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Rolling droplets
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A droplet of nonwetting viscous liquid moves on an inclined plane by rolling along it. We give a
scaling law for the uniform speed of such a droplet. We then analyze the flow in the contact region
and show that the classical stress singularity at the contact line is alleviated in this case. ©1999
American Institute of Physics.@S1070-6631~99!01609-8#
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I. INTRODUCTION

When a rigid circular cylinder or sphere is placed on
rough inclined plane it will roll down the plane. When th
experiment is repeated with a rigid cube it will slide dow
the plane. If the object is deformable a variety of motio
become possible; the motion of elastic bodies and fluid dr
depends on the interfacial energies of the materials,
roughness of the interfaces, the size of the objects, etc.
is because a deformable body maintains contact with the
face over a finite area. For a viscous fluid droplet, two p
sible motions may ensue. If the droplet partially wets t
surface it slides along it, while if the droplet is nonwetting,
can roll on the surface, much like an elastic body wh
viewed from the exterior. Here we consider the motion o
small nonwetting droplet forced by a weak gravitation
field. A classic example of this motion is exhibited by
droplet of mercury on an inclined plane and is probably
origin of the name quicksilver, after the LatinArgentum Vi-
vum for the swiftly moving droplet of the silvery liquid.

For such motions to be observable, we must have liqu
with high surface tension moving on very clean hydropho
surfaces. Until recently, only chemically treated surfac
were amenable to such experiments that allowed for la
contact angles; however, these surfaces were easily cont
nated. Recently it has become possible to vary the sur
roughness9 to achieve contact angles very close to 180° th
making robust experiments in the high contact angle reg
more accessible. A small droplet rolling down such an
cline then would reach a steady velocity determined by
balance between the rate of energy dissipation due to inte
viscous motions and the rate of change of gravitational
tential energy.

a!Electronic mail: 1_m@mit.edu
2441070-6631/99/11(9)/2449/5/$15.00
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II. VELOCITY OF A ROLLING DROPLET

We consider a small nonwetting droplet of fluid wit
viscosity m, surface tensions, densityr, nominal radiusR
moving down a plane inclined at an anglea!1 with the
horizontal. For a small enough droplet, surface tension for
will dominate gravitational forces; in dimensionless term
the Bond number Bo5rgR2/s!1. We also assume that vis
cous effects dominate inertia so that a nominal Reyno
number Re5rLV/m!1, whereV is a characteristic velocity
and L is a characteristic length which we will determin
later. Finally, we assume that the droplet is moving at sm
enough velocities, so that its shape does not change a lot
to the flow so that the Capillary number Ca5mV/s!1. The
relative magnitude of these dimensionless parameters
become clearer as we proceed.

When the droplet is at rest on a horizontal substrate,
shape and the area of contact with the solid are determ
by the balance between capillary and gravity forces. F
Bo!1, the droplet is almost spherical everywhere excep
the neighborhood of the substrate, where it is a flat horizo
disk. The lowering of the center of the droplet byd due to its
own weight and the radius of the contact discl are related to
each other by

l 2;Rd, ~1!

where; means ‘‘of the order of.’’ Equation~1! corresponds
to an approximation to the shape of the droplet in the vicin
of the substrate, valid for weakly deformed droplets
solids.7 There is an increase in the surface areaDa associ-
ated with this shape change due to two contributions both
which are of the same order. The first is due to the reduc
in the area of the spherical cap when flattened into a d
and is given byDa1; l 2(12cosu) where 2u is the angle
subtended by the disc at the center of the droplet. Sincu
; l /2R, this yieldsDa1; l 4/R2. The second is an increase
the area due to the the transfer of the volume of the sphe
cap to the rest of the droplet. The volume of the cap isl 2d
9 © 1999 American Institute of Physics
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;l4/R. If DR is the change in the radius of the sphere due
this additional volume, thenR2DR; l 4/R so that DR
; l 4/R3, and the corresponding area changeDa2;RDR
; l 4/R2. Since a sphere has the least area for a given
ume, the sum of the two contributionsDa11Da2 is positive.
The increase in surface energys(Da11Da2) is achieved at
the cost of lowering the potential energy of the drop
rgR3d, so that

rgR3d;
s l 4

R2 . ~2!

Here we have assumed that the surface energy per unit
for the liquid–solid surface is of the same order as
liquid–gas interface, corresponding to having a thin layer
vapor between the liquid and solid. Solving Eqs.~1! and~2!
for d and l yields

d;
rgR3

s
5BoR, l;S rg

s D 1/2

R25Bo1/2R. ~3!

