
the x and y directions of the network of dots,
solitons can be propagated along chains that
turn corners. There is, in principle, no physical
problem in splitting a soliton into two channels,
and so fan-out of signals should also be possi-
ble. Further simulations show that NOT func-
tions, concatenated gates, and crossing chains
are also possible [see (9) for electronic QCA
implementations]. The fact that they operate at
room temperature and are fabricated from a size
of dot that could be manufactured commercial-
ly makes them ideal candidates for integration
into microelectronic hardware. Input dots could
be programmed locally by passing an electrical
current through a conducting track underneath
the dot, as in magnetic random access memory
(10, 11). Signal output could be obtained from
single dots in a complex network by using one
of the recently discovered magnetoelectronic
effects (10).

Power gain is a very important issue in all
QCA architectures. Electronic QCA circum-
vents this by temporarily removing the ener-
gy barriers between logic states during
switching, to allow near-adiabatic operation
(12). In principle, MQCA solitons propagate
without loss and so should be able to mediate
a logic switch without any dissipation; in
practice, small fluctuations in the shape of the
dots will lead to anisotropy fluctuations (the
size of dots reported here gain ;10 Oe of
anisotropy field for each percent of ellipticity
in shape), which will cause the soliton to
dissipate energy as it propagates. In our MQCA
architecture, this energy is provided by the
externally applied oscillating magnetic field.
Power gain to overcome losses and to enable
fan-out of signals can thus be achieved.

The need to minimize anisotropy fluctua-
tions places a required accuracy on the circu-
larity of the dots of better than 62%. We can
infer from the signal level of Fig. 2C that this
accuracy has been achieved in at least 19 of
the 20 networks that we fabricated using only
conventional electron beam lithography. Fur-
thermore, this fabrication requirement is one
order of magnitude less stringent than that of
electronic QCA (13).

MQCA has enormous potential to meet
the future requirements of microelectronics
for digital processing. If we take a single
MQCA dot to be analogous to a transistor
(comparing different paradigms is difficult,
but this allows for an order of magnitude
comparison), then the unoptimized device we
report here has an integration density of 5500
million cm22, compared with 6.6 million
cm22 for today’s CMOS technology (14).
The magnetostatic interaction energy be-
tween two of the dots reported here is 200
kBT (kB is Boltzmann’s constant and T is
room temperature). An energy of at least 40
kBT is required if thermally induced data
errors are to be kept below one per year.
MQCA should therefore be very stable

against thermal fluctuations. Simple scaling
laws show that this will remain the case for
dots as small as 20 nm in diameter, giving a
possible integration density of 250,000 mil-
lion cm22. The maximum energy that any
magnetic object of volume V can dissipate in
one field cycle of peak-to-peak amplitude H
is 8pMsHV (Ms is the saturation magnetiza-
tion in centimeter-gram-second units), which
gives a maximum dot dissipation of 10217 J
per clock cycle (for the size of dots described
here). This is 104 times less than the power-
delay product of 10213 J for today’s CMOS
(15), meaning that a microprocessor based on
MQCA would typically dissipate around only
1 W. Recent studies (16) have shown that
submicrometer magnetic particles can be
switched in less than 1 ns. This gives a
conservative estimate on the order of 100
MHz for the maximum expected across-chip
clock frequency of MQCA devices, although
full dynamic calculations and experiments
will be essential to determine the influence of
spin-wave excitations. The fact that entire
networks can be constructed on a single plane
means that many planes could in principle be
stacked on top of each other, thus giving a
way to realize three-dimensional hardware.
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Rippling Instability of a
Collapsing Bubble

Rava da Silveira,1 Sahraoui Chaı̈eb,2 L. Mahadevan2

When a bubble of air rises to the top of a highly viscous liquid, it forms a
dome-shaped protuberance on the free surface. Unlike a soap bubble, it bursts
so slowly as to collapse under its own weight simultaneously, and folds into a
wavy structure. This rippling effect occurs for both elastic and viscous sheets,
and a theory for its onset is formulated. The growth of the corrugation is
governed by the competition between gravitational and bending (shearing)
forces and is exhibited for a range of densities, stiffnesses (viscosities), and
sizes—a result that arises less from dynamics than from geometry, suggesting
a wide validity. A quantitative expression for the number of ripples is presented,
together with experimental results that support the theoretical predictions.

