
PHYSICS OF FLUIDS VOLUME 11, NUMBER 1 JANUARY 1999
Axial instability of a free-surface front in a partially filled horizontal
rotating cylinder
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We investigate the axial instability of the free-surface front of a viscous fluid in a horizontal cylinder
rotating about its longitudinal axis. A simplified model equation for the evolution of the free surface
is derived and includes the effects of gravity, capillarity, inertia, and viscosity. This equation is
solved numerically to determine the base state with no axial variation, and a numerical linear
stability analysis is carried out to examine the onset of unstable axial modes. Various computational
results are presented for the wavelength of the axial instability. Inertia is found to play an important
role in the onset of the instability and the wavelength of the instabilityl satisfies the power law
l;g1/3, whereg is surface tension. Finally some numerical simulations of the simplified evolution
equation are presented to show that they can capture the steady shark-teeth patterns observed in
recent experiments@R. E. Johnson, inEngineering Science, Fluid Dynamics: A Symposium to Honor
T. Y. Wu~World Scientific, Singapore, 1990!, pp. 435–449; S. T. Thoroddsen and L. Mahadevan,
‘‘Experimental studies of the instabilities in a partially filled horizontal rotating cylinder,’’ Exp.
Fluids 23, 1 ~1997!#. © 1999 American Institute of Physics.@S1070-6631~99!01001-6#
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I. INTRODUCTION

Coating flows are fluid flows which lead to thin films o
liquid forming onto surfaces as a result of external forc
associated with inertia, viscosity, gravity, surface tensi
etc. Besides being important in a number of industr
processes,1 they form an interesting system in which to stu
free-surface instabilities in hydrodynamics.

In this paper, we consider the axial instability of the fr
surface of a viscous fluid partially filling a horizontally ro
tating cylinder, shown in Fig. 1. At zero angular velocity, t
fluid is stationary and lies in a pool at the bottom of t
cylinder, while at very high angular velocity, the fluid rotat
rigidly with the cylinder and forms a homogeneous film th
coats the cylinder uniformly. Much of the early work o
coating flows in this geometry focused on this latter limiti
case of nearly rigid rotation;2,3 these and other studies a
reviewed by Ruschak in Ref. 4. For moderate rotation ra
when gravitational effects are no longer perturbative, ma
interesting instabilities and patterns have been seen.5–9 Some
of these patterns resemble those found in the flow down
inclined plane;10,11 others resemble those found in flows b
tween two horizontal cylinders in the so-called printer’s
stability problem.12 However the case considered here h
the unique advantage that the flow is confined. This me
that the cylindrical surface is continuously wetted so that a
concerns involving the complicated physics associated w
the dynamics of contact lines and precursor films are eli
nated. The price for this convenience is that the mathem
cal analysis is complicated by the presence of a curved
strate which introduces an additional length scale.
971070-6631/99/11(1)/97/10/$15.00
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Much of the previous work on this system was stim
lated by a paper by Moffatt13 who used a kinematic wave
theory to study the behavior of a viscous film coating t
exterior of a cylinder, and presented some qualitative exp
ments. More recently, Johnson5 derived a lubrication ap-
proximation, with the dominant balance between gravity a
viscosity, and showed that the equations are always axi
stable for intermediate wave lengths. In recent work,7,8 the
focus has been on two-dimensional steady interior coa
flows that account for the effects of surface tension.

Here, we build on these results by uncovering some
steady two-dimensional flows, analyze the axial stability
the steady two-dimensional flows, and simulate some th
dimensional solutions using a simplified model equation t
describes these free-surface flows. In Sec. II we formu
the problem and make the equations dimensionless. We
derive an asymptotic equation for the height of the free s
face. This requires the use of a modified lubrication the
very similar to that in Refs. 14 and 8, but accounts for iner
perturbatively. In Sec. III, we present computational resu
for two-dimensional steady and unsteady coating flows.
Sec. IV we analyze the axial stability of the steady coat
flow and present a scaling law for the dominant wavelen
of the axial instability. Three-dimensional flows are pr
sented in Sec. V showing the shark-teeth patterns obse
in recent experiments.5,6 We close with a discussion of ou
results in Sec. VI.