Substituting in typical values forr,s for mercury and water,
we find that for capillary forces to dominate gravity, the si
of the drop must be of the order of 1023 m, as must the
radius of the contact diskl. By changing the liquid we can
lower its density by an order of magnitude, while gravity c
be reduced by going into a microgravity environment, so t
the size of a sessile droplet can be increased by as muc
an order of magnitude, while still keeping it.

This classical scaling corresponds to the case of a s
droplet with capillary number Ca5mU/s50. When the
droplet moves on a weakly inclined plane, the change
shape and thereby in the above scaling is negligible.
steady rolling motion along the plane, the velocity of t
droplet is determined by the balance between viscous d
pation and the rate of decrease of the gravitational poten
energy, i.e.

UR3rg sina;mE
Vd

~¹u!2dV. ~4!

HereVd is the volume over which viscous dissipation occu
U is the velocity of the center of mass of the droplet, andu
is the velocity field in the droplet. To estimate the visco
dissipation, we recall that for Stokes flow, given a set
boundary conditions, the flow is such that the viscous di
pation is a minimum.13 This is achieved by maximizing th
volume over which the droplet is in rigid rotation, since th
induces no dissipation. If the contact between the droplet
the substrate were restricted to a point, this would
achieved by a Huygens motion, i.e., instantaneous rigid
tation about a horizontal axis passing through this po
which satisfies the condition of no-slip and makes the rate
dissipation vanish. Of course, for finite Bo, contact occ
over a disc of sizel. Then the dissipation is restricted to
neighborhood of this disc, where the velocity field is no
simple rigid rotation. However, far from the contact regi
the droplet moves in a manner similar to rigid rotation ab
an axis passing through the area of contact.
Downloaded 27 Dec 2004 to 128.103.60.225. Redistribution subject to AI
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Due to the elliptic nature of the problem the influence
the contact area extends into the droplet to a heightl, similar
to the Hertz contact problem in elasticity.7 The magnitude of
the fluid velocity in this region isuuu; lU /R so that u¹uu
;U/R. Viscous dissipation occurs in a volume determin
by the extent of the influence of the contact region so t
Vd; l 3. Substituting these results into Eq.~4! and solving for
the steady-state velocity yields

U;
R5rg sina

m l 3 5
s3/2sina

mR~rg!1/2;
sBo21/2sina

m
. ~5!

This counter-intuitive relation of the velocity to the dro
size may be explained thus: Although the driving force
creases with the size of the droplet~asR3!, the viscous forces
increase faster~as R4! because of the rapid increase of th
contact disk radius with droplet size. To quantify the regim
of validity of these results which describe the rolling of sm
nonwetting viscous droplets on a slightly inclined plane,
recall that the typical fluid velocity in the vicinity of the
contact disk isV;Ul /R, so that a typical capillary numbe
Ca* ;mV/s;sina, which is much less than unity, as a
sumed earlier. Furthermore a typical Reynolds number R*
;rVl/m5r3/2(sg)1/2R2 sina/m2!1 for this analysis to be
valid. In dimensionless terms this readsR2!Rm

2 /sina, where
Rm5m/(r3sg)1/4 and thus leads to a maximum droplet siz
Substituting in the appropriate parameters for mercury
water on an inclined plane of angle 10°, we find thatRm

;0.001 mm! On the other hand, by making the angle of
inclined plane very small or by using a very viscous liqu
Rm can be made macroscopic, so that a rolling droplet
liquid that is thousand times more viscous than water can
as large as 1 mm, move at a few cm/s and still constitut
low Re flow.

We now estimate the viscous dissipation in the bulk
the droplet away from the region that is influenced by t
contact region. Here there will be small deviations from t
purely rotational velocity field given bylU /R. Velocity per-
turbationsu8 from this Huygens motion vary inversely as th
scaled distance from the contact area, in a manner simila
the velocity field generated by a sphere creeping throug
viscous fluid, so thatu8; l 2U/R2. Then the dissipation in the
bulk given by m*V(¹u8)2dV;mU2l 4/R3 is dominated by
the dissipationmU2l 3/R2 in the contact region, as long a
l /R!1, i.e., Bo!1, as is the case here.

When the drop size is much larger than the capilla
length (s/rg)1/2, the surface of contact is no longer par
bolic. In this case, the drop resembles a pancake of thickn
w and contact disk sizeL. To determine these quantities, w
consider the following functional:

F;s~L21Lw!2rgR3w1l~L2w2R3!, ~6!

where the first term corresponds to the surface energy,
second to the gravitational energy and the third enforces
constant volume constraint, withl being the pressure. As
suming thatw!L, and extremizing the functional with re
spect toL,w,l yields
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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l5s/w, L;S rg

s D 1/4

R3/4, w;S s

rgD 1/2

. ~7!