Every day, nature surprises us with structures
and patterns of such beauty as to fill the
scientist with wonder and the artist with
envy. Here, we address an instability that
turns a hemispherical, smooth, liquid bubble
into a striking wrinkled structure, first ob-
served by Debrégeas, de Gennes, and Bro-
chard-Wyart (1). In their experiment, 0.1 to
10 cm3 of air injected into a highly viscous
liquid (with viscosity h ; 103 Pazs) rises to
the free surface, imprisoned in a hemispher-
ical bubble of thickness t ; 1 to 10 mm. If the
bubble is punctured at its apex by a needle,

surface tension drives the rapid expansion of
a circular opening. After about 10 to 30 ms,
the retraction velocity saturates to a constant,
owing to the high viscous resistance. In the
meantime, the air flow through the hole equil-
ibrates the pressure difference, allowing the
bubble to collapse under its own weight. As it
deflates, an instability appears: The fluid
sheet folds into a wavy structure, with radial
ripples that break the original axisymmetry.
In the absence of a detailed theory, a scaling
estimate has been proposed (1) for the num-
ber of ripples: n* ; (mgR3/K)1/2, where m is
the mass of the film per unit area, g is the
gravitational acceleration, R is the radius of
the hole, and K is an effective bending rigid-
ity of the sheet (which was assumed to be

1Department of Physics, 2Department of Mechanical
Engineering, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA.
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elastic during the early stages of the rippling).
The rippling results from the competition

among compression, bending, and gravity.
Each fluid element tends to fall under its own
weight but experiences a viscous resistance
from its neighborhood. If the bubble were to
collapse in a uniform, symmetric way, it
would occupy a progressively reduced area,
leading to an in-plane compression, which
would require forces that far exceed the scale
set by gravity. Instead, the film deforms in a
nearly inextensional fashion by undergoing
pure bending. Equivalently, for a given (grav-
itational) force, the relative time scale asso-
ciated with stretching is much larger than that
for bending, and the surface therefore corru-
gates over short times before eventually re-
laxing into a uniform, thicker membrane.

This instability is reminiscent of buckling
phenomena (2), originally studied in the context
of elastic rods but also occurring in the creeping
flows of viscous liquid filaments [a striking
everyday example being the coiling of a stream
of honey when it reaches a piece of toast (3, 4)].
For an elastic rod, buckling occurs at the long-
est possible wavelength in order to minimize
the bending energy. In the bubble problem,
however, gravity plays a distinctive role in de-
termining the configuration. For a given ampli-
tude, bending still favors large-scale deforma-
tions, whereas gravitational energy is mini-
mized for an almost flat sheet with as many tiny
ripples as possible; the optimal wavelength re-
sults from a compromise between the two. Such
an argument, however, does not fully charac-
terize the effect. Unlike the above examples,
here the system under consideration is a curved
two-dimensional sheet, and the associated ge-
ometry constrains the rippling both qualitative-
ly and quantitatively (see below).

The instability occurs in both elastic (solid)
and viscous (liquid) films. The elastic case cor-
responds to a shell with a hole of radius R,
allowed to collapse under its own weight. In the
viscous case, an additional complication arises

because the radius of the hole changes during
the rippling. After a short initial transient, the
hole grows steadily at a rate v ; s/h resulting
from the balance of surface tension (s ' 20
mN/m) and viscous stress. It thus takes a time
t ; ht/s for the opening radius to increase by t.
During this time, the liquid acquires a velocity
V ; gt due to gravity, larger than v by a factor
V/v ; 107. Even if the liquid is viscoelastic, so
that the retraction velocity is enhanced by a
factor R/t (; 10 to 104) (1, 5), the hole radius
remains essentially constant while the instability
occurs (Fig. 1). We may therefore treat the hole
radius R as a given parameter in the theory (6).

Although the bubble has the geometry of a
sphere before collapsing, it is quite flattened
by the time the ripples appear (Fig. 1B). For
simplicity, we consider the unperturbed con-
figuration to be a shallow cone of slope a ,,
1, described by its height above the surface,

h 5 a(r0 2 r) (1)

where r is the cylindrical radial coordinate
and r0 is the radius of the base. Any defor-
mation of h introduced by the rippling may be
written, without loss of generality, as

h 1 dh 5 a(r0 2 r) 2 da(r)

1 O
n$1

[dbn
(1)(r) cos(nu)

1 dbn
(2)(r) sin(nu)] (2)

where u is the azimuthal angle. The per-
turbation da represents a uniform (n inde-
pendent) flattening accompanying the growth
of ripples of amplitude dbn

(i), and a crucial
step consists in understanding their form and
interdependence.

