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We investigate the axial instability of the free-surface front of a viscous fluid in a horizontal cylinder
rotating about its longitudinal axis. A simplified model equation for the evolution of the free surface
is derived and includes the effects of gravity, capillarity, inertia, and viscosity. This equation is
solved numerically to determine the base state with no axial variation, and a numerical linear
stability analysis is carried out to examine the onset of unstable axial modes. Various computational
results are presented for the wavelength of the axial instability. Inertia is found to play an important
role in the onset of the instability and the wavelength of the instabilisatisfies the power law
A~y wherey is surface tension. Finally some numerical simulations of the simplified evolution
equation are presented to show that they can capture the steady shark-teeth patterns observed in
recent experimen{R. E. Johnson, iEngineering Science, Fluid Dynamics: A Symposium to Honor

T. Y. Wu(World Scientific, Singapore, 1990pp. 435-449; S. T. Thoroddsen and L. Mahadevan,
“Experimental studies of the instabilities in a partially filled horizontal rotating cylinder,” Exp.
Fluids 23, 1 (1997]. © 1999 American Institute of Physid$$1070-663(199)01001-4

I. INTRODUCTION Much of the previous work on this system was stimu-
lated by a paper by Moffdit who used a kinematic wave

Coating flows are fluid flows which lead to thin films of theory to study the behavior of a viscous film coating the
liquid forming onto surfaces as a result of external forcesexterior of a cylinder, and presented some qualitative experi-
associated with inertia, viscosity, gravity, surface tensionments. More recently, Johnsbulerived a lubrication ap-
etc. Besides being important in a number of industrialproximation, with the dominant balance between gravity and
processes they form an interesting system in which to study viscosity, and showed that the equations are always axially
free-surface instabilities in hydrodynamics. stable for intermediate wave lengths. In recent wdtkhe

In this paper, we consider the axial instability of the freefocus has been on two-dimensional steady interior coating
surface of a viscous fluid partially filling a horizontally ro- flows that account for the effects of surface tension.
tating cylinder, shown in Fig. 1. At zero angular velocity, the Here, we build on these results by uncovering some un-
fluid is stationary and lies in a pool at the bottom of the steady two-dimensional flows, analyze the axial stability of
cylinder, while at very high angular velocity, the fluid rotates the steady two-dimensional flows, and simulate some three-
rigidly with the cylinder and forms a homogeneous film thatdimensional solutions using a simplified model equation that
coats the cylinder uniformly. Much of the early work on describes these free-surface flows. In Sec. Il we formulate
coating flows in this geometry focused on this latter limiting the problem and make the equations dimensionless. We then
case of nearly rigid rotatiofi® these and other studies are derive an asymptotic equation for the height of the free sur-
reviewed by Ruschak in Ref. 4. For moderate rotation rateface. This requires the use of a modified lubrication theory
when gravitational effects are no longer perturbative, manyery similar to that in Refs. 14 and 8, but accounts for inertia
interesting instabilities and patterns have been Seé8ome  perturbatively. In Sec. Ill, we present computational results
of these patterns resemble those found in the flow down afor two-dimensional steady and unsteady coating flows. In
inclined plane:®* others resemble those found in flows be- Sec. IV we analyze the axial stability of the steady coating
tween two horizontal cylinders in the so-called printer’s in-flow and present a scaling law for the dominant wavelength
stability problem'? However the case considered here hasof the axial instability. Three-dimensional flows are pre-
the unique advantage that the flow is confined. This meansented in Sec. V showing the shark-teeth patterns observed
that the cylindrical surface is continuously wetted so that anyn recent experiments® We close with a discussion of our
concerns involving the complicated physics associated wittiesults in Sec. VI.
the dynamics of contact lines and precursor films are elimi-
nated. The price for this convenience is that the mathemati!- AN APPROXIMATE MODEL
cal analysis is complicated by the presence of a curved sub- The geometry and notation used in the problem are
strate which introduces an additional length scale. shown in Fig. 1. Since the analysis of the three-dimensional
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On the free surface,=R—h(z,6,t), the boundary condi-
tions are

n:o:n=yk, t:o:n=0, i=1,2, (2.6)

i.e., the normal stresses are balanced by surface tension and
there are no tangential stresses at the free surface.dlexe

the stress tensar;,; i =1,2 are the tangents to the surface and
n=t,Xt, is the outward normal to the free surface;is
surface tension and is the curvature. The components of
the stress tensaw are given by