II. AN APPROXIMATE MODEL

The geometry and notation used in the problem
shown in Fig. 1. Since the analysis of the three-dimensio
© 1999 American Institute of Physics
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Navier–Stokes equations in the presence of a free surfa
complicated, our first goal is to find an effective evolutio
equation for the free surface,h(u,z,t), in a manner similar to
classical lubrication theory.15 We assume that the fluid ha
viscositym, densityr, kinematic viscosityn5m/r, and sur-
face tensiong, and sits in a cylinder of radiusR that rotates
at an angular velocityV. Since the fluid is assumed to b
incompressible, the continuity equation and the Navie
Stokes equations of motion are given by16

“–u50, ~2.1!

ut1~u–“ !u52“p/r1n“2u1g. ~2.2!

The geometry naturally leads us to cylindrical polar coor
natesr, u, z with unit radial, azimuthal and axial vector
r̂ , u, ẑ, respectively. Then the fluid velocityu(r ,u,z)5ur̂
1vû1wẑ, p(r ,u,z) is the pressure, and gravityg
52g sinu r̂2g cosu û. On writing Eqs.~2.1!–~2.2! in cy-
lindrical coordinates we get16

~ru !r

r
1

vu

r
1wz50, ~2.3!

Du

Dt
2

v2

r
52

pr

r
1nS Du2

u

r 22
2vu

r 2 D2g sin u,

Dv
Dt

1
uv
r

52
pu

rr
1nS Dv1

2uu

r 2 2
v
r 2D2g cosu, ~2.4!

Dw

Dt
52

pz

r
1nDw,

where

D

Dt
[] t1u] r1

v
r

]u1w]z ,

D[
] r~r ] r !

r
1

]u
2

r 2 1]z
2,

and subscripts denote partial derivatives. The boundary c
ditions on the cylindrical surfacer 5R are given by

u50, v5VR, w50. ~2.5!

FIG. 1. Schematic diagram of a cross section of the cylinder. The domi
forces for a thin film are shown on the left. The arrow at the bottom in
cates the recirculation region.
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On the free surface,r 5R2h(z,u,t), the boundary condi-
tions are

n:s:n5gk, ti:s:n50, i 51,2, ~2.6!

i.e., the normal stresses are balanced by surface tension
there are no tangential stresses at the free surface. Heres is
the stress tensor,t i ; i 51,2 are the tangents to the surface a
n5t13t2 is the outward normal to the free surface;g is
surface tension andk is the curvature. The components
the stress tensors are given by

s rr 52p12mur , s ru5mS v r1
uu

r
2

v
r D ,

s rz5m~wr1uz!,
~2.7!

suu52p12mS u

r
1

vu

r D , suz5mS vz1
wu

r D ,

szz52p12mwz .

The tangents and the normal to the free-surface are give

t̂15
2hu r̂1~R2h!û

Ahu
21~R2h!2

, t̂25
2hzr̂1 ẑ

Ahz
211

, n̂5
t̂13t̂2

u t̂13t̂2u
,

~2.8!

with t̂13 t̂2}(R2h) r̂1huû1(R2h)hzẑ. The kinematic
boundary condition on the free surface is given by

D~r 2R1h!

Dt
50. ~2.9!

We now consider the appropriate length and time sca
with which to make the equations dimensionless. Balanc
the viscous forces against the force of gravity gives a ch
acteristic length scale for the thin filmL5(nVR/g)1/2.14,8

There are two characteristic time scales given byT5R2/n
which is a viscous time scale andT851/V!T which is a
time scale associated with rotation. Since events equilib
themselves quickly over the fast time scale, we rescale
variables using the slow time scaleT and the lengthL and
define three dimensionless parameters

b[a Re5A~VR!3

gn
;O~1!,

a[
L

R
5AnV

Rg
!1,

B215
g

rgR2 !1,

where Re5R2 V/n is the Reynolds number, and characte
izes the ratio of inertial to viscous forces;B21 is the inverse
of the Bond number, and characterizes the ratio of capill
and gravitational forces; anda is the ratio of viscous to
gravitational forces. Note thatb is a scaled Reynolds num
ber. By definingb[a Re we consider intermediate Rey
nolds number regimes corresponding to Re;O(1/a). This
corresponds to the range of experimental interest, and in
ticular to the region in phase space,6 where the shark-teeth
patterns exist.
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Then the dimensionless variables in the problem beco

ũ5
1

a

u

VR
, ṽ5

v
VR

, w̃5
w

VR
,

t̃ 5
n

R2 t, r̃ 5
1

a S 12
r

RD , z̃5
z

R
, ~2.10!

p̃5
p

rgR
, h5

h

aR
.

