), i.e. the product of all odd prime powers of L,
using the method in the proof of Theorem S1 (bottom right). Finally, we use the method in the proof of Theorem S2 to construct an MRP for 23 × 23, i.e. the largest even prime
power of L, and subsequently apply the method in the proof of Theorem S1 again to construct an MRP for the entire L × L = 2200 × 2200 kirigami (bottom left).

We remark that in Step 3 (the construction of MRP for the product of all odd prime powers), the order of the operations
is not important: one can either construct an MRP for 11 × 11 first and then put an MRP for 52 × 52 into each block (as
shown in the bottom right of Fig. S2), or construct an MRP for 52 × 52 first and then put an MRP for 11 × 11 into each
block. The order of the operations does not affect the validity of the resulting MRP. However, the operations in Step 4 are not
interchangeable: one must use an MRP for the largest power of 2 as the base pattern and put the MRP for the product of all
odd prime factors constructed in Step 3 into each block of the base pattern (as shown in the bottom left of Fig. S2). The
reason is that changing the order of the operations will violate the derivation for removing the ceiling functions in Eq. (S23),
and the resulting number of links will not be

⌈
3L2−3

2

⌉
anymore.
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L δ(L) Realization nr(L) nr(L)
/(

4L(L−1)
d(3L2−3)/2e

)
× 100%

2 5 Fig. 2A in the main text 12 (4 if assuming all boundary links) 21.428571%
3 12 Fig. 2A in the main text 140 (10 if assuming all boundary links) 0.005177%
4 23 Fig. 2A in the main text ≥ 182280 (182280 if assuming all boundary links) ∼ 0.000001%
5 36 Fig. 2A in the main text
6 53 Fig. 2B in the main text ≥ 1404 × 12 ≈ 4.6× 109 � 0.000001%
7 72 Fig. 2A in the main text
8 95 Fig. 2C in the main text
9 120 9 blocks with size 3× 3 ≥ 14010 ≈ 2.9× 1021 � 0.000001%
10 149 4 blocks with size 5× 5
11 180 Fig. 2D in the main text
12 215 16 blocks with size 3× 3 ≥ 14016 × 182280 ≈ 4.0× 1039 � 0.000001%
13 252 Fig. S1f
14 293 4 blocks with size 7× 7

15 336
25 blocks with size 3× 3 or

9 blocks with size 5× 5
16 383 Fig. S1d
17 432 Fig. S1g
18 485 4 blocks with size 9× 9 ≥ (14010)4 × 12 ≈ 8.4× 1086 � 0.000001%
19 540 Fig. S1h
20 599 16 blocks with size 5× 5
21 660 49 blocks with size 3× 3
22 725 4 blocks with size 11× 11
23 792 Similar to those in Fig. S1
24 863 64 blocks with size 3× 3
25 936 5 blocks with size 5× 5
26 1013 4 blocks with size 13× 13
27 1092 9 blocks with size 9× 9 ≥ (14010)10 ≈ 4.1× 10214 � 0.000001%

Table S1. The optimal lower bound for rigidifying link patterns δ(L), examples of realization, the number of MRPs nr(L) and the percentage
of MRPs compared to all possible patterns with exactly d(3L2 − 3)/2e links.

Enumeration of minimum rigidifying link patterns (MRPs). Denote the number of MRPs in an L× L kirigami by nr(L). Since
the total number of links in an L× L kirigami is 4L(L− 1) and an MRP must have exactly δ(L) =

⌈
3L2−3

2

⌉
links, there are in

total
( 4L(L−1)
d(3L2−3)/2e

)
possible combinations to examine for finding MRPs. For L = 2 and 3, by enumeration we can show that

there are respectively nr(2) = 12 and nr(3) = 140 MRPs. However, even for just L = 4 and 5, there are
(80

36

)
≈ 3× 1013 and(80

36

)
≈ 7× 1022 possibilities to examine. This shows that finding the exact number nr(L) of MRPs is difficult for large L.