U0 1%
e
r r

r_ _ re_

o'=—p+2uu,, o''=u

FIG. 1. Schematic diagram of a cross section of the cylinder. The dominant o= (W, +U,),
forces for a thin film are shown on the left. The arrow at the bottom indi- 2.7

cates the recirculation region. 00 U vy o
of=—pt2ul o+ ), o=plvt

. . . . o =—p+2uw,.
Navier—Stokes equations in the presence of a free surface is P epi;

complicated, our first goal is to find an effective evolution The tangents and the normal to the free-surface are given by
equation for the free surfack(6,z,t), in a manner similar to

classical lubrication theory. We assume that the fluid has i= —hf+(R-h)6 i = —hf+2z A= i xt,
viscosity u, densityp, kinematic viscosityv= u/p, and sur- ! \/h§+(R—h)2 2 \/h§+1 ' I, %1, ’
face tensiony, and sits in a cylinder of radiuR that rotates (2.9

at an angular velocityf). Since the fluid is assumed to be | | R - . . .
incompressible, the continuity equation and the Navier-With t;Xt(R—h)f+h,6+(R—-h)h,z. The kinematic

Stokes equations of motion are given'by boundary condition on the free surface is given by
= D(r—R+h
V.-u=0, 2. ( - ) o, 2.9
U+ (u-Vyu=—Vp/p+rvVau+g. (2.2

h v lead lindrical bol di We now consider the appropriate length and time scales
e geometry _natura} y leads us to cylindrica potar coordi-yith which to make the equations dimensionless. Balancing
natesr, 6, z with unit radial, azimuthal and axial vectors

. . . . : .~ the viscous forces against the force of gravity gives a char-
f, ({ 2, respectively. Then the fluid velocity(r, 6,z) = uf acteristic length scale for the thin fillh=(»QR/g)¥2 148
+tv@+wz, p(r,0,z) is the pressure, and gravity There are two characteristic time scales givenToyR?/v
=—g singf—g cosé #. On writing Eqs.(2.1)—(2.2) in cy-  which is a viscous time scale arid =1/Q<T which is a

lindrical coordinates we g&t time scale associated with rotation. Since events equilibrate
(ru) themselves quickly over the fast time scale, we rescale the
r Uy . . .
+—+w,=0, (2.3  variables using the slow time scaleand the lengthiL and

r r define three dimensionless parameters
Du v? p, U 2uy Q
bu_v® P, u_2ve)_ B (OR)
Dt r v| Au 2-yz | 9sing, B=aR V~O(l),
Dv wuwv 2u
— —=—&+v Av+—2i9——z —gcosh, (2.4 _L v
Dt r r r a=5=\gs< 1,

g
Dw P,
—=—-—+vAw I
Dt ' = <1,
pgR’
where where Re=R? (/v is the Reynolds number, and character-
D v izes the ratio of inertial to viscous forceB ! is the inverse
D—t=(9t+ ud, + T dgt+Wd,, of the Bond number, and characterizes the ratio of capillary
X and gravitational forces; and is the ratio of viscous to
_ 3, (rdy) . @ P gravitational forces. Note tha® is a scaled Reynolds num-
B r2 oz ber. By definingB8=a Re we consider intermediate Rey-

and subscripts denote partial derivatives. The boundary conn—OIdS number regimes corresponding to-R&1/a). This

ditions on the cvlindrical surface=R are given b corresponds to the range of experimental interest, and in par-
y o 9 y ticular to the region in phase spatehere the shark-teeth
u=0, v=0R, w=0. (2.5 patterns exist.
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Then the dimensionless variables in the problem becomeontinuity Eq.(2.11) over the depth of the film, and using the

- 1u _ v _ w

Zear 'Tor YT or

~ v 1 1 r . z 91

t_ﬁt’ r—; ﬁ,Z—ﬁ, (2.10
p h

Here »= n(6,z,t) is the rescaled height of the free surface
andT is measured inwards from the wall of the cylinder; i.e.,