Here h5h(u,z,t) is the rescaled height of the free surfa
and r̃ is measured inwards from the wall of the cylinder; i.
r̃ 50 whenr 5R. We have scaled the radial velocityu and
the radial coordinater by a as is usual in lubrication theory
However, herea is not simply the aspect ratio but instea
measures the relative strength of viscous to gravitatio
forces. Rewriting Eqs.~2.1!–~2.2! in terms of the dimension
less variables defined in Eq.~2.10! and the parametersa, b,
andB21 yields, on dropping the ’s,

2@~12ar !u# r1vu1~12ar !wz50, ~2.11!

a2b
v2

~12ar !
52pr1a2¹sc

2 u2a sin u1O~a3!,

a2v t1ab~u•“sc!v1a2b
vu

~12ar !

~2.12!

52
1

~12ar !
pu1¹sc

2 v2
a2v

~12ar !22cosu1O~a3!,

a2wt1ab~u•“sc!w52pz1¹sc
2 w.

Here

u•“sc52u] r1
v

~12ar !
]u1w]z ,

“sc
2 5] r

22
a

~12ar !
] r1

a2

~12ar !2 ]u
21a2]z

2.

The boundary conditions~2.5! at the cylindrical surfacer
50 written in dimensionless form yield

u5w50, v51 ~2.13!

at r 50, while the boundary conditions~2.6! at the free sur-
face r 5h written in dimensionless form yield

av r1a2~v22hv r !1O~a3!50,

awr2a2hwr1O~a3!50,
~2.14!

2p15a2ph222a2~ur1v rhu1wrhz!1O~a3!

52B21k,

where

k511a~h1hzz1huu!

1a2~2hhuu1h21 1
2~hu

22hz
2!!1O~a3!.

In order to get a low-dimensional description that
more easily amenable to numerical simulation, we make
of the presence of the small parametera. Integrating the
Downloaded 27 Dec 2004 to 128.103.60.225. Redistribution subject to AI
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continuity Eq.~2.11! over the depth of the film, and using th
rescaled kinematic boundary condition from Eq.~2.9!,

a

b
h t1u1

v
~12ah!

hu1whz50

to eliminate the radial velocityu, we get

a

b
h t1qu1Qz50, ~2.15!

where the fluxesq andQ are

q~u,z,t !5E
0

h

vdr, Q~u,z,t !5E
0

h

~12ar !wdr. ~2.16!

Equation~2.15! is valid only in the limitb*O(1), which is
consistent with our choice of the time scaleT5R2/n to make
our variables dimensionless in Eq.~2.12!. When b→0 the
relevant time scale isT851/V and Eq.~2.15! becomes (1
2ah)h t1qu1Qz50, considered earlier in Ref. 8. To de
termine the dimensionless azimuthal and axial velocities
Eq. ~2.16!, we approximate the dimensionless velocity a
pressure fields by expanding them in the small parametea,
and write

u5u0~r ,u,z,t !1au1~r ,u,z,t !1a2u2~r ,u,z,t !1¯ ,
~2.17!

p5p0~r ,u,z,t !1ap1~r ,u,z,t !1a2p2~r ,u,z,t !1¯ .
~2.18!

Next we substitute our expanded variables into E
~2.12!–~2.14!. Solving the resulting equations order by ord
yields the velocity and pressure fields in terms ofh and its
derivatives~see Appendix A!. Keeping terms that are correc
to O~a! for v5v01av1 , w5w01aw1 , and p5p01ap1

and substituting into Eq.~2.16! yields

q5h2 1
3h

3 cosu1a$ 1
2h

4 cosu2 1
2h

2

1 1
3h

3~B21~hu1hzzu1huuu!1hu sin u!1bqI%,

~2.19!

Q5
a

3
h3$hz sin u1B21~hz1hzzz1huuz!%, ~2.20!

where

qI52 13
420h

7 sin u cosu

1~ 5
24h

42 3
40h

6 cosu!~h cosu!u1 3
40h

5 sin u.

