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Rolling droplets

L. Mahadevan?®
1-310, Division of Mechanics and Materials, M.I.T., 77 Mass. Ave., Cambridge, Massachusetts 02139-4307

Yves Pomeau
Laboratoire de Physique Statistique, Ecole Normale Superieure, 24, rue Lhomond, 75231 Paris
Cedex 05, France

(Received 22 July 1998; accepted 14 May 1999

A droplet of nonwetting viscous liquid moves on an inclined plane by rolling along it. We give a
scaling law for the uniform speed of such a droplet. We then analyze the flow in the contact region
and show that the classical stress singularity at the contact line is alleviated in this ca$899©
American Institute of Physic§S1070-663(99)01609-§

I. INTRODUCTION II. VELOCITY OF A ROLLING DROPLET

L . . We consider a small nonwetting droplet of fluid with
When a rigid circular cylinder or sphere is placed on a_. . . : i .

- o viscosity u, surface tensiomr, densityp, nominal radiuskR
rough. mclm_ed plane it W|I_I roll QO_\Nn the plan_e. When the moving down a plane inclined at an angle<1 with the
experiment is repeated with a rigid cube it will slide down ;0141 For a small enough droplet, surface tension forces
the plane. If the object is deformable a variety of motionsyi gominate gravitational forces; in dimensionless terms
become possible; the motion of elastic bodies and fluid dropghe Bond number Be pgR¥ o<1. We also assume that vis-
depends on the interfacial energies of the materials, thgous effects dominate inertia so that a nominal Reynolds
roughness of the interfaces, the size of the objects, etc. Thisumber Re=pLV/u<1, whereV is a characteristic velocity
is because a deformable body maintains contact with the suand L is a characteristic length which we will determine
face over a finite area. For a viscous fluid droplet, two posiater. Finally, we assume that the droplet is moving at small
sible motions may ensue. If the droplet partially wets theenough velocities, so that its shape does not change a lot due
surface it slides along it, while if the droplet is nonwetting, it t© the flow so that the Capillary number €aV/o<1. The

can roll on the surface, much like an elastic body wher€lative magnitude of these dimensionless parameters will
become clearer as we proceed.

viewed from the exterior. Here we consider the motion of & i ) )
small nonwetting droplet forced by a weak gravitational When the droplet is at rest on a horlzoptal substrate,. Its
field. A classic example of this motion is exhibited by ashape and the area of contacF with the sol|d.are determined
- : by the balance between capillary and gravity forces. For

droplet of mercury on an inclined plane and is probably theBo< 1, the droplet is almost spherical everywhere except in
origin of the name quicksilver, after the Latkrgentum Vi- 0 neighborhood of the substrate, where it is a flat horizontal
vumfor the swiftly moving droplet of the silvery liquid. disk. The lowering of the center of the droplet Bylue to its

For such motions to be observable, we must have liquidgwn weight and the radius of the contact disare related to
with high surface tension moving on very clean hydrophobiceach other by
surfaces. Until recently, only chemically treated surfaces 12_Rs o)
were amenable to such experiments that allowed for large ’
contact angles; however, these surfaces were easily contany¥here~ means “of the order of.” Equatiofil) corresponds
nated. Recently it has become possible to vary the surfad® an approximation to the shape of the droplet in the vicinity
roughnesto achieve contact angles very close to 180° thuf the substrate, valid for weakly deformed droplets or

. 7 . . . .
making robust experiments in the high contact angle regim&®lids: There is an increase in the surface afe associ-
more accessible. A small droplet rolling down such an in_ated with this shape change due to two contributions both of

. : . which are of the same order. The first is due to the reduction
cline then would reach a steady velocity determined by the . . .

T . |r] the area of the spherical cap when flattened into a disc,
balance between the rate of energy dissipation due to interna

. . o and is given byAa;~1%(1—cos#) where @ is the angle
viscous motions and the rate of change of gravitational POLbtended by the disc at the center of the droplet. Sihce

tential energy. ~1/2R, this yieldsAa;~1*/R?. The second is an increase in
the area due to the the transfer of the volume of the spherical

dElectronic mail: 1_m@mit.edu cap to the rest of the droplet. The volume of the caf’$
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~I%R. If AR is the change in the radius of the sphere due to

this additional volume, thenR?AR~I%/R so that AR
~I*R3, and the corresponding area chanya,~RAR
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Due to the elliptic nature of the problem the influence of
the contact area extends into the droplet to a hdigsimilar
to the Hertz contact problem in elasticftyfthe magnitude of

~I%/R2. Since a sphere has the least area for a given volthe fluid velocity in this region igu|~IU/R so that|Vu|

ume, the sum of the two contributiodsa, + Aa, is positive.
The increase in surface energyAa;+Aa,) is achieved at
the cost of lowering the potential energy of the droplet
pgR35, so that