T=0 whenr=R. We have scaled the radial velocityand

the radial coordinate by « as is usual in lubrication theory.

rescaled kinematic boundary condition from E2.9),

a v
— U+ ———— 7yt Wp,=0
B Tt (l—an) ur 7z

to eliminate the radial velocity, we get

a
2 Mt 0t Q=0, (2.19

B

where the fluxeg andQ are

7 7
q(H,z,t)=J0 vdr, Q(é?,z,t)=fO (1—ar)wdr. (2.16

However, herex is not simply the aspect ratio but instead Equation(2.19 is valid only in the.IimitﬁZO(lz), which is
measures the relative strength of viscous to gravitationatonsistent with our choice of the time scdle- R°/» to make

forces. Rewriting Eqs2.1)—(2.2) in terms of the dimension-

less variables defined in ER.10 and the parameteis, S,
andB~?! yields, on dropping the s,

—[(1—ar)u],+ve+(1—ar)w,=0, (2.11
02
a?pB (A=ar) = —pr+a2V§éJ—a sin 8+ 0(a®),
vu
azvt+a,8(u~Vs‘)v+a2,8 A—ar)
(2.12
=—;p +V2 —a—zv—coseJrO(a?’)
(1—ar) 0 sd (1—ar)2 ,

a®Wi+ aB(u-Vew=—p,+Viw.

Here
u-Vee=—ud, + (1_0—6”) dgtWdy,,
2
Vi=dt- =) O T=ar)? 9ot a2d2.

The boundary condition$2.5 at the cylindrical surface
=0 written in dimensionless form yield

(2.13

at r =0, while the boundary condition2.6) at the free sur-
facer = » written in dimensionless form yield

u=w=0, v=1

av,+a?(v—2nv,)+0(a®)=0,
aw,— a’yw,+0(a®)=0,
2,2 2 3 (2.14
—p+5apn —2a” (U +v,nytW,n,)+0(a”)
=—B 1k,
where
k=1+a(n+ 9,7+ 14y)
+a?(2nnge+ 77+ 5(05— 1n2)) +O(a?).

our variables dimensionless in E®.12. When 8—0 the
relevant time scale i§'=1/Q and Eq.(2.15 becomes (1
—an)nt+g,+Q,=0, considered earlier in Ref. 8. To de-
termine the dimensionless azimuthal and axial velocities in
Eqg. (2.16, we approximate the dimensionless velocity and
pressure fields by expanding them in the small parameter
and write

u=ug(r,0,z,t)+ auy(r,6,z,t)+ a?uyr,8,z,t)+- - ,

(2.17

P=pPo(r,0,z,t)+ap(r,0,z,t)+a?py(r,0,z,t)+--- .
(2.18

Next we substitute our expanded variables into Egs.
(2.12—(2.14. Solving the resulting equations order by order
yields the velocity and pressure fields in termszpénd its
derivatives(see Appendix A Keeping terms that are correct
to O(a) for v=vo+av,, W=Wy+aw,;, and p=py+ ap;
and substituting into Eq2.16 yields

q=7n—37° cos 6+ a{37* cos 6— 37°
+373(B™ 0o+ 1220 M900) + 14 SIN O)+ B},
(2.19

a . _
Q= § 7]3{ 7, sin 6+B 1( Nyt Nzt 77002)}- (2.20

where

a,=— 257’ sin § cosd
+(Zn*—Zn° cos0)( 5 cos b) ,+ 57° sin 6.

Equations (2.195, (2.19, and (2.20, subject to periodic
boundary conditions ird and no-slip conditiongin the 6
direction and no flux conditiongin the z direction at the
endsz= =1, where 2 is the length of the cylinder, define the
complete system which we will solve numerically. The ef-
fects of inertia are weak, as we are assuming the dominant
force balance is between viscosity and gravity, and appear in
Eq. (2.19 as the terms premultiplied hg. However, we will
later find a qualitative agreement with experiment even when