Equations ~2.15!, ~2.19!, and ~2.20!, subject to periodic
boundary conditions inu and no-slip conditions~in the u
direction! and no flux conditions~in the z direction! at the
endsz56 l , where 2l is the length of the cylinder, define th
complete system which we will solve numerically. The e
fects of inertia are weak, as we are assuming the domin
force balance is between viscosity and gravity, and appea
Eq. ~2.19! as the terms premultiplied byb. However, we will
later find a qualitative agreement with experiment even wh
b is relatively large. No additional equation is needed for t
radial velocityu at this order sinceut appears only atO(a4)
in Eq. ~2.12!. This asymptotic reduction technique is simil
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 2. Numerical solution of Eq.~2.11! with Q50 showing the free-surface of the viscous fluid in a cylinder rotating clockwise. The parameter value
in ~a! wereR56.25 cm,n549 cm2/s, V53.2 Hz,V56.0%, andB2150.05 which corresponds toa50.04 andb564.8. The dotted line represents a solutio
with the same parameter values, but withb56.48. ~b! Here the solid line representsR56.25 cm, a50.04, b525.92, andB2150.5; the dashed line
corresponds to a reducedb of 6.48. The free surface has been ‘‘unwrapped’’ from the cylinder and plotted on a straight line; the bump correspond
puddle at the bottom of the cylinder. The arrows show the velocity field to leading order as given by Eq.~A3!. We observe that for smallb the ridge all but
disappears. The dot–dashed line shows the shape of the most unstable eigenmode,h, which is localized near the leading edge of the front and is neglig
elsewhere.
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to the idea of center manifold reduction in dynamic
systems17 and results in a significant simplification of th
three-dimensional free-surface problems~2.1!–~2.9! when
a!1. Once we have solved the scalar two-dimensional P
~2.15! for h(u,z,t) we can reconstruct the three-dimension
velocity field to O(a) by using the expressionsu5u0

1au1 , v5v01av1 , w5w01aw1 ~see Appendix A!.

III. TWO-DIMENSIONAL STEADY AND UNSTEADY
FLOWS

We first consider two-dimensional flows with no axi
variation so thatQ50. Since Eq.~2.15! is a nonlinear PDE
we solve it numerically using a centered finite differen
scheme and periodic boundary conditions, described in d
in Appendix B. Typical numerical results for steady flow
are shown in Fig. 2. We observe that we can capture
recirculation region at the bottom of the cylinder with th
cubic approximation to the azimuthal velocity profile and t
regularization of the front due to surface tension inheren
the expansion to orderO~a! in Eq. ~2.19!. Figure 2~a! shows
that the surface is asymmetric with a ridge of fluid that ha
steep front close to the bottom of the cylinder. The size
the ridge is proportional to the size ofb which is a measure
Downloaded 27 Dec 2004 to 128.103.60.225. Redistribution subject to AI
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of inertial effects. For example, the dotted lines in Fig.
show the profile for a lower value ofb when the ridge has al
but disappeared. We note that a similar ridge is found at
leading edge of a fluid flowing down an inclined plane10

where it triggers a transverse fingering instability. Inertia
unimportant in that case since gravitational forcing is co
stant. In the flow inside a cylinder this ridge all but disa
pears when inertia is small because the curvature of the
strate yields a differential gravitational forcing that
weakest in the vicinity of the ridge, at the bottom of th
cylinder. However as inertial effects become larger they
store the imbalance between the rising and the falling fi
regions thus giving rise to a localized ridge. As we w
shortly see the presence of this ridge is crucial in understa
ing of the transverse/axial instability of the steady tw
dimensional flow.

As the problem parameters are varied, we also obse
unsteady two-dimensional flows. Whena, b are gradually
increased, inertial forces begin to dominate over both gra
tational and viscous forces. Then the localized ridge g
pulled over the top of the cylinder, while spreading out a
reforms again at the bottom before the whole cycle repe
itself. This transition to a limit cycle from a stationary sta
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 3. Unsteady two-dimensiona
flows in a cylinder with 6% volume
fraction of the fluid anda50.055,
B2150.2 shown in a space–time dia
gram. The solid lines show profiles o
the free surface at a fixed time; tim
increases from one profile to the nex
moving vertically upwards.~a! When
b524, the spatially localized ridge re
mains stationary for long periods o
time, but is periodically pulled over
the top of the cylinder.~b! When b
529 the ridge exhibits limit cycle be-
havior.
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is reminiscent of a saddle-node bifurcation in a fini
dimensional system,17 such as the damped-driven pendulu
The localized ridge is similar to the pendulum; as the forc
due to rotation becomes large enough, it is no longer cap
of remaining stationary. Since it is a deformable object
gets pulled over gradually, and reforms periodically. In F
3~a!, we show a space–time plot of the motion of a localiz
ridge for parameter values close to the bifurcation po
when it is almost stationary for a long period of time befo
it gets pulled over. In Fig. 3~b!, we show the limit cycle
motion of the ridge that is periodically pulled over the top
the cylinder. These sloshing modes have been observe
three-dimensional flows experimentally6 where they take the
form of pendants.