~U/R. Viscous dissipation occurs in a volume determined
by the extent of the influence of the contact region so that
V4~ 3. Substituting these results into E¢) and solving for
the steady-state velocity yields

4
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Here we have assumed that the surface energy per unit area

for the liquid—solid surface is of the same order as the This counter-intuitive relation of the velocity to the drop
liguid—gas interface, corresponding to having a thin layer ofsize may be explained thus: Although the driving force in-
vapor between the liquid and solid. Solving E¢B.and(2)  creases with the size of the droplesR?®), the viscous forces
for 6 andl yields increase fastetas R?) because of the rapid increase of the
contact disk radius with droplet size. To quantify the regime
of validity of these results which describe the rolling of small
nonwetting viscous droplets on a slightly inclined plane, we
recall that the typical fluid velocity in the vicinity of the

Substituting in typical values fos,o for mercury and water, contact disk isv~UI/R, so that a typical capillary number
we find that for capillary forces to dominate gravity, the sizeCa ~uV/o~sina, which is much less than unity, as as-
of the drop must be of the order of 1®m, as must the sumed earlier. Furthermore a typical Reynolds number Re
radius of the contact disk By changing the liquid we can ~pVl/u=p>*(og)"R*sina/u’<1 for this analysis to be
lower its density by an order of magnitude, while gravity canvalid. In dimensionless terms this rea@d<R2/sina, where
be reduced by going into a microgravity environment, so thaRm=/(p>cg)"* and thus leads to a maximum droplet size.
the size of a sessile droplet can be increased by as much &lbstituting in the appropriate parameters for mercury or
an order of magnitude, while still keeping it. water on an inclined plane of angle 10°, we find tiRa}
This classical scaling corresponds to the case of a static' 0-001 mm! On the other hand, by making the angle of the
droplet with capillary number GauU/oc=0. When the inclined plane very small or by using a very viscous liquid,
droplet moves on a weakly inclined plane, the change ifRm can be made macroscopic, so that a rolling droplet of
shape and thereby in the above scaling is negligible. Idiquid that is thousand times more viscous than water can be
steady rolling motion along the plane, the velocity of theas large as 1 mm, move at a few cm/s and still constitute a
droplet is determined by the balance between viscous dissiow Re flow.

pation and the rate of decrease of the gravitational potential \We now estimate the viscous dissipation in the bulk of
energy, i.e. the droplet away from the region that is influenced by the

contact region. Here there will be small deviations from the
purely rotational velocity field given byJ/R. Velocity per-
turbationsu’ from this Huygens motion vary inversely as the
scaled distance from the contact area, in a manner similar to
the velocity field generated by a sphere creeping through a
viscous fluid, so that’ ~12U/R?. Then the dissipation in the
bulk given by uf\(Vu')2dV~ xU?%/R® is dominated by
the dissipationuU?I3/R? in the contact region, as long as
I/R<1, i.e., Bo<1, as is the case here.

When the drop size is much larger than the capillary
length (o/pg)*?, the surface of contact is no longer para-
Bolic. In this case, the drop resembles a pancake of thickness

volume over which the droplet is in rigid rotation, since this
induces no dissipation. If the contact between the droplet an ) . . -

b b w and contact disk size. To determine these quantities, we
onsider the following functional:

3

p9R P9

o~ =BoR, I~(
o

1/2
) R%2=Bo'?R. ©)

UR3pg sina~MfV (Vu)2dV. (4)
d

HereV, is the volume over which viscous dissipation occurs,
U is the velocity of the center of mass of the droplet, and
is the velocity field in the droplet. To estimate the viscous
dissipation, we recall that for Stokes flow, given a set of
boundary conditions, the flow is such that the viscous dissi
pation is a minimunt? This is achieved by maximizing the

the substrate were restricted to a point, this would b
achieved by a Huygens motion, i.e., instantaneous rigid ro¢
tation about a horizontal axis passing through this point,
which satisfies the condition of no-slip and makes the rate of
dissipation vanish. Of course, for finite Bo, contact occurs
over a disc of sizd. Then the dissipation is restricted to a where the first term corresponds to the surface energy, the
neighborhood of this disc, where the velocity field is not asecond to the gravitational energy and the third enforces the
simple rigid rotation. However, far from the contact region constant volume constraint, with being the pressure. As-
the droplet moves in a manner similar to rigid rotation aboutsuming thatw<L, and extremizing the functional with re-
an axis passing through the area of contact. spect toL,w,\ yields

F~o(L?+Lw)— pgR®w+ A (L?w—R?), (6)
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We observe in particular that the thickness of the pancake
w<L is independent of the size of the drop, and is in fact
just the capillary length. When this pancake rolls down an
inclined plane, the velocity gradient scalesldsv, so that
balancing the viscous dissipation rate with the rate of gravi-
tational energy gain yielda(U/w)?R®*~ pR3Ug sina. Sub-
stituting in forw from Eq. (7) leads to the following scaling

A=olw, L~

relation for the velocity of large pancake drops: FIG. 1. Schematic of a nonwetting droplet of radRison an inclined plane
of anglea<1. The contact disc is of diametel &nd the center of mass is
og\ 12 displaced by an amourdt due to the weight of the droplet. The coordinate
U~ ( _2_) sina. (8) system is centered at the advancing contact line which is tangential to the
v inclined plane.