One may simplify the computation by assuming that all boundary links are connected. For L = 2, with this assumption it
is easy to see that there are 4 MRPs. For L = 3, we have

(16
4

)
= 1820 combinations, among which we have found 10 MRPs

(for simplicity of computation we do not identify patterns with rotational or reflectional symmetry). However, even with
this assumption, for L = 4 we have

(36
11

)
≈ 6 × 108 combinations to examine, which took us several days to complete the

enumeration and obtain 182280 MRPs. For L = 5, there are
(64

20

)
≈ 2× 1016 combinations, which would require 100 years to

finish if each DoF calculation takes 10−5 seconds.
Nevertheless, we can make use of our hierarchical construction to obtain a lower bound for the total number of MRPs for

some large L. For example, since an MRP for 6× 6 can be constructed by treating it as four large blocks of 3× 3 quads as
shown in Fig. 2B in the main text, there are at least 1404 × 12 ≈ 4.6× 109 MRPs for a 6× 6 kirigami. Similarly, we can see
that there are at least 14010 ≈ 2.9× 1021 MRPs for a 9× 9 kirigami, 14040 × 12 ≈ 8.4× 1086 MRPs for a 18× 18 kirigami, and
(14010)10 ≈ 4.1× 10214 MRPs for a 27× 27 kirigami.

Table S1 shows a summary of the MRPs for L = 2, . . . , 27. By calculating the percentage of MRPs compared to all the
possible patterns with exactly d(3L2 − 3)/2e links, it can be observed that MRPs become more and more rare as L increases.
Hence, it is almost impossible to obtain an MRP by trial and error. This shows that the hierarchical construction is important
for providing us with explicit examples of MRPs.

S2. Connectivity of quad kirigami with prescribed cuts

After studying the link patterns for rigidifying a kirigami, we proceed to study the link patterns for connecting a kirigami, i.e.
making it a single connected component.

Detailed proof of Theorem 2. Recall that γ(L) is defined to be the minimum number of links for making an L×L quad kirigami
connected, and a minimum connecting link pattern (MCP) to be a link pattern with γ(L) links which makes the L×L kirigami
connected. Theorem 2 in the main text states that for all positive integer L,

γ(L) = L2 − 1. [S25]
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a b c

Fig. S3. An illustration of the construction of MCPs for L × L quad kirigami. Starting from an MCP for L = 2 (a), we add one link at each edge on the top and the right
boundary. This produces an MCP for L = 3 (b). Repeating the same procedure, we obtain an MCP for L = 4 (c).

L γ(L) nc(L) nc(L)
/(

4L(L−1)
L2−1

)
× 100%

2 3 32 57.142857%
3 8 49152 6.683064%
4 15 3288334336 0.300782%
5 24 9354438770687992 0.005765%
6 35 1.118943× 1024 0.000049%
7 48 5.593575× 1033 < 0.000001%
8 63 1.164278× 1045 < 0.000001%
9 80 1.006628× 1058 < 0.000001%

10 99 3.609203× 1072 < 0.000001%
Table S2. The optimal lower bound for connecting link patterns γ(L), and the number of MCPs nc(L), and the percentage of MCPs compared
to all possible patterns with exactly L2 − 1 links.

We prove the theorem by a constructive proof with induction. Clearly the statement is true for L = 1. Suppose it is true for
L = n. For L = n+ 1, we first connect the bottom left n× n quads using the link pattern given by the induction hypothesis.
For the remaining (n+ 1)2 − n2 = 2n+ 1 quads on the top row and the right column, we add one link at each edge on the top
and the right boundary of the n× n connected kirigami. This adds the remaining n quads on the top and the remaining n
quads on the right to the connected component. Finally, we add one more link to connect the top right quad to this component,
forming one single connected component of (n+ 1)× (n+ 1) quads (see Fig. S3 for an example to construct an MCP for L = 4
from an MCP for L = 2). The total number of links is

n2 − 1 + n+ n+ 1 = n2 − 1 + 2n+ 1 = (n+ 1)2 − 1, [S26]

and by induction the result follows. �
It is noteworthy that the hierarchical construction we introduced for obtaining MRPs is also applicable for MCPs. Let m,n

be two positive integers. Suppose we have an MCP for m×m and n× n. If we consider a mn×mn kirigami as m×m large
blocks of n× n quads, we can use the hierarchical construction method to obtain a connecting link pattern for the mn×mn
kirigami, with the total number of links being

m2γ(n) + γ(m) = m2(n2 − 1) + (m2 − 1) = (mn)2 − 1. [S27]

This shows that the constructed link pattern is an MCP for mn×mn.
As a remark, by Theorem 2 we have

lim
L→∞

γ(L)
Total number of links in an L× L quad kirigami = lim

L→∞

L2 − 1
4L(L− 1) = lim

L→∞

L2

4L2 = 1
4 . [S28]

This implies that for large L, the MCPs for an L× L quad kirigami use approximately 1/4 of the total number of links.