IV. AXIAL INSTABILITY OF STEADY TWO-
DIMENSIONAL FLOWS

A. Linear stability analysis

To determine the wavelength of the shark-tooth insta
ity, we axially perturb the two-dimensional steady state p
file h0(u) computed in the previous section and calculate
linearly unstable axial modes. Substituting a perturbed p
file of the form h(u,z,t)5h0(u)1Sn50

N eh(u,t) coskz, k
5pn/2l , into Eqs. ~2.15!, ~2.19!, and ~2.20! and keeping
terms to ordere we obtain the set of linearized equations,

ht1
b

a
qu2k2

b

3
h0

3~B21huu1g~u,k!h!50. ~4.1!

Here,
Downloaded 27 Dec 2004 to 128.103.60.225. Redistribution subject to AI
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q5h f~u!1
a

3
h0

3~B21huuu1g~u,k!hu!

1abS 5

24
h0

42
3

40
h0

6 cosu D ~h cosu!u ,

and

f ~u![12h0
2 cosu1a$2h0

3 cosu

1h0
2~B21~h0u1h0uuu!1h0u sin u!

2h01b f I~u!%,

f I~u![
213

60
h0

6 sin u cosu1~ 5
6h0

32 9
20h0

5 cosu!

3~h0 cosu!u1 3
8h0

4 sin u,

g~u,k![B21~12k2!1sin u.

For each wave numberk, this is of the formht1Lh50 so
that the spectrum of the linear operatorL determines the
stability of the system; eigenvalues that have negative
part indicate that the associated modal perturbations g
exponentially. In Fig. 4~a! we plot the eigenvalue with larg
est positive parts(k) as a function ofk, for a50.04 corre-
sponding to the experimental parameters in Ref. 6, and
values ofb. In both these cases we takeB2150.5; this is
larger than the experimental values and is chosen to stab
the numerical calculations. We see the existence of line
unstable modes only whenb is sufficiently large. This is
consistent with Refs. 5 and 8, where it is shown that in
absence of inertia (b50), the leading order system is a
ways linearly stable to axial variations.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 4. Linear stability results for the rotating cylinder.~a! Here,R56.25 cm,a50.04,B2150.5, andV56%. The two curves in~a! show linear stability
results for two values ofb. The solid line corresponds tob525.92 and the dashed line corresponds tob56.48. Asb gets smaller, the linear instability
disappears.~b! Shows power law behavior for the wavelength of the teeth,l;g1/3. Each symbol stands for a different set of parameters in our nume
simulations and the dotted line marks the curve (B21)1/3. Here B21 is the rescaled surface tension.L, R56.25 cm, n549 cm2/s, V53.2 Hz, andV
56.0%. D, R56.25 cm,n548 cm2/s, V52.7 Hz, andV55.5%. 1, R58.0 cm,n555 cm2/s, V52.4 Hz, andV56.0%. h, R54.5 cm,n530 cm2/s, V
53.6 Hz, andV56.0%.* is an experimental point taken from Ref. 6 with the same parameters as theL’s. Unfortunately we are unaware of experiments th
vary surface tension, hence we show only one experimental point here corresponding to the surface tension on a water/air interface,g;69 dyn/cm.
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Additionally we find that the wavelength of the tee
from our three-dimensional numerical simulations~see Sec.
V! matches the wavelength of the teeth predicted by
linear stability analysis within expected error. This error o
curs due to the finite length of the cylinder used in our sim
lations as compared to the infinite cylinder assumed in
stability calculations.

