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¯aring plasma is associated only with the late-type star, and the
binary nature of Algol is irrelevant, at least for this giant ¯are. The
¯are does, however, also display several features not observed in
solar ¯ares. Solar ¯ares are never observed in polar regions; instead
they are con®ned to the active region belt at lower heliographic
latitudes. The thermal plasma in the giant ¯are on Algol is
dominated by temperatures of 1 3 108 K; such temperatures are
occasionally observed in solar ¯ares25,26 as `super hot plasmas', but
they contain only small fractions of the overall emission measure.
The derived minimum plasma density is similar to the plasma
densities of many solar ¯ares27, which would require a volume close
to Vmax to satisfy the observed energy budget. Higher densities with
correspondingly smaller volumes can, of course, not be excluded;
however, much higher densities quickly lead to implausibly large
thermal pressures. Thus, the real challenge to theory is the con-
struction of physically consistent reconnection-based ¯are models
with the observed stellar parameters and clarify the effect of giant
¯ares on the mass and angular momentum loss of active stars. M
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A crumpled piece of paper is made up of cylindrically curved or
nearly planar regions folded along line-like ridges, which them-
selves pivot about point-like peaks; most of the deformation and
energy is focused into these localized objects. Localization of
deformation in thin sheets is a diverse phenomenon1±6, and is a
consequence of the fact7 that bending a thin sheet is energetically
more favourable than stretching it. Previous studies8±11 consid-
ered the weakly nonlinear response of peaks and ridges to
deformation. Here we report a quantitative description of the
shape, response and stability of conical dislocations, the simplest
type of topological crumpling deformation. The dislocation con-
sists of a stretched core, in which some of the energy resides, and a
peripheral region dominated by bending. We derive scaling laws
for the size of the core, characterize the geometry of the disloca-
tion away from the core, and analyse the interaction between two
conical dislocations in a simple geometry. Our results show that
the initial stages of crumpling (characterized by the large defor-
mation of a few folds) are dominated by bending only. By
considering the response of a transversely forced conical disloca-
tion, we show that it is dynamically unstable above a critical load
threshold. A similar instability is found for the case of two
interacting dislocations, suggesting that a cascade of related
instabilities is responsible for the focusing of energy to progres-
sively smaller scales during crumpling.

To probe volume-restricting deformations that lead to localiza-
tion in a simple setting, we consider a circular sheet of diameter 2Rp

that is forced axially by a distance d into a rigid cylindrical hoop of
diameter 2R , 2Rp, in a manner similar to pushing coffee-®lter
paper into a funnel (Fig. 1). Owing to the energetically prohibitive

F

RR
p

Figure 1 Geometry of an ideal conical dislocation. The shape is computed by solving the

Euler±Lagrange equations corresponding to minimizing L(w) in equation (1), with

e � 0:365. The ®gure also shows the parameters that are experimentally controllable: R,

the radius of the support; Rp, the radius of the sheet (depicted as a ruled surface); and the

transverse applied force, F. At top left we show the generators of the conical surface: the

solid lines correspond to the negatively curved region (concave-up) and the dotted lines

correspond to the positively curved region.
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requirement of making an axisymmetric cone, the sheet deforms
into a non-axisymmetric conical surface that is in partial contact
with the hoop10,11. This surface has a single plane of symmetry and is
isometric to the plane everywhere except near its tip or core; that
is, it is a near-perfect developable cone5,12. Only in the vicinity of the
tip is the sheet stretched appreciably; elsewhere it is bent without
stretching. This surface is also a rotational edge-dislocation, or
conical dislocation, according to the Volterra classi®cation11,13 and
affords the simplest example of strain localization.