We observe in particular that the thickness of the panc
w!L is independent of the size of the drop, and is in fa
just the capillary length. When this pancake rolls down
inclined plane, the velocity gradient scales asU/w, so that
balancing the viscous dissipation rate with the rate of gra
tational energy gain yieldsm(U/w)2R3;rR3Ug sina. Sub-
stituting in for w from Eq. ~7! leads to the following scaling
relation for the velocity of large pancake drops:

U;S sg

n2 D 1/2

sina. ~8!

Recent experiments motivated by our theory12 are con-
sistent with the above scenario. On low-angle inclined pla
made of nearly nonwetting substrates, smaller drops o
viscous liquid in the Stokesian regime do indeed travel fa
than large ones, and confirm that the velocity varies
versely with the size of the drop@Eq. ~5!#, with the velocity
eventually reaching a constant value as the drop size
comes vary large@Eq. ~8!#. The experiments were done wit
droplets of glycerol of viscosity 10 gm/cm.s and a typic
size of 1 mm, giving rise to observed velocities in the ran
of a few cm/s, as predicted by the scaling law@Eq. ~5!#.

III. CONTACT LINE DYNAMICS

Next, we consider the velocity field inside the droplet,
particular near the advancing contact line. We focus on
two-dimensional case here for simplicity of exposition. T
order of magnitude estimates are not very different in
three-dimensional case because the essential property o
velocity field, that it is tangential to the surface at the cont
line, is common to both cases. Following our earlier disc
sion, the velocity field far from the contact region is close
a pure rotation about a horizontal axis passing through
contact region. However, this assumption is invalid near
contact region; here we must solve Stokes equations for
free surface of the droplet subject to the usual boundary c
ditions on the contact line and the fluid–air free surface. T
latter problem of the dynamics of a triple point, i.e., t
solid–liquid–vapor interface, has been the subject of en
mous study and controversy.3 The starting point of mos
studies on this problem goes back to Ref. 6 who highligh
the stress singularity at the contact line associated wit
similarity solution to Stokes flow in a wedge of fixed geom
etry. Recently, this subject has been visited from the pers
tive of diffuse-interface models to account for mass trans
by evaporation–condensation,14 and leads to a problem in
matched asymptotic expansions with different force balan
in regions close to and far from the contact line wedge. T
wedge is defined for all values of contact angle except 18
which corresponds to a rolling droplet considered here
this special case, the interface merges smoothly with the
movable substrate and its shape must be determined as
of the solution of the boundary-value problem. Prior stud
of this mathematical problem in Refs. 2 and 10, are mar
by an error in the boundary condition pointed out in Ref.
Downloaded 27 Dec 2004 to 128.103.60.225. Redistribution subject to AI
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Unfortunately, all these papers also neglect a crucial hyd
static pressure term without which we cannot analyze
dynamics of the slow rolling of a small droplet that we a
interested in here.

As the dense fluid rolls down the inclined plane,
squeezes out the light fluid~air! in the neighborhood of the
contact line. We neglect the effects of air as the visco
stress in it is scaled by the density of the fluid. The Stok
equations in the denser fluid can be rewritten in terms o
stream functionc(x,y) which satisfies the biharmonic equa
tion

¹4c50. ~9!

The coordinate system is as shown in Fig. 1, with the
vancing contact line which has a vanishing contact an
located at the origin and the inclined plane coinciding w
y50. The velocity fieldu5(u,v) in this coordinate system
is given byu5]c/]y, v52]c/]x. The boundary condition
of no-slip along the inclined plane corresponds to

]c

]y
5

]c

]x
5O, y50, x,0. ~10!

On the free surface of the droplet, three conditions m
be satisfied: The free surface must be a material surface
tangential stress must vanish and the normal stress mus
balanced by the surface tension. For small droplet velocit
the viscous stress is dominated by capillary forces, i.e.,
5mU/s!1, even near the contact line. Then the free s
face does not deviate too much from its static equilibriu
shape and the leading order balance of normal stresses y
the Young–Laplace equation, whose solution gives the sh
of the free surface

y5
x2

2R
, x.0. ~11!

Here we differ from Refs. 2, 8, and 10 who assume that
dominant terms in the balance of normal stresses near
contact line arise from viscous forces and capillarity. Th
leads to an equation for the unknown free-surface of the fo
y5axq, q.2, x.0. The viscous-capillary balance in Ref
2, 8, and 10 is a consequence of dropping the term co

FIG. 1. Schematic of a nonwetting droplet of radiusR, on an inclined plane
of anglea!1. The contact disc is of diameter 2l and the center of mass is
displaced by an amountd due to the weight of the droplet. The coordina
system is centered at the advancing contact line which is tangential to
inclined plane.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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sponding to the hydrostatic pressure, and is incorrect in
case of a finite droplet with a nonvanishing internal pressu
In the absence of motion~and viscous stresses! the hydro-
static pressurep inside the droplet is balanced by the cap
lary pressure, and is a smooth nonconstant function of lo
tion inside the drop. Thus the radius of curvature on the f
surface is finite and fixed everywhere and in particular at
contact line, and is given by the Young–Laplace law. If t
radius of curvature remains finite along the contact line d
ing motion, the correction to the normal stress balance eq
tion due to viscous forces is relatively small everywhere a
in particular at the contact line. This requiresq52 and yields
a consistent smooth solution for a moving contact line o
dry surface.