Enumeration of minimum connecting link patterns (MCPs). Denote the number of MCPs in an L× L kirigami by nc(L). It is
possible for us to obtain the exact number nc(L) of MCPs for an L× L kirigami using the Kirchhoff’s matrix tree theorem.
Suppose we construct the Laplacian matrix of the L × L kirigami by treating the L2 quads as vertices and the 4L(L − 1)
possible links as edges. Then, from the Kirchhoff’s theorem, the number of MCPs is

nc(L) = 1
L2

∏
λi, [S29]

where λi are the non-zero eigenvalues of the Laplacian matrix. Table S2 lists the results for L = 2, . . . , 10. Analogous to MRPs,
by calculating the percentage of MCPs compared to the all possible patterns with exactly L2 − 1 links, it can be observed
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Fig. S4. Connectivity and rigidity of kirigami with random link patterns. a For different kirigami with L = 10, 20, . . . , 100, number of connected components decreases first
linearly then sub-linearly with the number of links added. The slope in the linear regime is −1. b DoF decreases first linearly then sub-linearly with the number of links added.
The slope in the linear regime is −2. g The portion of the largest connected components in the system with the varying density of links. There is a percolation around 0.3. If we
sample densely from 0.1 to 0.5, we can pin down the percolation threshold is ρ∗ = 0.298 (inset). d-e NCC and DoF can vary widely in the sub-linear regime. The lighter
shade shows the minimum to maximum, while the darker shade shows the standard deviation. f-g The finite size scaling analysis for the rigidity percolation. The peak of
the second derivative of m is linear in 1/L (f), while the peak DoF scales as L2 (g). h Starting from MRP (similar to Fig. 4 in main text), the size of the largest connected
component is larger than the random case. i Starting from MCP, the size of the largest connected component even larger. j The dual lattice for calculating the percolation
threshold. For the two links connecting two neighboring quads in the original lattice (blue), there are two links in the dual lattice (red) connecting another pair of neighboring
quads. k When there is percolation in the original lattice from left to right, there is no percolation in the dual lattice from top to bottom.

that MCPs become more and more rare as L increases. Hence, it is almost impossible to obtain an MCP by trial and error.
Nevertheless, the hierarchical construction again provides us with a method for explicitly constructing MCPs for large L.

For example, we can treat a 4× 4 kirigami as four large blocks of 2× 2 quads and perform the hierarchical construction
using all possible combinations of MCPs for L = 2. This gives 324 × 32 ≈ 3.4× 107 MCPs, which indicates that there are at
least 3.4× 107 MCPs for L = 4. Comparing this result with the exact number nc(4) = 3288334336 given by the Kirchhoff’s
theorem, we observe that the hierarchical construction is only able to cover around 1% of all MCPs for 4× 4. Similarly, for
L = 6, by hierarchical construction we are able to obtain 491524 × 32 ≈ 1.9× 1020 MCPs, which is around 0.02% of the exact
number nc(6) = 1.118943× 1024 given by the Kirchhoff’s theorem. This shows that while the hierarchical construction provides
an effective way to construct MCPs, there are still a large number of MCPs which are not covered by this method.

S3. Connectivity and rigidity of quad kirigami with random cuts

Numerical simulations.

Random pattern Recall that the link density of a link pattern for an L× L kirigami is ρ = c
4L(L−1) , where c is the number of

links. We vary the link density ρ from 0 to 1. At each given ρ, we randomly generate 200 patterns and calculate the number of
connected components, size of the largest connected component, and the DoF using the rigidity matrix calculation described in
Section S1.
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Calculating number of connected components To calculate the number of connected components (T ), we treat the quads as
nodes and links as edges, and use the depth-first search algorithm in the resulting network. The size of the largest cluster (N)
is the number of quads in the largest cluster. The number of internal DoFs is

mint = mtot − 3T, [S30]

where the factor 3 comes from two rotational DoFs and one translational DoF from each connected component.

Change of connectivity and rigidity.

Linear regime In the main text, we show the change of number of connected components (T ) and DoF (m) with the link
density. These two quantities first decrease linearly and then sub-linearly. Initially, when ρ is small, most of the quads are
disconnected. Adding a link will reduce 1 connected components and 2 DoFs (reducing 3 rigid body DoFs from one connected
component, but adding one rotational DoF (∆i = +1,∆r = −3). Therefore, if we use the number of links rather than the
density as x-axis, the slope of T vs c is −1 (Fig. S4a) while the slope of m vs c is −2 (Fig. S4b).

Sub-linear regime In the sub-linear region, the average DoF and number of connected components decrease sub-linearly. At
each given density, however, the possible values vary in a wide range. In Fig. S4d-e, we show the standard deviation, maximum,
and the minimum of T and m. The brighter shade shows the range (minimum to maximum), while the darker shade shows the
standard deviation. The wide shades suggest that different link patterns with the same number of links can have significantly
different DoFs and number of connected components.