As this conical surface is nearly developable, its geometry can be
characterized in terms of its generators14 away from the tip. These
generators are most easily viewed using light re¯ected from the
surface of a painted sheet that is illuminated with linearly polarized
light incident along the axis of deformation. When viewed through
a cross-polarizer, this leads to images such as that shown in Fig. 2.
Away from the tip, the isochromatic lines (along which there is no
radial curvature) are straight and form the generators of the perfect
developable cone11; close to the tip, they have a well de®ned radius of
curvature Rc, that characterizes the size of the core where there is
appreciable stretching. We determine Rc by ®tting a parabola to
the curved isochromatic line passing through the core. In Fig. 3a, we
plot Rc as a function of the deformation characterized by e � d=R.
The data are best ®tted by two power laws; for e < 0:1,
Rc ~ e2 0:3360:01, while for e > 0:1, Rc ~ e2 0:5060:02.

To understand these results, we consider the deformation of a
circular sheet into a conical surface using eulerian coordinates. We
let (r; v) be the polar coordinates of a point in the horizontal plane
de®ned by the edge of the supporting hoop, so that the vertical
displacement of the sheet is rw(v) where w(v) is the tangent of the
angle between a generator of the surface and the horizontal. In the
deformed state, the sheet is in partial contact with the hoop so that it
®ts inside the axisymmetric envelope cone z � re. If the sheet is very
thin and the deformations are moderate (e < 0:4), the irreversible
plastic deformation near the tip is small. Therefore we can use the
theory of elasticity to describe its shape reasonably well. Away from
the core the developable cone rw(v) is determined by minimizing
the bending energy subject to the constraints due to inextensibility
and contact. Generalizing the functional given in ref. 11 to account
for possibly large curvatures of the sheet requires the minimization
of the following functional for w(v):

L�w� � Ub � l #
p

2p
1 2

�1 � w2 � w92
�1=2

1 � w92

� �
dv � #

p

2p
b�v��e 2 w�dv

�1�

Here Ub � �Eb=2� ln �Rp=Rc� #
p

2p
��w � w0�2�1 � w2�2�=�1 � w2�

w92
�5=2 dv is the bending energy, and Eb is the bending stiffness.

The second term on the right enforces the inextensibility constraint
and l is proportional to the hoop stress. The third term enforces the
requirement that the deformed sheet lies inside the perfect cone
z � re, with b�v� � 0 when w > e, and b�v� > 0 when w � e, and
b(v) related to the normal reaction of the supporting hoop on the
conical dislocation. Figure 1 shows a numerically computed shape
of the developable cone accounting for large bending deformations,
and yields a solution valid everywhere except in the neighbourhood
of the tip where the effects of stretching cannot be neglected.

We now estimate the core size characterized by the radius Rc

which results from a balance between the bending and stretching
energy. In the core of area DS, the stretching energy is U s < Esg

2DS,
where g is the in-plane strain and Es is the stretching stiffness. The
bending energy in the core is Ub < Ebk

2DS where k is the mean
curvature in the core15. Equating these energies yields
Ub=U s < �Eb=Es��k=g�

2 < O�1�. The stretching strain can be esti-
mated from the change in length of a typical generator of length R,
the scale over which forces and torques are exerted. This generator
is stretched to a length

�������������������
R2 � e2R2

c

p
: then the strain is g<

�
�������������������
R2 � e2R2

c

p
2 R�=R < �eRc=R�

2. The bending strain is simply the
mean curvature k which we now estimate. When w, w9 p 1,

Ub < k2 < w2 < e2, while when w, w9 q 1, Ub < k2 < w2w4=w5 < e
(E.C. and L.M., manuscript in preparation). Therefore for small
deformations, k < e=Rc, while for large deformations, k < e1=2=Rc.
This cross-over in the scaling occurs due to the change in the
geometry of the sheet as w, w9 are small or large compared to unity,
so that the curvature (and the force) changes in response to it.
Substituting in these strains into the energy balance yields the
scaling law

Rc <
Eb

Es

� �1=6

e2 pR2=3; p �
1=3; e p 1;

1=2; e < O�1�

�
�2�

consistent with the experimental results shown in Fig. 3a. This
relation is valid for thin sheets of arbitrary materials subjected to
large deformations, and extends the results obtained for the weak
deformations of ridges8. The ®rst factor in the scaling law
is associated with material properties; for an isotropic material
Eb=Es < h2=�1 2 n2�, where h is the sheet thickness and n is Poisson's
ratio. The second arises from the geometry of deformation as e
characterizes the cone angle. This factor also hides a subtle depen-
dence on the force F � ]Ub=R]e since the force±de¯ection relation,
discussed later, is of the form e � n�FR=Eb�, where n(s) is a
dimensionless function. There is also a logarithmic dependence
on the sheet radius Rp but it is dif®cult to detect experimentally. The
third factor characterizes the length R associated with the moment
arm of the reaction force along the hoop.