The kinematic condition at the free surface requires t
the normal component of the fluid velocity equals the vel
ity of the droplet. Ifn5(2x/R,1) is the unit normal to the
free surface andU is the droplet velocity, then

n.~U2.u!50, y5
x2

2R
. ~12!

Finally the condition of no tangential stress on the free s
face of the droplet reads

n.¹~u2~n.u!n!50, y5
x2

2R
. ~13!

In the neighborhood of the leading contact linex5y50, we
use polar coordinatesr ,u and look for a stream function o
the form c5r nf(u). For u!1, r;x, u;y/R. Then, r 50
corresponds to the leading contact line, andu5p~0! is the
wet~dry! half-line along the inclined plane. To leading orde
the conditions~10!, ~12!–~13! are then rewritten as

f~u!5
df

du
50, u5p,

dc

dr
52

rU

R
, u50, ~14!

d2f

du2 50, u50.

The solution to Eq.~9! subject to Eqs.~11! and ~14! is

c52
r 2U

2R S 12
u

p
1

sin 2u

2p D . ~15!

We observe that the stream function and its derivatives
bounded everywhere in the neighborhood of the contact l
i.e., there is no singularity in either the force or the stres
the contact line. Furthermore, the only roots ofc50 in the
interval ~0,p! are u50,p. Thus the only material surface
merging at the contact line are the free surface and the s
surface~to leading order!. If the calculation were carried to
O~Ca!, there would be a new surface that delineates the
gion of the droplet where there is recirculation, seen in tw
dimensional numerical simulations.5
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IV. DISCUSSION

We conclude with a discussion of our results and th
implications. The simple scaling law~5! for the velocity of
droplet of a viscous liquid with a contact angle of 180° ro
ing down an inclined plane is valid only when the plane h
a small slope, the size of the droplet is much smaller than
capillary length, and when the drop is moving slowly. As t
drop size is increased still further eventually the contact a
does not grow any faster than the size, so that the velocit
large viscous drops becomes size-independent, as lon
Re!1. While this Stokesian regime is accesible with ve
viscous liquids for a rolling droplet of water of size;1 mm
and typical typical velocities of the order of 1 cm/s sugg
that inertial effects in the bulk and the surface may beco
important. That capillary waves are not excited may be
duced from the dispersion relation relating the wave num
k to the frequencyv given by v2;sk3. Upon substituting
k;R21, gives u;(s/R)1/2;8 cm/s which is much large
than the typical droplet velocity. Inertial effects during rap
rolling are limited to a boundary layer of thicknessD
;(nR/U)1/2. Then the dissipation is limited to a region o
volume l 2D and we get a different estimate for the termin
velocity of a rolling droplet, given asU;R25/3(g sina)2/3

(s/rg)4/3/n1/3. Equating this estimate for the velocity to th
one obtained when viscous contributions dominate@Eq. ~5!#
yields a droplet size characterizing the crossover from v
cous to inertial motion which occurs whenR*
;n(r/gs sin2 a)1/4. For water on an inclined plane at a
angle of 10°, this yieldsR* ;0.1 mm; however, it is likely
that the transition to inertial flow occurs much more quick
as the drop deforms in response to the flow.1

Our leading order perturbation theory of the flow field
the neighborhood of the contact line in a rolling droplet r
veals a nonsingular stress field correcting earlier attempt
solve this problem. If the contact angle is not 180°, the s
face of the droplet does not merge smoothly with the s
strate. In the absence of a universally accepted theory for
motion of a moving contact line, we can only speculate
the corrections brought about by a contact angle of say 1
Presumably, following what we have shown for the 18
case, the viscous forces are still much smaller than than
capillary forces near the contact line. While a cohere
asymptotic theory for this problem is beyond the scope
this note, phase field models11,14 provide a regularized ap
proach to the study of these lubrication flows for small a
large contact angles.

The above scaling analysis can be modified to und
stand rolling motion due to forces other than gravity such
those induced by electrohydrodynamic or chemical effe
Interesting examples include the rolling or tank-treading m
tion of biological cells and vesicles due to internally gen
ated forces, and the motion of small chemically react
droplets and solids on hydrophobic surfaces.4
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