In the case of a thin elastic (viscous) sheet,
the two primary modes of deformation are in-
plane stretching (shearing) and out-of-plane
bending. A generic deformation of an elastic
cone (made of a material with Young modulus
Y ), of amplitude z on a scale ,, requires stretch-

ing forces (per unit surface) of order Ytz/,2 but
much smaller stretching forces (per unit sur-
face) of order Yt3z/,4 (7), so that for a given
external drive (gravity in our case), inexten-
sional deformations are greatly preferred (8). In
the case of a highly viscous sheet, forces arise
from velocity gradients, thus introducing a dy-
namical element into the problem. However,
their dependence on t and , (essentially due to
the variation of the strain across the film) is
similar, so that inextensional deformations are
again largely favored if t ,, , ' r0/n*. (This
condition is satisfied if the selected number of
ripples n* is small relative to 103, as in the
present case; see below.) Equivalently, for a
given loading, the time scale corresponding to
bending is smaller than that for stretching by a
factor (t/,)2 (9, 10). Thus, at the onset of the
instability, perturbations of the cone must pre-
serve its metric. This requirement translates into
the constraints (11)

dbn
(i)(r) 5 dbn

(i) 3 r 1 dbn
(i)9 (3)

where dbn
(i) and dbn

(i)9 are constants, and

4ada~r) 5 O
n$1, i

[(n2 2 1)dbn
(i)2(r 2 r0)

1 n2dbn
(i)92(1/r 2 1/r0)] (4)

In the following, we elucidate the elastic
(solid) case before extending our treatment to
the viscous (liquid) case. The energy func-
tional of a perturbed elastic cone is

E[h 1 dh] 5E
cone

d(surface) 3 (gravitational

potential energy 1 bending potential energy)

5 E
R

r0

r dr E
0

2p

du Î1 1 [¹(h 1 dh)]2

3 @mg(h 1 dh) 1 (K/2)(¹2dh)2] (5)

Fig. 1. Stroboscopic
images of a collapsing
liquid bubble of size
r0 5 1 cm and thick-
ness t ' 100 mm. The
silicone oil has viscos-
ity h 5 103 Pazs, sur-
face tension s 5 21
mN/m, and mass den-
sity 0.98 g/cm3. (A)
The bubble 30 ms af-
ter the film is punc-
tured by a sharp nee-
dle. A retracting hole
(radius R 5 1.4 mm) is visible, but there are no ripples yet. (B) After another
30 ms, the bubble loses its axisymmetric shape. The radius of the hole
remains essentially constant, at R 5 1.6 mm, while the ripples grow. The
inset in (B) displays a schematic side view of the essentially conical deflating
bubble at the onset of the instability, with the important quantities involved
in the phenomenon. The extreme shallowness allows for a perturbative
treatment in the slope a of the cone.
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where K 5 Yt3/12(1 2 n2) is the rigidity and
n is the Poisson ratio. Only bending elastic
energy appears in E, because we have con-
fined ourselves to the class of inextensible
deformations.

If the elastic cone is attached to the plane
on which it rests, so that dh(r 5 r0) 5 0, Eq.
3 yields dbn

(i)9 5 2dbn
(i)r0. On substituting

Eqs. 2 through 4 into Eq. 5 we then obtain, to
lowest order in the perturbation,

dE [ E[h 1 dh] 2 E[h] 5 (p/2)K z f (r0/R)

z O
n$1, i

(dbn
(i))2{g(r0/R, gR3) 1 2[w(r0/R)

2 gR3c(r0/R)]n2 1 n4} [ O
n$1

dEn (6)

where w(x), c(x), f(x), and g(x,y) are defined

in (12). g–1/3 5 (aK/mg)1/3 is an intrinsic
length scale arising from the competition be-
tween gravity and bending elasticity.

Each mode contributes an amount dEn to
the change in energy, and rippling occurs if
dEn , 0 for some integer. In general, dEn ,
0 for a range of different n’s; the most neg-
ative variation corresponds to the maximally
growing perturbation and thus sets the wave-
length of the instability. The formulation also
yields a “threshold condition” w(r0/R) ,
gR3c(r0/R) for the occurrence of rippling.
This condition involves the three independent
quantities g, r0, and R, and may be translated
into three corresponding statements: (i) Rip-
pling is suppressed if g , gc(r0,R) 5 R–3w/c,
i.e., if the cone is too light or too rigid. (ii)
Similarly, no rippling occurs if the hole, or