In order to get a low-dimensional description that is 8 is relatively large. No additional equation is needed for the
more easily amenable to numerical simulation, we make usgadial velocityu at this order since, appears only a®(a*)

of the presence of the small parameter Integrating the

in Eq. (2.12. This asymptotic reduction technique is similar
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(a) Free surface in rotating cylinder (b) Recirculation
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FIG. 2. Numerical solution of Eq2.11) with Q=0 showing the free-surface of the viscous fluid in a cylinder rotating clockwise. The parameter values used
in (a) wereR=6.25 cm,v=49 cnt/s, 0 =3.2 Hz,V=6.0%, and3~*=0.05 which corresponds t@=0.04 and3= 64.8. The dotted line represents a solution

with the same parameter values, but wjh=6.48. (b) Here the solid line represenR=6.25 cm, a=0.04, 3=25.92, andB~'=0.5; the dashed line
corresponds to a reducglof 6.48. The free surface has been “unwrapped” from the cylinder and plotted on a straight line; the bump corresponds to the
puddle at the bottom of the cylinder. The arrows show the velocity field to leading order as given ABEd/Ne observe that for smaB the ridge all but
disappears. The dot—dashed line shows the shape of the most unstable eigdnmbite is localized near the leading edge of the front and is negligible
elsewhere.

to the idea of center manifold reduction in dynamicalof inertial effects. For example, the dotted lines in Fig. 2
system$’ and results in a significant simplification of the show the profile for a lower value @ when the ridge has all
three-dimensional free-surface problefs1D—(2.9 when  but disappeared. We note that a similar ridge is found at the
a<1. Once we have solved the scalar two-dimensional PDEeading edge of a fluid flowing down an inclined pl&he
(2.19 for 5(6,z,t) we can reconstruct the three-dimensionalwhere it triggers a transverse fingering instability. Inertia is
velocity field to O(«) by using the expressions=u,  unimportant in that case since gravitational forcing is con-

+auy, v=votavy, W=Wo+aw; (see Appendix A stant. In the flow inside a cylinder this ridge all but disap-

pears when inertia is small because the curvature of the sub-
ll. TWO-DIMENSIONAL STEADY AND UNSTEADY strate yields a differential gravitational forcing that is
FLOWS

weakest in the vicinity of the ridge, at the bottom of the
We first consider two-dimensional flows with no axial cylinder. However as inertial effects become larger they re-
variation so thaQ=0. Since Eq(2.15 is a nonlinear PDE  Store the imbalance between the rising and the falling film
we solve it numerically using a centered finite differenceregions thus giving rise to a localized ridge. As we will
scheme and periodic boundary conditions, described in detaghortly see the presence of this ridge is crucial in understand-
in Appendix B. Typical numerical results for steady flows ing of the transverse/axial instability of the steady two-
are shown in Fig. 2. We observe that we can capture thdimensional flow.
recirculation region at the bottom of the cylinder with the  As the problem parameters are varied, we also observe
cubic approximation to the azimuthal velocity profile and theunsteady two-dimensional flows. When g are gradually
regularization of the front due to surface tension inherent irincreased, inertial forces begin to dominate over both gravi-
the expansion to ordéd(a) in Eq. (2.19. Figure 4a) shows tational and viscous forces. Then the localized ridge gets
that the surface is asymmetric with a ridge of fluid that has gulled over the top of the cylinder, while spreading out and
steep front close to the bottom of the cylinder. The size ofreforms again at the bottom before the whole cycle repeats
the ridge is proportional to the size gfwhich is a measure itself. This transition to a limit cycle from a stationary state
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(a) Pseudo-stationary pendants (b) Periodic sloshing
65 = ——— 65 P 5
o A= 60@
& g FIG. 3. Unsteady two-dimensional
& e e flows in a cylinder with 6% volume

55 ;—/’j 55E = fraction of the fluid anda=0.055,
P T B~1=0.2 shown in a space—time dia-
?@ g gram. The solid lines show profiles of

A the free surface at a fixed time; time

time

_ . .
Ne———— " increases from one profile to the next

50
& moving vertically upwards(a) When
Lm B=24, the spatially localized ridge re-
@ \_/;i’ mains stationary for long periods of

45 /D% 45 time, but is periodically pulled over

w—/\

e the top of the cylinder(b) When 38

%g =29 the ridge exhibits limit cycle be-
K j havior.