Connectivity percolation In a random network where each bond is present with probability p, bond percolation is a state where
there is a connected path from one side to the other. It is also the state where the size of the largest connected component
becomes dominant in the system. In order to calculate the analytical ρc, we transform the N/L2 percolation into the connecting
path percolation problem. To illustrate the process, imagine the quads are shrunk and links are elongated in a kirigami with
size L× (L+ 1) (Fig. S4g blue lattice). Now consider a dual lattice (red) which is the same as the original one, but rotated 90
degrees (or with size (L+ 1)× L, and aligned properly so that each pair of links in dual lattice is on top of a pair of links in
the original lattice except at the boundary. We define the rule of percolation in blue lattice as there is at least one connected
path from left to right, and the percolation in the red lattice as having one path from top to bottom. Furthermore, the rule for
linking the two neighboring sites in the dual lattice: the two red links between neighbor sites in dual lattice are considered
connected when and only when neither of the corresponding blue links are connected in the original lattice.

Therefore, the probability of having percolation in the blue lattice, is equal to the probability of not having percolation in
the red lattice, since any horizontal connected path in the blue lattice will block any vertical connected path in the red lattice.
For example, Fig. S4h) shows a connected path (marked as darker blue) from left to right, which separates the red dual lattice
into two parts. Thus, there is no connected path from top to bottom.

Therefore, denote P as the probability of percolation, as a function of the probability of neighbor site connection. Assume
that each link is present with probability ρ in the blue lattice, the probability of connecting two neighbors is ρ2 + 2ρ(1− ρ).
(Note that ρ is the link density, and it can be interpreted as the probability that one link is connected.) The probability
of having percolation in the blue lattice is thus P [ρ2 + 2ρ(1− ρ)]. On the other hand, in the red lattice, the probability of
connecting two neighbors is only when the corresponding two blue sites are not connected: two blue links are not present at
the same time with probability (1− ρ)2. Now, based on the definition of the percolation above, we have

P [ρ2 + 2ρ(1− ρ)] = 1− P [(1− ρ)2]. [S31]

In percolation theory, in the large N limit, the transition is sharp, which suggests that P behaves like a step function near
ρc. If we let P [x] = 1/2, the corresponding x must equal to the critical linking probability.

When P = 1/2, we have P [ρ2 + 2ρ(1− ρ)] = P [(1− ρ)2], which is equivalent to

ρ2 + 2ρ(1− ρ) = (1− ρ)2. [S32]

Solving this equation yields the critical link density (linking probability)

ρc = 1− 1√
2

= 0.293. [S33]

In the main text, we have shown this percolation behavior for different system size L. The percolation happens around 0.3
and the portion of the dominant cluster becomes very close to 1 after 0.5 (Fig. S4c). In addition, for L = 100, we sample
densely from ρ = 0.1 to ρ = 0.5, and calculate the more accurate numerical ρc to be 0.298, which agrees very well with our
analytical result (Fig. S4c inset).

Rigidity percolation We have shown that the rigidity percolation threshold actually shifts to the left as the system size increases
(Fig. 3G in main text). We use a denser sampling to calculate this peak more accurately, and found that the rigidity percolation
threshold ρr is linear in 1/L (Fig. S4f). When L is large, it will converge to around 0.422, suggesting that this is a mean-field
problem. The DoF at the rigidity percolation threshold scales with L2 (Fig. S4g).
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Internal rotational DoF Recently, Lubbers and van Hecke (1) discussed the excess floppy modes in the symmetric geometries
compared to the generic case. While our work focuses on other perspectives of rigidity and connectivity and does not consider
generic perturbations to the shapes in our system, we find that the excess floppy modes do behave in a similar way as our
internal rotational DoF. It might be interesting to start from this “maximally flexible” state, and design multi-branched
deformation pathways, similar to that in origami (2, 3).

Redundancy of links and information storage. Each link added to the kirigami may change the DoF and NCC in a different
way. As we defined in the main text, ∆t represents the change of total DoF for a link added, ∆i shows the change in the
internal DoF (type (b)), and ∆r represents the change in rigid body DoF (type (a)). It follows that ∆t = ∆r + ∆i. Since the
rigid body DoF is equal to 3 times NCC (T ), ∆r can only have two values {0,−3}. ∆t is restricted to 0,−1,−2, since each
link adds at most two independent constraints. In addition, ∆i ≤ 1, since there is at most one additional internal mode added
when two clusters connect. Therefore, the only possible combinations of (∆i,∆r) are (−2, 0), (−1, 0), (0, 0), (+1,−3). When
the third case happens, the link is defined as “redundant”.