equivalently the cone, is too small, r0 ,
r0c(g,R). Azimuthal continuity requires the
wavelength of the deformation to be at most
of order r0, resulting in a forbidding bending
cost if r0 becomes small relative to the intrin-
sic (energetically determined) scale g–1/3. (iii)
The threshold also depends, quite unexpect-
edly, on the ratio r0/R. The dependence of the
symmetric (n 5 0) mode on the radial coor-
dinate r is different from that of the rippling
(n Þ 0) modes, so that the high elastic cost
can no longer be justified by gravitational
gain if the hole is reduced beyond a critical
size. Minimizing dE in Eq. 6 yields the se-
lected number of ripples as

n* 5 IntÎ mgR3

K
z

1

a
cS r0

RD – wS r0

RD (7)

where Int x is the integer closest to x. This
relation improves on the estimate in (1)
(where the authors consider a short-time elas-
tic behavior) and establishes its domain of
validity.

For an elastic (solid) sheet, the rippling phe-
nomenon is of an essentially static nature; upon
increasing, say, the mass of the sheet, the equi-
librium configuration is shifted from symmetric
to rippled. Approaching the problem from a
dynamical perspective, by considering the elas-
tic forces and torques rather than the corre-
sponding energies, results in an evolution equa-
tion pmP(r0,R)zd2(dbn

(i))/dt2 5 –dE/dbn
(i) for

each mode. Here P is a polynomial function
independent of n, so that the energetically op-
timal mode, with number n*, is indeed the
fastest growing one. In the case of a viscous
liquid, the effect is intrinsically dynamical:
Bending occurs only over short times, whereas
the equilibrium configuration is ultimately
reached by a slow thickening. Nevertheless, the
motion of a viscous film satisfies a formulation
close to that of an elastic sheet, as can be shown
by integrating the Stokes equation through the
thickness (10, 13). Indeed, it is easy to see that
bending results from a torque ht3/[4(1 – n2)] 3
d(curvature)/dt analogous to an elastic torque
K 3 (curvature), so that a highly viscous film
may be described by an effective bending mod-
ulus Kl 5 ht3/3t (n 5 1/2 for an incompressible
medium), where t is a time scale associated
with the falling velocity. Thus, all the conclu-
sions of the stability analysis for the elastic
cone, and in particular the expression for the
number of ripples (Eq. 7), can be transposed to
the case of the bubble except for a certain time
scale related to the gravity-induced velocity of
the fluid. Comparing the nascent ripples’ am-
plitude with the film thickness yields an esti-
mate of this time scale as (t/g)1/2 (14).

To check our results against experiment, we
visualized the bursting of silicone oil bubbles.
Once the bubble is punctured with a sharp
needle, its evolution is followed using a high-
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Fig. 2. (A) Plot of the
number of ripples n* as
a function of the bub-
ble radius r0, comparing
the experimental mea-
sures (points) with the
theoretical predictions
(solid lines). These data
were gathered using sil-
icone oil of viscosity
h 5 600 Pazs and bub-
bles of thickness t '
30 mm. The errors in
the measurement of r0
arise from meniscus ef-
fects, which are more
important in smaller
bubbles. The bursting
time elapsed up to rip-
pling is measured to be
of order one to five
times (t/g)1/2, consistent
with our proposed
mechanism for the
formation of the cor-
rugation. For each ex-
perimental realization, the ratio r0/R was measured
at the onset of the instability, and the correspond-
ing dependence of R on r0 was used to obtain a
theoretical curve n* 5 n*(r0). The green line dis-
plays the prediction for an elastic sheet attached to
the plane on which it rests. Because the liquid
cannot be clamped, the boundary conditions at the
base must be relaxed. This leads to a vanishing of
the unprimed modes (Eq. 3) that are unfavorable in
terms of both gravitational and viscous forces; the
fastest growing primed modes lead to the behavior
represented by the purple line. The latter is plotted
here for a slope a ' 3° (' 0.05 rad) of the cone,
which is consistent with our perturbative treatment
and in agreement with direct observation. The blue
line represents the best fit of the scaling form n* ;
(mgR3/K)1/2 (1), where R is chosen as the relevant
length scale. If R is replaced by r0, the above expres-
sion for n* may be closely fitted (up to an overall multiplicative factor) to our predicted curve,
hence the size of the bubble is the dominant length scale within the present experimental range
and conditions. This is consistent with the relaxed boundary conditions, which allow the ripples to
be appreciable, close to the outer edge of the bubble (see also Fig. 1B). In this way, the ripples trade
a bulk gain in gravitational and bending stresses against a cost in stretching in a thin rim close to
the outer edge. The increased thickness of the liquid film close to the base further emphasizes this
effect, as it reduces the difference in magnitude between a typical stretching and a typical bending
stress. (B) Top view of the fully developed ripples, from which n* is measured.
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speed camera capable of recording up to 1000
frames per second. The resulting video is then
analyzed to determine the radius r0 of the bub-
ble, the hole size R at which the ripples are first
observed, and the number of ripples n*. Be-
cause the hole expands very fast at first, R is
much larger than Rc by the time the bubble
begins to collapse. To compare the experiments
with the theory, in which R enters as a param-
eter, we measured the latter at the onset of the
instability for each given size of the bubble. The
quantitative measurements are compared with
the theoretical predictions for the dependence
of n* on the bubble size in Fig. 2. On a more
qualitative level, the experiments show a sup-
pression of the instability for small bubbles, in
agreement with the threshold conditions above.