40 N 40
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35

is reminiscent of a saddle-node bifurcation in a finite- @
dimensional systert, such as the damped-driven pendulum. ~ d=hf(6)+ 3 75(B™ gt g(6,k)hy)
The localized ridge is similar to the pendulum; as the forcing

due to rotation becomes large enough, it is no longer capable s 3 6

of remaining stationary. Since it is a deformable object, it +ap| 57 10~ 7g 0 cos @ (h cosb),,
gets pulled over gradually, and reforms periodically. In Fig.
3(a), we show a space—time plot of the motion of a localizedand
ridge for parameter values close to the bifurcation point
when it is almost stationary for a long period of time before

f(6)=1— 73 cos 8+ a{273 cos

it gets pulled over. In Fig. ®), we show the limit cycle + 2B L + + sin 6
motion of the ridge that is periodically pulled over the top of 75(B 1007+ 70000) + 700 )
the cylinder. These sloshing modes have been observed in — o+ BF(0)},

three-dimensional flows experimentéliyhere they take the
form of pendants.

f(0)= 25 7% sin 6 cos 6+ (273— 2575 coSs 6)

X (10 €OS ) 5+ 2774 sin 6,

—_—pn-1 _ L2 H
IV. AXIAL INSTABILITY OF STEADY TWO- 9(6,k)=B"*(1~k")+sin 6.

DIMENSIONAL FLOWS For each wave numbdy; this is of the formh,+ “h=0 so
A. Linear stability analysis that the spectrum of the linear operater determines the

To determine the wavelength of the shark-tooth instabiI—Stab”.ity.mc the system; eiger_walues that have negative real
ity, we axially perturb the two-dimensional steady state pro—part |nd|c_ate that _the associated mo<_jal perturba_ﬂons grow
file 5o(#) computed in the previous section and calculate theg)s({)ogiirg\'/ae”y'alrg (I?)g é?;ﬁjnﬂ?;r:hskelgﬁnviL(j)eo\z”tcr:):?é?_
linearly unstable axial modes. Substituting a perturbed pro- P b ' a=>

file of the form (8,z.t)= 7o)+ SN 1eh(6,1) coskz, k sponding to the experimental parameters in Ref. 6, and two
14y n= 1

71_ . . .
— /21, into Egs. (219, (2.19, and (2.20 and keeping values of 8. In both t.hese cases we tal§e =0.5; this is N
. : X ; larger than the experimental values and is chosen to stabilize
terms to ordere we obtain the set of linearized equations,

the numerical calculations. We see the existence of linearly

B B 5 unstable modes only wheg is sufficiently large. This is
het = qp=K" 5 70(B"hye+9(6,k)h)=0. (4.)  consistent with Refs. 5 and 8, where it is shown that in the
absence of inertiad=0), the leading order system is al-
Here, ways linearly stable to axial variations.
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(a) Unstable wave numbers (b) Most unstable wavelength
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FIG. 4. Linear stability results for the rotating cylindéa) Here,R=6.25 cm,a=0.04,B~1=0.5, andV=6%. The two curves itfa) show linear stability
results for two values ofs. The solid line corresponds 18=25.92 and the dashed line correspond®3te6.48. As 3 gets smaller, the linear instability
disappears(b) Shows power law behavior for the wavelength of the tekth,y*>. Each symbol stands for a different set of parameters in our numerical
simulations and the dotted line marks the cur@ )*3. Here B™! is the rescaled surface tensioft., R=6.25 cm, v=49 cnf/s, Q=3.2 Hz, andV
=6.0%. A, R=6.25 cm, v=48 cnf/s, 0 =2.7 Hz, andV=5.5%. +, R=8.0 cm, v=55 cnf/s, O =2.4 Hz, andvV=6.0%. (], R=4.5 cm, »=30 cnfls, Q

=3.6 Hz, andv=6.0%. * is an experimental point taken from Ref. 6 with the same parameters &s'sh&nfortunately we are unaware of experiments that
vary surface tension, hence we show only one experimental point here corresponding to the surface tension on a water/aiyn&3fdgeicm.