We have shown how the redundancy in the system changes with the link density in the main text. Here we outline the
details of this link adding process. Instead of randomly generating link patterns at a given link density, we start from zero link,
and add links one by one. At each step, we check whether each of the remaining unconnected links is redundant (∆t 6= 0, as
defined above). After all of the free links have been checked, we randomly pick one and add the real link. This process is
repeated until all the links are added.

In this process, the number of free links nfree decreases linearly, and it can be classified into four types nredundant, nint+1,
nint−2, nint+1(redundant, reducing internal DoF by 1, reducing internal DoF by 2, increasing internal DoF by 1). As shown in
Fig. 4b, the four types of the links have peaks at different link density.

S4. Simultaneous control of rigidity and connectivity

By making use of the MRPs and MCPs constructed using our methods, we can achieve a certain level of control in both rigidity
and connectivity by adding links to or removing links from MRPs and MCPs. Below, we describe precisely how NCC and DoF
can be controlled simultaneously.

Simultaneous control of NCC and DoF using MRPs. Note that for any L×L MRP obtained using our hierarchical construction
method, adding or removing links that connect the rigid sub-blocks does not change the NCC and DoF within the sub-blocks.
Therefore, if d is a factor of L, we can reverse the process of the hierarchical construction and only remove certain “key links”
(links that connect the rigid sub-blocks) from the MRP, so that we can control both the NCC and NDoF precisely: It is possible
for us to get NCC = 1, 2, . . . , d2, and at the same time DoF can go from 3 to 3d2. During this process, many combinations of
NCC and DoF can be achieved.

For instance, consider an MRP of an 18× 18 kirigami, which can be constructed by adding δ(2) = 5 key links that connect
four sub-blocks of 9× 9 MRPs. If we remove one of the five key links connecting the four sub-blocks, the NCC will remain
unchanged while the DoF will increase by 1 or 2. By removing two of the five key links, the NCC will remain unchanged or
increase by 1, while the DoF will increase by 3 or 4. As the process continues, finally all the five key links are removed and the
DoF of each sub-block is 3. Therefore, we achieve a system with NCC = 4 and DoF = 3× 22 = 12. To summarize, all possible
combinations of NCC and DoF achieved in this process of removing some of the key links from an 18× 18 MRP are:

• NCC = 1, DoF = 3 (original), 4, 5 (removing 1 key link), 6 (removing 2 key links);

• NCC = 2, DoF = 7 (removing 2 key links), 8 (removing 3 key links);

• NCC = 3, DoF = 9 (removing 3 key links), 10 (removing 4 key links);

• NCC = 4, DoF = 12 (removing 5 key links).

In other words, by manipulating only 5 links out of the δ(18) = 485 links in an 18× 18 MRP, we can achieve these combinations
of NCC and DoF. Furthermore, the above process is also applicable for each of the sub-blocks of 9 × 9 MRPs. Therefore,
our hierarchical construction method for MRPs enables the simultaneous control of NCC and DoF with a large number of
combinations.

One may also be interested in changing DoF while keeping NCC as small as possible, which can indeed be achieved by
making use of the MRPs obtained using our hierarchical construction method. Recall that in our hierarchical construction
method, we always rigidify sub-blocks with odd size, in which each link changes the DoF by exactly 2. Therefore, if we remove
a link from any rigid sub-block in an MRP, the DoF will increase by exactly 2 while the NCC will remain unchanged. We can
continue this process until the total number of links reaches the connectivity percolation threshold. In other words, NCC = 1
and DoF = 2k + 3 can be achieved simultaneously by removing k links, where k is small enough such that δ(L)− k is much
higher than the connectivity percolation threshold (4L(L− 1)ρc) (see the dashed lines in Fig. 4A and 4C in the main text).
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Simultaneous control of NCC and DoF using MCPs. As for the MCPs of an L×L kirigami, we always have NCC = 1 and DoF
= 3L2 − 2(L2 − 1) = L2 + 2 (since each link decreases the DoF by 2, and there are L2 − 1 links in an MCP). By removing each
link from an MCP, the NCC increases by 1 and the DoF increases by 2. In other words, we can achieve a system with NCC
= k + 1 and DoF = L2 + 2k + 2 by removing any k links from an MCP. As for adding a link to an MCP, note that the NCC
will not be changed, while the DoF will decrease by 2 until the total number of links reaches the rigidity percolation threshold.
Therefore, NCC = 1 and DoF = L2 − 2k + 2 can be achieved simultaneously by adding k links to an MCP, where k is small
enough such that γ(L) + k is much smaller than the rigidity percolation threshold (4L(L− 1)ρr) (see the dashed lines in Fig.
4B and 4D in the main text).