We conclude with a discussion of possible
refinements of the theory and their relation to
the geometric nature of the problem. A more
complete theory would incorporate a (flattened)
hemisphere as the initial condition, rather than a
cone. Also, because of the progressive drainage
of the liquid, the thickness t acquires a depen-
dence on r (and time). This in turn implies
nonuniform rigidity K(r) and mass m(r), leading
to functions f, g, w, c, and P of a more com-
plicated form. On a more fundamental level,
all these aspects should be addressed in
terms of the coupled hydrodynamics of the
slow viscous (liquid) flow and the rapid air
flow (13). Yet the strong geometrical con-
straints involved in the problem are sugges-
tive of the robustness of the results.

The question we have answered is akin to
that of applying a curved surface onto a flat one
in the most economical way, a problem that has
taxed cartographers for many centuries and lies
at the birth of differential geometry. It is also
somewhat of an inverse counterpart to the prob-
lem of fitting a flat sheet to a three-dimensional
landscape, which has been studied in various
contexts (15–17) and is an issue that still vexes
fashion designers. The relevance of the geomet-
rical constraints is manifest, for example, in the
strong dependence of the rippling on the size of
the opening, which is closely related to a well-
known theorem by Gauss (18), Jellett (19), and
others, according to which (loosely put) a closed
surface cannot be bent without being stretched,
whereas an open surface can be bent inexten-
sionally. Similarly, we find that a smaller hole
implies a relatively stiffer bubble and hampers
the rippling. Although the precise forms of the
functions w and c arise from the physical con-
straints and dynamics imposed by the forces and
various boundary conditions, the essence is in
the geometry.
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Control of Thickness and
Orientation of Solution-Grown

Silicon Nanowires
Justin D. Holmes,† Keith P. Johnston, R. Christopher Doty,

Brian A. Korgel*

Bulk quantities of defect-free silicon (Si) nanowires with nearly uniform di-
ameters ranging from 40 to 50 angstroms were grown to a length of several
micrometers with a supercritical fluid solution-phase approach. Alkanethiol-
coated gold nanocrystals (25 angstroms in diameter) were used as uniform
seeds to direct one-dimensional Si crystallization in a solvent heated and
pressurized above its critical point. The orientation of the Si nanowires produced
with this method could be controlled with reaction pressure. Visible photo-
luminescence due to quantum confinement effects was observed, as were
discrete optical transitions in the ultraviolet-visible absorbance spectra.

One-dimensional quantum wires are ex-
pected to play a vital role as both intercon-
nects and functional components in future
mesoscopic electronic and optical devices
and also to provide an opportunity to test
fundamental quantum mechanical concepts
(1, 2). As the wire diameter approaches the
carrier de Broglie wavelength, quantum
confinement effects shift band gap energies
and, in Si, induce visible photolumines-
cence (3). The electronic and optical prop-

erties of the nanowires strongly depend on
size; therefore, size control and tunability
are key to the success of any method of
synthesizing quantum wires. Dimensional-
ity also affects the material properties of
nanowires. The absence of translational
symmetry in Si could profoundly affect the
electronic properties: Bulk Si is an indirect
semiconductor with a band gap of 1.1 eV,
whereas linear polysilane chains exhibit a
3.89-eV direct gap (4 ). The lattice orienta-
tion in a wire can provide a tuning param-
eter, unavailable in quantum dots, to adjust
material properties to suit particular appli-
cations. In carbon nanotubes, for example,
the bonding geometry and orientation pro-
foundly affect the electronic structure and
can lead to either metallic or insulating
behavior (5). Calculations for Si nanowires
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