Next we consider the behaviour of the conical dislocation when a
force F is applied along the axis of the supporting hoop. In our
experiments, a round tip of diameter 0.5 mm is attached to a load
control cell which is used to measure the applied force. Care is taken
to minimize frictional effects by lubricating the contact zone
between the sheet and supporting hoop. We restrict our range of
deformations to minimize inelastic effects. In Fig. 3b we plot F
versus e and see that for e < 0:1, F ~ e but for e > 0:1 F < ep, p , 1.
The location of this cross-over coincides with that in Fig. 3a for the
cross-over in the scaling law for Rc, suggesting that it is geometric
effect. As e increases, the effective reaction force from the hoop,
which is normal to the sheet in the absence of friction, starts to
become more horizontal, while the torque increases. This decreases
the resistance to further deformation and softens the system,
eventually leading to an instability. We quantify this by evaluating
F in terms of the bending energy Ub, F � ]Ub=]d �

�Eb=R� ln �Rp=Rc�]u�e�=]e. Here u(e) is a dimensionless function
such that u < e2 for small e and u < e for large e, following an
argument identical to that for the scaling of the curvature. We use

Rc

Figure 2 Geometry of a real conical dislocation. Cross-polarizers are used to view the

re¯ected light from a painted sheet deformed into a conical dislocation. Isochromatic lines

correspond to lines with no radial curvature, and coincide with generators of the cone

away from the tip. In the core of the dislocation close to the tip, the sheet stretches into a

surface of double curvature. Here the isochromatic lines have a radius of curvature Rc.



© 1999 Macmillan Magazines Ltd

letters to nature

48 NATURE | VOL 401 | 2 SEPTEMBER 1999 | www.nature.com

experimentally determined values of Rp and Eb for each material,
and the linear part of the experimental curve to estimate Rc. A
numerical method is used to solve the boundary-value problem
associated with the Euler±Lagrange equations that arise from
minimizing the functional L(w) in equation (1). We use the
analytical solution determined in ref. 11 as an initial guess for
small e and then use an iterative procedure to determine the
complete F 2 e curve shown in Fig. 3b. The experimental data are
well explained by our theory that accounts only for bending, and
indicate that stretching is not important in this case. Continuing
this computation beyond the experimentally determined points, we
®nd that the stiffness of the system eventually goes to zero,
signifying a subcritical (snap-through) dynamic instability in a
force-controlled experiment16 that is arrested when the sheet
contacts itself.

So far we have described the structure and the response of a single
centrally forced sheet that leads to a conical dislocation with a fold
that is rotation-invariant. In the course of crumpling, two such
dislocations often interact with each other, forming ridges that
break this rotation symmetry. Prior studies8 have focused on the

structure and linear response of these ridges, arti®cially
excluding the effects of the conical dislocations that they connect.
We now consider them explicitly in the context of an experiment by
forcing an acetate sheet into a circular hoop at two non-central
locations. The two probes lie on a diameter and are separated by a
distance 2D, so that we have an additional control parameter
d � D=R. As the probes are moved axially by a distance d, two
conical dislocations appear at symmetrical locations with respect to
the centre of the hoop. In Fig. 4a we show one such con®guration,
computed by solving the Euler±Lagrange equations obtained by
minimizing L(w) in equation (1). This solution minimizes the
bending energy of the sheet but does not account for stretching,
so that it leads to a ¯at interlying region instead of a stretched ridge
in between the dislocations. To compare these calculated results
with experiment, we consider the mechanical response of this
structure characterized by a F 2 e curve, shown in Fig. 4b. The
theoretical curve has no tunable parameters, and shows that bend-
ing alone accounts very well for the measured force. To quantify this
further, we recall that the stored bending energy in this structure is
Ub � Ebf �d; e� ln �Rp=Rc�, with f �d; e� < 84:7e2�1 � const:d� for