Recent experiments motivated by our thédrgre con-
sistent with the above scenario. On low-angle inclined planes
made of nearly nonwetting substrates, smaller drops of &nfortunately, all these papers also neglect a crucial hydro-
viscous liquid in the Stokesian regime do indeed travel fastestatic pressure term without which we cannot analyze the
than large ones, and confirm that the velocity varies in-dynamics of the slow rolling of a small droplet that we are
versely with the size of the drdjtg. (5)], with the velocity  interested in here.
eventually reaching a constant value as the drop size be- As the dense fluid rolls down the inclined plane, it
comes vary larg¢Eg. (8)]. The experiments were done with squeezes out the light flui@ir) in the neighborhood of the
droplets of glycerol of viscosity 10 gm/cm.s and a typical contact line. We neglect the effects of air as the viscous
size of 1 mm, giving rise to observed velocities in the rangestress in it is scaled by the density of the fluid. The Stokes

of a few cm/s, as predicted by the scaling Ig&g. (5)]. equations in the denser fluid can be rewritten in terms of a
stream function/(x,y) which satisfies the biharmonic equa-
IIl. CONTACT LINE DYNAMICS tion
Next, we consider the velocity field inside the droplet, in V4y=0. (9)

particular near the advancing contact line. We focus on the ) ) S .
two-dimensional case here for simplicity of exposition. The The coordinate system is as shown in Fig. 1, with the ad-
order of magnitude estimates are not very different in the/&ncing contact line which has a vanishing contact angle
three-dimensional case because the essential property of tiReated at the origin and the inclined plane coinciding with
velocity field, that it is tangential to the surface at the contacl = 0- The velocity fieldu=(u,v) in this coordinate system
line, is common to both cases. Following our earlier discus!S 9iven byu=ay/dy, v=—adylox. The boundary condition
sion, the velocity field far from the contact region is close to©f N0-slip along the inclined plane corresponds to

a pure rotation about a horizontal axis passing through the

contact region. However, this assumption is invalid near the a_¢/= 5_‘/’=O —0. x<0 (10)
contact region; here we must solve Stokes equations for the dy  dx ' ' '

free surface of the droplet subject to the usual boundary con- On the free surface of the droplet, three conditions must

ditions on the contact line and the fluid—air free surface. Thisbe satisfied: The free surface must be a material surface. the
latter problem of the dynamics of a triple point, i.e., thetangential stress must vanish and the normal stress must be

solid—liquid—vapor mterfaceg, hﬁs been. the sgbjec; of €NO'halanced by the surface tension. For small droplet velocities,
mous study and controversyThe starting point of most o \iscous stress is dominated by capillary forces, i.e., Ca

studies on this problem goes back to Ref. 6 who highlighted:MU/U<1, even near the contact line. Then the free sur-

the stress singularity at the contact line associated with .00 joes not deviate too much from its static equilibrium
similarity solution to Stokes flow in a wedge of fixed geom- g, ne and the leading order balance of normal stresses yields

etry. Recently, this subject has been visited from the perspegy o Young—-Laplace equation, whose solution gives the shape
tive of diffuse-interface models to account for mass transfe[)f the free surface

by evaporation—condensatibhand leads to a problem in

matched asymptotic expansions with different force balances X2
in regions close to and far from the contact line wedge. This y= >R’
wedge is defined for all values of contact angle except 180°,

which corresponds to a rolling droplet considered here. IrHere we differ from Refs. 2, 8, and 10 who assume that the
this special case, the interface merges smoothly with the imdominant terms in the balance of normal stresses near the
movable substrate and its shape must be determined as padntact line arise from viscous forces and capillarity. This
of the solution of the boundary-value problem. Prior studiedeads to an equation for the unknown free-surface of the form
of this mathematical problem in Refs. 2 and 10, are marre§y=ax4, g>2, x>0. The viscous-capillary balance in Refs.
by an error in the boundary condition pointed out in Ref. 8.2, 8, and 10 is a consequence of dropping the term corre-

x>0, (11
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sponding to the hydrostatic pressure, and is incorrect in thé&/. DISCUSSION
case of a finite droplet with a nonvanishing internal pressure.