Simultaneous control using random cuts. The methods above provide a way to precisely control both the DoF and NCC but
are limited to certain ranges of link density. When the link density goes beyond those ranges, one can still control the DoF
and NCC using Fig. 3D, 3E, and 4 in the main text as a guideline. For example, based on Fig. 3D and 3E in the main text,
one can achieve different combinations of DoF and NCC by tuning the link density ρ. In particular, around ρi, the internal
rotational DoF reaches the maximum. When higher internal rotational DoF is required, or when the condition in the section
above (γ(L) + k � 4L(L− 1)ρr) does not hold, Fig. 4B still provides the average total DoF and internal DoF in the structure.

In addition, using the same procedure as in Fig. 4 in the main text, we plot the size of the largest connected component as
a function of link density (by adding or removing links randomly starting from an MRP or MCP). Since the link density of
MCP is smaller than the connectivity percolation threshold (ρc), the transition also happens earlier in the MCP case (Fig. S4i).
Starting from MRP, the connectivity transition is similar to the random case, except that it reaches 1 earlier, as MRP is
connected itself.

S5. Extension to kagome kirigami

Our analysis on the rigidity and connectivity of quad kirigami can be extended to kagome kirigami, which consists of triangles
instead of quads.

We first study the rigidity and connectivity of the rectangular kagome kirigami, in which the number of triangles in each
row (and each column) is the same (see Fig. S5a-e for examples).

Rigidity of rectangular kagome kirigami with prescribed cuts. Suppose we have an L × L rectangular kagome kirigami. For
the rigidity of rectangular kagome kirigami, we note that there are three edge constraints for each triangle but no no-shear
constraint. The construction of the rigidity matrix A is similar to that with the case of quad kirigami. This time, since there
are in total 6L2 variables for the coordinates of all nodes, the DoF is given by

DoF = 6L2 − rank(A). [S34]

Denote the minimum number of links required for rigidifying an L× L kagome kirigami by δ∆(L). Note that the total DoF
is clearly 3L2, and the introduction of each link can again lead to a change in DoF by 0, 1, 2. Therefore, we again have the
following lower bound for δ∆(L):

δ∆(L) ≥
⌈

3L2 − 3
2

⌉
. [S35]

Analogous to the case of quad kirigami, we can prove that in fact the lower bound is always achievable, i.e.

Theorem S4 For all positive integer L,

δ∆(L) =
⌈

3L2 − 3
2

⌉
. [S36]

Proof. We use the same approach as in the proof of Theorem 1.
As shown in Fig. S5a-e, we first design rigidifying link patterns with exactly

⌈
3L2−3

2

⌉
links for L = 2, 3, 4, 5, 7. We have

verified these patterns using the rigidity matrix rank computation that the DoF is 3. This shows that δ∆(L) =
⌈

3L2−3
2

⌉
for

L = 2, 3, 4, 5, 7. The method for finding these patterns are explained in Section S6.
Then, note that the proof of Theorem S1 is directly applicable in the case of kagome kirigami. Hence, we have established

the same result as Theorem S1 for kagome.
Next, we proceed to show that the lower bound can be achieved for L = 2n. Analogous to the proof of Theorem S2, we

generalize the definition of δ∆ for rectangular kagome kirigami with size M ×N , and design MRPs for 3× 5 and 5× 3 kirigami
with exactly

⌈
3MN−3

2

⌉
= 21 links (Fig. S5f-g). With these examples, we can decompose a 2n × 2n kagome kirigami into blocks

of 5× 5, 3× 3, 5× 3 and 3× 5 kagome kirigami. Using the MRPs for these sizes and the hierarchical construction, we can
prove by induction that the lower bound is achievable for L = 2n and hence obtain the same result as in Theorem S2.

Finally, we follow the same argument as in the proof of Theorem S3 to prove that the lower bound is achievable for all
prime p ≥ 11. Using all the above results and induction, we have proved that δ∆(L) =

⌈
3L2−3

2

⌉
for all L. �

We perform the same procedure as in the previous discussion and consider the enumeration of all MRPs for kagome kirigami.
Table S3 summarizes the results. Comparing the number of MRPs for quad and kagome kirigami, one can see that the kagome
kirigami possesses less MRPs. This can be explained by the floppiness of the kagome kirigami.
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Fig. S5. Explicit construction of MRPs for L × L rectangular kagome kirigami with L = 2 (a), L = 3 (b), L = 4 (c), L = 5 (d), L = 7 (e), and M × N rectangular
kagome kirigami with (M,N) = (3, 5) (f), (M,N) = (5, 3) (g). h An illustration of obtaining MRPs for rectangular kagome kirigami using hierarchical construction. A
6 × 6 rectangular kagome kirigami can be treated as four large blocks of 3 × 3 triangles. Each block is rigidified using an MRP for L = 3, and then the four large blocks are
linked and rigidified using an MRP for L = 2. The links altogether form an MRP for L = 6.