Additionally we find that the wavelength of the teeth Then by taking an inner product of E@t.1) with h, we can
from our three-dimensional numerical simulatidisge Sec. determine whether a small perturbatibnacts to increase or
V) matches the wavelength of the teeth predicted by thislecrease the energy in the system. Terms that remove energy
linear stability analysis within expected error. This error oc-are stabilizing, whereas terms that add energy are destabiliz-
curs due to the finite length of the cylinder used in our simu-4ng. To the lowest ordek,«h,/B+ #h,h)y=0 gives
lations as compared to the infinite cylinder assumed in the
stability calculations. a

o 2m
3 Et=ﬁ (h?);=— fo [(h—h73 cosh)hlde. (4.3
B. Mechanisms of the instability Here the dominant contribution to the integral comes from a
docalized region, as the perturbatidn,is concentrated in the
vicinity of the front (see Fig. 2(b)). The right-hand side
represents the flow due to the body forces on the fluid. After
a little manipulation(4.3) becomes

The physical cause of the instability can be understoo
by looking at Fig. 2. Due to inertial effects, a localized ridge
forms near the bottom of the cylinder. This ridge is axially
unstable to both a Rayleigh-type capillary instabfftt}? and
an instability driven by the body forces on the fluid. To de-

2
termine which is dominant, we perform an energy analysis® Eﬁj {(E h2—h252 cos 6| +hh,n2 cos6|do=0.
similar to that in Spaid and Hom<. B 0 2 P
First, we define a mechanical energy associated with the
perturbation, The first term in the integral vanishes due to periodic bound-
ary conditions, so the sign of the second term will determine
1 (2w 1 .. . . .
E=_ J h2dg= = (h?). (4.2) stability to lowest order. By evaluating this term numeri-
2 2 cally, we find for all values ok,
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(b) Velocity field
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(a) Free surface from 2D simulations T

FIG. 5. Two-dimensional numerical
results. This simulation was run with
R=4.5cm, v=55 cnf/s, 0=2.0 Hz,
V=5.0%, andB~!'=0.01 (@=0.04,
B=18.3). (@) Shows the free surface
between 6=4.8 and 6=2w. (b)
Shows thev and w velocities at the
free surface. Note that each “tooth” is
composed of two counter-rotating vor-
tices.

IEEEETE INREREEET Lo b il

1 2 3 4
0

27 ) where Ca pvU/vy is the capillary number and is a char-
JO hhyng cos 6d6<0. acteristic velocity. Thus, we expect the wavelength of the
teeth,\, to scale likex ~W~ y3. This is confirmed in Fig.
Thus this contributes to @ncreasein energy and the termis  4(b). The only experimental data point availdbkits right
destabilizing. on this line. It remains to be seen if further data confirm this
Since surface tension only comes in @a), we can scaling. This scaling ofy*’® can also be obtained from Eq.
conclude that the dominant destabilizing mechanism is du€2.19 by balancing (the leading order viscous tejrwith
to gravitational and viscous forces. This is easily understood,B~175%7,,,/3 (the leading order capillary term
physically as the thick regions will tend to flow down the
cylinder wall faster because thin regions will feel more ViS-V. THREE-DIMENSIONAL STEADY FLOWS: SHARK-
cous drag from the walls of the cylinder. This is completelyTEETH PATTERNS

analogous to the instability of a thin film flowing down an

inclined plane scenario described by Spaid and Hofsy. In prdpr to s't.udy the; nonlipear behavior and saturation of
However, this mechanism does not offer a way of selectin€ axial instability, we investigate the full set of E¢8.19,
ing a wavelength. To determine the most unstable wave(2:19, and(2.20, numerically in the unstable regime, using
length, we turn to capillary forces. A consequence of thd€chniques described in Appendix B. Some_ numerlcal results
classical capillary instability analysis is that the most un-for “:0-04{:3:64-813_120-05 are shown in Fig.(8), and
stable wavelength scales linearly witg, the radius of a jet show a stationary pattern.of sha_lrk—teeth. The |nd|V|_dgaI teeth
of fluid. By analogy, we expect the wavelength of our axial Meet at cus.p—llke stagnation points, which are reminiscent of
instability to scale linearly withw, the width of the ridge; tWo-dimensional cusps in Stokes flofswhile the rapid

this wavelength is determined numerically using the result§hange in fluid depth that mark the teeth are like the “buck-
of the linear stability analysis. ling” instabilities in circular hydraulic jumps in viscous