B. Mechanisms of the instability

The physical cause of the instability can be understo
by looking at Fig. 2. Due to inertial effects, a localized rid
forms near the bottom of the cylinder. This ridge is axia
unstable to both a Rayleigh-type capillary instability18,19 and
an instability driven by the body forces on the fluid. To d
termine which is dominant, we perform an energy analy
similar to that in Spaid and Homsy.20

First, we define a mechanical energy associated with
perturbation,

E5
1

2 E
0

2p

h2du5
1

2
^h2&. ~4.2!
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Then by taking an inner product of Eq.~4.1! with h, we can
determine whether a small perturbation,h, acts to increase o
decrease the energy in the system. Terms that remove en
are stabilizing, whereas terms that add energy are destab
ing. To the lowest order,̂aht /b1Lh,h&50 gives

a

b
Et5

a

2b
^h2& t52E

0

2p

@~h2hh0
2 cosu!uh#du. ~4.3!

Here the dominant contribution to the integral comes from
localized region, as the perturbation,h, is concentrated in the
vicinity of the front ~see Fig. 2~b!!. The right-hand side
represents the flow due to the body forces on the fluid. A
a little manipulation~4.3! becomes

a

b
Et1E

0

2pF S 1

2
h22h2h0

2 cosu D
u

1hhuh0
2 cosuGdu50.

The first term in the integral vanishes due to periodic bou
ary conditions, so the sign of the second term will determ
stability to lowest order. By evaluating this term nume
cally, we find for all values ofk,
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 5. Two-dimensional numerica
results. This simulation was run with
R54.5 cm, n555 cm2/s, V52.0 Hz,
V55.0%, andB2150.01 (a50.04,
b518.3). ~a! Shows the free surface
between u54.8 and u52p. ~b!
Shows thev and w velocities at the
free surface. Note that each ‘‘tooth’’ is
composed of two counter-rotating vor
tices.
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Thus this contributes to anincreasein energy and the term is
destabilizing.

Since surface tension only comes in atO~a!, we can
conclude that the dominant destabilizing mechanism is
to gravitational and viscous forces. This is easily underst
physically as the thick regions will tend to flow down th
cylinder wall faster because thin regions will feel more v
cous drag from the walls of the cylinder. This is complete
analogous to the instability of a thin film flowing down a
inclined plane scenario described by Spaid and Homsy.20

However, this mechanism does not offer a way of sele
ing a wavelength. To determine the most unstable wa
length, we turn to capillary forces. A consequence of
classical capillary instability analysis is that the most u
stable wavelength scales linearly withr 0 , the radius of a jet
of fluid. By analogy, we expect the wavelength of our ax
instability to scale linearly withW, the width of the ridge;
this wavelength is determined numerically using the res
of the linear stability analysis.

In the neighborhood of the ridge the two domina
forces are surface tension and viscosity. This is not cont
to our initial assumption that gravity and viscosity are t
dominant forces in most of the fluid; it is only in a localize
region around the ridge that surface tension becomes im
tant due to the large curvature of the free surface. Follow
Ref. 11, we can define a characteristic width by balanc
these two forces. In regions of high curvature~i.e., near the
bump!, p;gk;gHuu , whereH is the height of the fluid.
Then2¹p/r;n“2u becomes

gH

rW3 ;
nU

H2 ⇒W;HS g

rnU D 1/3

5H Ca21/3,
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where Ca5rnU/g is the capillary number andU is a char-
acteristic velocity. Thus, we expect the wavelength of
teeth,l, to scale likel;W;g1/3. This is confirmed in Fig.
4~b!. The only experimental data point available6 sits right
on this line. It remains to be seen if further data confirm t
scaling. This scaling ofg1/3 can also be obtained from Eq
~2.19! by balancingh ~the leading order viscous term! with
aB21h3huuu/3 ~the leading order capillary term!.

V. THREE-DIMENSIONAL STEADY FLOWS: SHARK-
TEETH PATTERNS

In order to study the nonlinear behavior and saturation
the axial instability, we investigate the full set of Eqs.~2.15!,
~2.19!, and~2.20!, numerically in the unstable regime, usin
techniques described in Appendix B. Some numerical res
for a50.04,b564.8,B2150.05 are shown in Fig. 5~a!, and
show a stationary pattern of shark-teeth. The individual te
meet at cusp-like stagnation points, which are reminiscen
two-dimensional cusps in Stokes flows,21 while the rapid
change in fluid depth that mark the teeth are like the ‘‘buc
ling’’ instabilities in circular hydraulic jumps in viscous
flows.22

Our simulations also show that the teeth develop firs
the ends of the cylinder similar to what is observ
experimentally.6 In the center of the cylinder, the fluid i
driven only azimuthally, while at the ends, the the fluid
also driven by the caps. This effectively results in a fas
‘‘pile-up’’ of fluid at the edges which allows the teeth t
form more quickly there.