L δ∆(L) Realizations # MRPs
2 5 Fig. S5a 3 (3 if assuming all boundary links)
3 12 Fig. S5b 8 (4 if assuming all boundary links)
4 23 Fig. S5c ≥ 5324 (5324 if assuming all boundary links)
5 36 Fig. S5d
6 53 Fig. S5h ≥ 84 × 3 = 12288
7 72 Fig. S5e
9 120 9 blocks with size 3× 3 ≥ 89 × 8 ≈ 1.1× 109

12 215 16 blocks with size 3× 3 ≥ 816 × 5324 ≈ 1.5× 1018

Table S3. A table of the optimal lower bound δ∆(L) for MRPs for rectangular kagome kirigami.

Connectivity of rectangular kagome kirigami with prescribed cuts. Define γ∆(L) as the minimum number of links for making
an L× L rectangular kagome kirigami connected, and a minimum connecting link pattern (MCP) to be a link pattern with
γ∆(L) links which makes the L×L rectangular kagome kirigami connected. As the study of the connectivity for quad kirigami
is in fact independent of the geometry of the unit cells, we can repeat the constructive proof of Theorem 2 (see Fig. S6 for an
example of construction MCP for L = 4 from MCP for L = 2) and prove by induction that

Theorem S5 For all positive integer L,
γ∆(L) = L2 − 1. [S37]

As for the enumeration of all MCPs for rectangular kagome kirigami, the procedure is also analogous to those for quad
kirigami. Table S4 summarizes the result.

Rectangular kagome kirigami with random cuts. Similar to the case of quad kirigami, we can study the DoF change with
varying link density ρ for rectangular kagome kirigami. Again, the DoF can be classified into two types. From our numerical
simulation, we observe a similar behavior as that in quad kirigami: The total DoF decreases first linearly and then sub-linearly
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a b c

Fig. S6. An illustration of the construction of MCPs for L × L rectangular kagome kirigami. Starting from an MCP for L = 2 (a), we add one link at each edge on the top and
the right boundary. This produces an MCP for L = 3 (a). Repeating the same procedure, we obtain an MCP for L = 4 (c).

L γ∆(L) # MCPs
2 3 20
3 8 14432
4 15 ≥ 204 × 20 = 3200000
6 35 ≥ 144324 × 20 ≈ 8.7× 1017

8 63 ≥ (205)4 × 20 ≈ 2.1× 1027

9 80 ≥ (144329)× 14432 ≈ 3.9× 1041

12 143 ≥ (144324)4 × 20 ≈ 7.1× 1067

16 255 ≥ (2021)4 × 20 ≈ 3.9× 10110

Table S4. A table of the optimal lower bound γ∆(L) and the number of MCPs for rectangular kagome kirigami.

as the link density increases. The inner rotational DoF first increases, attains the maximum at around ρ = 0.3 and then
decreases (Fig. S7a). The number of connected components (Fig. S7a), as well as the proportion of the largest connected
components (Fig. S7b), have similar behaviors.
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Fig. S7. The connectivity and rigidity of kagome kirigami with random cuts. a The change of T , mtot, and mrot with link density, averaged among 200 random link patterns for
an L = 30 kagome kirigami, follows a similar trend as those is quad kirigami. b The proportion of the largest connected components has a similar percolation behavior.

Note that the number of connected components is related to the topology of the kirigami structure. As the topology of
the rectangular kagome kirigami and that of the quad kirigami are essentially the same, we omit the study on the number of
connected components with varying ρ for the rectangular kagome kirigami here.
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Fig. S8. a-e Explicit construction of MRPs for L×L triangular kagome kirigami with L = 2, 3, 4, 5, 7. f An illustration of obtaining MRPs for triangular kagome kirigami using
hierarchical construction. A 6 × 6 triangular kagome kirigami can be treated as four large blocks of 3 × 3 triangles. Each block is rigidified using an MRP for L = 3, and then
the four large blocks are linked and rigidified using an MRP for L = 2. The links altogether form an MRP for L = 6.