In the absence of motiofand viscous stressethe hydro- implications. The simple scaling lagd) for the velocity of

static pressurg inside ihe droplet is balanced by the capil- droplet of a viscous liquid with a contact angle of 180° roll-

Igry pressure, and is a smooth n(_)nconstant function of loc ng down an inclined plane is valid only when the plane has
tion inside the drop. Thus the radius of curvature on the fre

L . . : % small slope, the size of the droplet is much smaller than its
surface is finite and fixed everywhere and in particular at th

) o %apillary length, and when the drop is moving slowly. As the

contact line, and is given by .th.e Young-Laplace Iavy. I thedrop size is increased still further eventually the contact area
radius of curvature remains finite along the contact line dur—does not grow any faster than the size, so that the velocity of
ing motion, the correction to the normal stress balance equa: ’

tion due to vi for is relatively small evervwhere an arge viscous drops becomes size-independent, as long as
on due 10 VIScous Torces 1S refatively small eVerywnere antge g \whjle this Stokesian regime is accesible with very

in parti<_:u|ar atthe contact _Iine. This rquittqasz and y_ields viscous liquids for a rolling droplet of water of sizel mm
3 con5|fstent smooth solution for a moving contact line on and typical typical velocities of the order of 1 cm/s suggest
y surtace. . " . that inertial effects in the bulk and the surface may become
The kinematic condition at the free surface requires tha}mportant. That capillary waves are not excited may be de-

Fhe normal component of the fqu velocny_ equals the Veloc'duced from the dispersion relation relating the wave number
ity of the droplet. Ifn=(—x/R,1) is the unit normal to the

) 2 .3 o
free surface andl is the droplet velocity, then tioRtP 1e’ fg?\?éjsegiy("ﬁg)e 1?253é“ém /s(Tl:/vHighpci): r?]lttésr:'tgrlggr
2 than the typical droplet velocity. Inertial effects during rapid
n(U—.u)=0, y= X_ (12) rolling are limited to a b_oun_dar)_/ I:?\y(_ar of thickne_s‘s
2R ~(vR/U)Y2. Then the dissipation is limited to a region of
volumel?A and we get a different estimate for the terminal
velocity of a rolling droplet, given a8l ~R~%%(g sina)?®
(o/pg) ¥ v*3. Equating this estimate for the velocity to the
2 one obtained when viscous contributions domirj&g. (5)]

We conclude with a discussion of our results and their

Finally the condition of no tangential stress on the free sur
face of the droplet reads

n.V(u—(n.un)=0, y= X—_ (13)  vyields a droplet size characterizing the crossover from vis-
2R cous to inertial motion which occurs wherR,
In the neighborhood of the leading contact liiey=0, we ~ ~ ¥(p/go sir? @), For water on an inclined plane at an

use polar coordinates 6 and look for a stream function of angle of 10°, this yieldRR, ~0.1 mm; however, it is likely
the form =r"¢(6). For 6<1, r~x, 6~y/R. Then,r=0 that the transition to inertial flow occurs much more quickly
corresponds to the leading contact line, ahdm(0) is the ~ as the drop deforms in response to the ffow. o
wet(dry) half-line along the inclined plane. To leading order, ~ Our leading order perturbation theory of the flow field in

the conditions(10), (12)—(13) are then rewritten as the neighborhood of the contact line in a rolling droplet re-
veals a nonsingular stress field correcting earlier attempts to

de solve this problem. If the contact angle is not 180°, the sur-

()= d—0=0, 0=, face of the droplet does not merge smoothly with the sub-

strate. In the absence of a universally accepted theory for the
motion of a moving contact line, we can only speculate on

d_w - E 6=0 (14) the corrections brought about by a contact angle of say 179°.
dr R’ ' Presumably, following what we have shown for the 180°
case, the viscous forces are still much smaller than than the
d?¢ capillary forces near the contact line. While a coherent
WZO' 6=0. asymptotic theory for this problem is beyond the scope of
this note, phase field modéfs* provide a regularized ap-
The solution to Eq(9) subject to Eqs(11) and(14) is proach to the study of these lubrication flows for small and

large contact angles.
The above scaling analysis can be modified to under-
stand rolling motion due to forces other than gravity such as

those induced by electrohydrodynamic or chemical effects.

We observe that the stream function and its derivatives arg, o esting examples include the rolling or tank-treading mo-
bounded everywhere in the neighborhood of the contact lin;,, of piglogical cells and vesicles due to internally gener-

i.e., there is no singularity in either the force or the stress abted forces, and the motion of small chemically reactive
the contact line. Furthermore, the only roots#s£0 in the droplets and solids on hydrophobic surfates
interval (0,77) are #=0,7. Thus the only material surfaces

merging at the _contact line are the freg surface and _the SO“RCKNOWLEDGMENTS
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