In Fig. 5~b!, we show the azimuthal and axial velocit
field corresponding to the free-surface shown in Fig. 5~a!.
The velocities are calculated using the asymptotic exp
sions given in Appendix A. We observe that there is an ar
of stagnation points associated with the shark-teeth. T
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number and arrangement agrees qualitatively w
experiments.6 An analysis of the flow field in the neighbor
hood of these stagnation points would probably requir
further simplification of the equations considered here;
leave this for the future.

It should be noted that the shark-teeth instability pers
for parameter valuesab.O(1) which is qualitatively in
agreement with experiment. This is consistent with our sc
ing when one takes into account the localization of the fro
In the bulk of the fluid, the flow is viscously dominated~as
we assumed! and it is only in a small neighborhood of th
front where there is an increased fluid depth that inertia
comes important. Similarly, surface tension is important o
in the neighborhood of the front, where high curvature
creases the relative importance of this effect. We should
add that in this region there is an additional length scale
we have not taken into account, dictated by the filling fra
tion of the fluid.

VI. DISCUSSION

We have considered the problem of free-surface in
bilities in a partially-filled horizontal rotating cylinder. In
order to simplify the analysis, we first derived an appro
mate evolution equation for the free-surface using the p
ence of a small parametera that measures the ratio of th
viscous to gravitational forces. This is preferred to the us
slenderness ratio used in lubrication theory, since here
ume conservation in the confined geometry of a cylin
leads to large changes in the slenderness that cannot b
counted for in classical lubrication theory. This approach
similar to the Karman–Polhausen approach23 in boundary
layer theory, except that here the approximate velocity p
file is derived using an asymptotic approximation and
presumed to be a high-order polynomial. In order to inclu
the effects of capillary and inertial forces in our model, w
used a higher order lubrication theory. This automatica
introduces cubic and higher-order polynomial corrections
the azimuthal velocity profile that, unlike the simple qu
dratic profiles in lubrication theory, can account for regio
of recirculation that exist in this problem. We numerica
computed steady two-dimensional solutions of the appro
mate evolution equation without any axial variation. The
fect of inertia was found to be significant in determining t
shape of the coating film; for large values of the parameteb,
a spatially localized ridge similar to those seen in incline
plane flows appears. When perturbed axially, this ridge lo
stability, mainly due to the fact that in the spanwise dire
tion, fatter regions travel faster than thinner regions. T
wavelength of the fastest growing mode was found to obe
simple scaling determined by the balance of capillary a
viscous forces. We also computed some unsteady t
dimensional flows; these correspond to a periodic motion
the ridge as it gets pulled over the cylinder top. This tran
tion to unsteady behavior comes into being via a saddle-n
bifurcation as the forcing is increased beyond a criti
threshold. In Fig. 6 we show the steady, and unsteady fl
regimes as well as the regions of axial instability in a ph
diagram inb–a space, for a filling fraction of 6% andB21
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50.5. The parametersa and b are chosen as they are th
only two independentcombinations of the physical param
eters,V, n, R, andg, that appear in the the rescaled syste

Finally, we followed the nonlinear evolution of the axia
instability and showed that this results in the stationa
shark-teeth pattern observed in experiments. Of the m
further questions that this study poses, perhaps the mos
teresting one involves a careful experimental and theoret
study of the three-dimensional flow in the neighborhood
these free-surface stagnation points. A combination
higher-order lubrication theories and a Karman–Polhau
boundary-layer approach may be useful in this venture.
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APPENDIX A: DERIVATION OF ASYMPTOTIC
EQUATIONS

Here, we give a more complete derivation of th
asymptotic equations. Substituting Eq.~2.18! into the scaled
equations~2.12! yields the following equations at leadin
order;

2u0r1v0u1w0z50, p0r50,

2p0u1v0rr 2cosu50, 2p0z1w0rr 0. ~A1!