Triangular kagome kirigami. Besides the rectangular kagome kirigami, we consider another tiling of triangles called the triangular
kagome kirigami, in which the triangles altogether form a big triangular shape (Fig. S8). For a big triangular shape with
side length L, there are in total L2 triangles. As the theory and construction of MCPs are straightforward, we focus on the
construction of MRPs for triangular kagome kirigami for the rest of this section.

Again, we first design rigidifying link patterns with exactly
⌈

3L2−3
2

⌉
links for L × L triangular kagome kirigami with

L = 2, 3, 4, 5, 7 (see Fig. S8a-e). We have verified these patterns using the rigidity matrix rank computation that the DoF is 3.
This shows that δ∆(L) =

⌈
3L2−3

2

⌉
for L = 2, 3, 4, 5, 7. Then, similar to Theorem S1, we can obtain the following result for

triangular kagome kirigami:

Theorem S6 For L = 2k
∏
pni

i where k = 0, 1, 2, pi are odd primes that satisfy δ∆(pi) =
⌈

3p2
i−3
2

⌉
, and ni are nonnegative

integers, then the lower bound for δ∆(L) for an L× L triangular kagome kirigami is achievable. In other words,

δ∆(L) =
⌈

3L2 − 3
2

⌉
. [S38]

The proof is the same as the one for Theorem S1. The key idea is to use the hierarchical construction to obtain MRPs from
the basic ones. See Fig. S8f for an illustration.

However, unlike rectangular kagome kirigami, extending the hierarchical construction method for more general L in the
case of triangular kagome kirigami is not straightforward. Recall that the proofs of Theorem S2 and Theorem S3 make use
of the decomposition of a kirigami system into large blocks with different sizes (3 × 3, 5 × 5, 3 × 5 and 5 × 3). Since the
topology of rectangular kagome kirigami is essentially the same as that of the quad kirigami, such decomposition can be easily
achieved in rectangular kagome kirigami, and the large blocks can be linked and rigidified by an MRP for a smaller L. On the
contrary, for triangular kagome kirigami, it is sometimes difficult to define such a decomposition. For example, for L = 11, the
decomposition used in Theorem S3 involves four 3× 3 blocks, one 5× 5 block and four 3× 5 or 5× 3 blocks. We are unable
to find any good way to decompose a 11 × 11 triangular kagome kirigami into such blocks with the hierarchical structure
preserved. This suggests that some other approaches may be needed for obtaining the MRPs for those L which are not covered
in Theorem S6.
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S6. Algorithms for finding MRPs for small L

It is noteworthy that the building blocks of MRPs for both the quad and kagome kirigami are the ones for small L = 2, 3, 4, 5, 7,
as well as the ones for the rectangular kirigami with (M,N) = (3, 5), (5, 3). The MRPs for these sizes cannot be found by the
hierarchical construction. We used two systematic methods for finding MRPs for them.

Method 1: Local Search. We first run a small batch of random trials (say 1000), each with exactly δ(L) (or δ(M,N)) links
chosen, to get an initial link pattern with a relatively low DoF (not necessarily 3). Then, we remove a link from the link
pattern to see if the DoF increases by 2. If so, the link is non-redundant with respect to the current link pattern and we add it
back to the link pattern. If not, the link is redundant with respect to the current link pattern, and we replace it by another link
which further decreases the DoF. The process continues until we get a rigidifying link pattern. As there are multiple possible
solutions for MRPs, this local search method turns out to work pretty well in finding an MRP.

Method 2: Pruning. Another possible method is to reject those links that are more likely to be redundant. We start with all
the links, and randomly pick one link and put it in a stack. At this stage, since the system is over-constrained, there are 3
DoFs. Assume that those in the stack are the ones rejected (not used in the link pattern).

Each time we calculate the DoF from links outside the stack. If the DoF remains to be 3, we approve this in our stack
(“push”), and randomly add a new one (which could be a neighbor or not) in the stack (remove one from the pattern). If the
DoF becomes 4 or 5, that means this link is useful (non-redundant), and we remove this in the stack (“pop”). By doing this,
we are actually pruning a lot of branches that do not need to be tested. However, sometimes we encounter the situation where
all links outside the stack are redundant. That means there should be a link in the stack that might be more useful. When this
happens, randomly remove one link from the stack. Finally, when the size of the stack reaches 4L(L− 1)− δ(L), algorithm
stops and we find the links outside the stack forms an MRP.

All the MRPs of quad kirigami and rectangular kagome kirigami are generated by method 1, and all the MRPs of triangular
kagome kirigami are generated by method 2.
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