In the neighborhood of the ridge the two dominant flows?? _ _ _
forces are surface tension and viscosity. This is not contrar%/ Our simulations also show that the teeth develop first at
to our initial assumption that gravity and viscosity are theln® €nds Orlyftr;e ;:]ylmder S'”]]'I?]r to I_wgat 'i ofllas%r\(ed
dominant forces in most of the fluid; it is only in a localized €XPerimentally. In the center of the cylinder, the fluid is
region around the ridge that surface tension becomes impoF‘—lr'V‘ag only zzm;]uthally, V‘éhr:!e a]Efthe_ erlmds, th? the ﬂt;'d IS
tant due to the large curvature of the free surface. Following!'S© drven by the caps. This eftectively results in a faster
Ref. 11, we can define a characteristic width by balancin% pile-up” of fluid at the edges which allows the teeth to
these two forces. In regions of high curvatiie., near the 10rm more quickly there.

bump, p~ yx~ yH s, WhereH is the height of the fluid. In Fig. 5b), we show the azimuthal and axial vglocity
Then — Vp/p~ »V2u becomes field corresponding to the free-surface shown in Fig).5
s The velocities are calculated using the asymptotic expres-
yH E:WN Y _H cal sions given in Appendix A. We observe that there is an array
pW3  H? pvU ' of stagnation points associated with the shark-teeth. Their
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number and arrangement agrees qualitatively with Phase diagram at fixed volume fraction and surface tension
experiment. An analysis of the flow field in the neighbor- 60 T T
hood of these stagnation points would probably require a
further simplification of the equations considered here; we
leave this for the future.

It should be noted that the shark-teeth instability persists
for parameter valuesr3>0(1) which is qualitatively in
agreement with experiment. This is consistent with our scal-=
ing when one takes into account the localization of the front.
In the bulk of the fluid, the flow is viscously dominatéass 20
we assumedand it is only in a small neighborhood of the
front where there is an increased fluid depth that inertia be-
comes important. Similarly, surface tension is important only
in the neighborhood of the front, where high curvature in- 0020 0"(;3‘0‘ — 0.640 — ‘0‘.550 "0.060
creases the relative importance of this effect. We should alsc a
add that in this region there is an additional length scale that

. : a0 _FIG. 6. Numerically calculated phase diagram at fixed volume fraction and
we have not taken into account, dictated by the ﬁ”mg frac surface tension showing the regions of linear stability and instability. Here

tion of the fluid. “stable” means stable to wavelengths shorter than 1 m, and “no steady
state” implies that no steady state was reached after 1000 cycles. We ob-
serve that for smalB, when inertial effects are weak, the flow is linearly
VI. DISCUSSION stable.

linearly unstable

We have considered the problem of free-surface insta-

bilities in a pgrtially-filled hprizontql rotating cylinder. In. —0.5. The parametera and 3 are chosen as they are the
order to smpln‘y the gnaly5|s, we first derived an apprOX|-0n|y two independentombinations of the physical param-
mate evolution equation for the free-surface using the PreSsters.0. v, R, andg, that appear in the the rescaled system.
ence of a smal_l pgrametar that measures the ratio of the Finally, we followed the nonlinear evolution of the axial
viscous to graV|j[at|onaI f'orces..Th!s IS preferreq to the usuaHnstability and showed that this results in the stationary
slenderness rat.|o u;ed n Iubnpa’uon theory, since herg VOshark-teeth pattern observed in experiments. Of the many
ume conservation in th_e confined geometry of a Cyllrwlerl‘urther questions that this study poses, perhaps the most in-
leads to Iarge changes n the s_lenderness th‘.’ﬂ cannot be_ 8Festing one involves a careful experimental and theoretical
counted for in classical lubrication theory. This approach i

S . . . .
f the three- | fl h hborh f
similar to the Karman—Polhausen apprc@dcim boundary study of the three-dimensional flow in the neighborhood o

| th t that here th imat locit these free-surface stagnation points. A combination of
ayer theory, except that here the approximate velocity pro'higher-order lubrication theories and a Karman—Polhausen
file is derived using an asymptotic approximation and no