The corresponding boundary conditions at leading order

FIG. 6. Numerically calculated phase diagram at fixed volume fraction
surface tension showing the regions of linear stability and instability. H
‘‘stable’’ means stable to wavelengths shorter than 1 m, and ‘‘no ste
state’’ implies that no steady state was reached after 1000 cycles. We
serve that for smallb, when inertial effects are weak, the flow is linear
stable.
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v0r50
w0r50
2p05B21

J at r 5h,

v051
w050
u050

J at r 50. ~A2!

Solving Eqs.~A1! and~A2! yields the leading order velocity
and pressure variables,

u052
r 3

6
sin u1

r 2

2
~h sin u2hu cosu!,

v05r S r

2
2h D cosu11,

~A3!
w050,

p052B21.

At order O~a!, we get the following equations:

p1r5sin u,

2p1u1v1rr 5b~2u0] r1v0]u1w0]z!v01rp0u1v0r ,

2p1z1w1rr 52b~2u0] r1v0]u1w0]z!w01w0r ,

2u1r1v1u1w1z52~ru0!r1rw0z ,

subject to the following boundary conditions:

v1r52hv0r2v0

w1r5hw0r

2p15B21~h1hzz1huu!
J at r 5h,

u150
v150
w150

J at r 50.

These can be solved analytically foru1 , v1 , w1 andp1 ,

u15E v1udr1E w1zdr2
r 4

6
sin u

1
r 3

2
~h sin u2hu cosu!,

v15~ 1
3r

32r 2h1 3
2h

2r !cosu2~ 1
2r

22rh!

3B21~hu1hzzu1huuu!2r 1bv1I ,

w15S r 2

2
2rh D $2hz sin u2B21~hz1hzzz1huuz!%,

p15~r 2h!sin u2B21~h1hzz1huu!,

where

v1I5~2 1
360r

61 1
60r

5h2 1
24r

4h21 1
10h

5r !sin u cosu

1 1
6~

1
4r

42h3r !~hhu cos2 u2sin u!2 1
2~

1
3r

32h2r !

3~h cosu!u .

v1 andw1 were used in Eq.~2.16! to obtain the final ordera
fluxes, Eqs.~2.19! and ~2.20!. Here we keep the terms o
O(B21) even though capillarity is not important over mo
of the domain (B21!1). However, in the vicinity of the
front where the curvature is large, capillary forces are imp
tant.
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APPENDIX B: NUMERICAL METHODS

We find it convenient to replace the fourth-order PDE
two second-order PDEs forh and f 5huu . Both f andh are
knot centered and the fluxesq and Q are calculated at the
center of each interval using averaged variables so that

h i 1
1
2, j 5

1
2~h i , j1h i 11,j !.

We use an implicit scheme for the time differencin
whereDt is chosen by step doubling. The resulting equatio
are solved simultaneously via Newton’s method using 1 o
iterations. We then use extrapolation to eliminate the fi
order error inDt, i.e., if C(Dt,k) is the solution at the end o
k time steps of sizeDt/k of the backward difference schem

Cextrapolated52C~Dt,2!2C~Dt,1!.

In the case of a stationary front, we use a stationary
nonuniform mesh whose resolution is increased in the ne
borhood of the known location of the front. For nonstea
states, we use a stationary uniform mesh. As shown in Fig
the nonstationary profiles are much more ‘‘smeared o
than the steady state profiles so added resolution in
neighborhood of the ‘‘front’’ is unnecessary.

In the case of three-dimensional flows, we solve E
~2.15!, ~2.19!, and~2.20! numerically in the parameter rang
corresponding to the axially unstable range. For the bou
ary conditions on both ends of the cylinder we useQ50 ~no
flux out the ends!, v5Vr 5VR(12a r̃ ) ~no-slip on the end
caps in theu direction!, and hzz50. We choose a no-slip
no-flux condition on the ends of the cylinder. The mod
equations are not strictly valid in the neighborhood of t
wall. However, within a few film thicknesses, the effects
this boundary layer are not important.

Here, as in the two-dimensional case, we used a fi
difference method with a nonuniform mesh inu and a uni-
form mesh inz. All three-dimensional calculations were ca
ried out in the steady state parameter regime. We also fo
it necessary to upwind theu flux at z56 l ~i.e., at the end
caps! to stabilize the computation.
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