Youndary-| h may be useful in this venture.
presumed to be a high-order polynomial. In order to include oundary-layer approach may be Usetll in this venture

the effects of capillary and inertial forces in our model, we
used a higher order lubrication theory. This automaticalyACKNOWLEDGMENTS
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plane flows appears. When perturbed axially, this ridge loses

stability, mainly due to the fact that in the spanwise direc-

tion, fatter regions travel faster than thinner regions. TheAPPENDIX A: DERIVATION OF ASYMPTOTIC

wavelength of the fastest growing mode was found to obey &QUATIONS

simple scaling determined by the balance of capillary and . o
. Here, we give a more complete derivation of the

viscous forces. We also computed some unsteady two-

dimensional flows; these correspond to a periodic motion o?symptotlc equatl_ons. SubsUtutm_g Eg.18 'T“O the scale_d
-equations(2.12 yields the following equations at leading

the ridge as it gets pulled over the cylinder top. This transi- )
. . : . . order;
tion to unsteady behavior comes into being via a saddle-node
bifurcation as the forcing is increased beyond a critical —Ug, +vggtWo,=0, pPo,=0,
threshold. In Fig. 6 we show the steady, and unsteady flow
regimes as well as the regions of axial instability in a phase

diagram inB—a space, for a filling fraction of 6% anB ™! The corresponding boundary conditions at leading order are

—PogtUorr—COSH=0, —pg,+Wg,,O. (A1)
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vor=0 vo=1 APPENDIX B: NUMERICAL METHODS
Wo, =0 . at r=7, Wo=0/ at r=0. (A2) We find it convenient to replace the fourth-order PDE by
—Po=B uo=0 two second-order PDEs faj andf = 7,,. Bothf and 5 are

knot centered and the fluxesand Q are calculated at the

Solving Egs.(A1) and(A2) yields the leading order velocity center of each interval using averaged variables so that

and pressure variables,
; 2 M3, =2t M)
Up=— 3 sin 6+ 5 (7 sin 6— 754 cos6), We use an implicit scheme for the time differencing
whereAt is chosen by step doubling. The resulting equations

3

r are solved simultaneously via Newton’s method using 1 or 2
v0=r<§— n)COS 0+1, iterations. We then use extrapolation to eliminate the first
order error inAt, i.e., if C(At,k) is the solution at the end of
Wo=0, (A3) k time steps of sizét/k of the backward difference scheme,

Cextrapolated_’ 2C(At,2)—C(At,1).

In the case of a stationary front, we use a stationary and
nonuniform mesh whose resolution is increased in the neigh-

po=—B"".

At order O(a), we get the following equations:

D1, =Sin 0 borhood of the known location of the front. For nonsteady
r ’ states, we use a stationary uniform mesh. As shown in Fig. 3,
—PagtU1r = B(—Ugd, +00d g+ Wodn)V o+ Pos+Vor » the nonstationary profiles are much more “smeared out”
than the steady state profiles so added resolution in the
— Pt Wyi = —B(—Ugd; +vodyt Wod,)Wo+ W, , neighborhood of the “front” is unnecessary.
In the case of three-dimensional flows, we solve Egs.
—Ug T 019t Wy, = —(rUg) +IWoy, (2.15, (2.19, and(2.20 numerically in the parameter range

corresponding to the axially unstable range. For the bound-

subject to the following boundary conditions: ary conditions on both ends of the cylinder we G¥e 0 (no

V1 =2700r— Vo u;=0 flux out the ends v =Qr=QR(1- aT) (no-slip on the end
Wy, = 7Wo atr=z v1=0}at r=0 caps in theé direction, andh,,=0. We choose a no-slip,
—P1=B Y+ 7yt 00) ' W.=0 ' no-flux condition on the ends of the cylinder. The model
! 2z o0 ! equations are not strictly valid in the neighborhood of the
These can be solved analytically foy, v,, w; andp,, wall. However, within a few film thicknesses, the effects of
4 this boundary layer are not important.
r . Here, as in the two-dimensional case, we used a finite
u,= dr+ | wy,dr——sin 6 . ' . ) ' .
! f oo f 1z 6 difference method with a nonuniform mesh érand a uni-
.3 form mesh inz. All three-dimensional calculations were car-
n > (7 sin 6— 5, cos 6), ried out in the steady state parameter regime. We also found

it necessary to upwind the flux at z= =1 (i.e., at the end

L . L caps to stabilize the computation.
v1=(3r3=r?n+3n°r)cos 6—(3r—r7)
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