1
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Figure 3 Mechanical response of a conical dislocation. a, The core size Rc as a function of

the deformation of the conical dislocation characterized by e � d =R . In our experiments

we used a series of thin sheets of steel (bending stiffness E b � 7:76 3 102 3 N m,

thickness h � 0:075 mm) and acetate (bending stiffness E b � 5:1 3 10 2 4 N m,

h � 0:1 mm). The radii of the sheets varied from 15 to 90 mm, while the radius of the

supporting hoop was 5 mm less than the radius of the sheet. The transverse displacement

d of the centre of the thin sheet relative to the plane of the hoop is measured using a

precision micrometer with an accuracy of 10 mm. The data are best ®tted by the power

laws R c ~ e2 0:3360:01, e < 0:1, R c ~ e2 0:5060:02, >0.1 (solid lines). The jump in the data

at e < 0:1 corresponds to using two different hoop sizes. The error bars are larger as e

increases due to a decrease in the core size which leads to having fewer data points. b,

The force±deformation curve for a conical dislocation made of acetate (open triangles; left

ordinate) and steel (®lled circles; right ordinate), compared with the theoretical curve (solid

line) calculated using the expression for the force F given in the text, with no adjustable

parameters. We ascribe the small systematic overshoot of the experimental data to

frictional effects. The maximum I in the theoretical curve corresponds to the location of a

subcritical (snap-through) instability in a force-controlled experiment.
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Figure 4 Geometry and mechanical response of two interacting conical dislocations. a,

When a sheet is forced transversely into a rigid circular hoop at two locations along a

diameter, it deforms into a boat-like structure with two symmetrically placed conical

dislocations. This solution with least energy is calculated by solving the Euler±Lagrange

equations that arise from minimizing L(w) in equation (1), starting with an analytical

solution for two weakly deformed conical dislocations with d � D=R � 0, e � d =R p 1,

and using an iterative continuation scheme until d � 0:38, e � 0:345. This solution

accounts only for the effects of bending, and the associated generators are shown at top

left. The diamond-shaped region between the dislocations consists of two ¯at planes, and

is separated from the conical regions by lines along which the curvature of the sheet

suffers a discontinuity. Accounting for stretching and bending will lead to boundary layers

at these locations. b, The force±deformation curve for two interacting conical dislocations

in an acetate sheet, compared with the theoretical curve (solid line), with no adjustable

parameters. We see that a theory accounting for bending alone is able to explain the

response of this structure which exhibits a sub-critical instability for moderate e, as

evidenced by the presence of a maximum in the F 2 e curve.
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small e, d while the energy which resides in the stretched ridge8 is
U s � Ebe

7=3�2D=h�1=3, so that U s=Ub < 0:05 for typical experimental
parameters. These results indicate that in the early stages of
crumpling, when large deformations of a few conical dislocations
are much more likely to occur, bending dominates stretching.
Finally, by continuing the computation of the F 2 e curve beyond
the experimentally accessible parameters, we see the appearance of a
snap-through instability similar to that for a single dislocation.

A series of such events (that is, geometric softeningÐdynamic
snap-throughÐlocal topological stiffening) provides us with a
microscopic mechanism for the crumpling of a large thin elastic
sheet. As the sheet is deformed by a force, it forms a developable
cone that deforms, softens and eventually becomes dynamically
unstable, and an acoustic pulse is emitted when the sheet pops into a
folded con®guration. This stiffens the sheet locally, but soon new
developable cones (and stretched ridges which connect them) begin
to form. Ridges may buckle in two ways. (1) In the plane of the ridge
by forming a developable cone about which the ridge pivots and
folds, locally leading to roughly the same scenario as that for a single
conical dislocation, or (2) in a direction perpendicular to the ridge
by forming two dislocations that move apart along a new ridge
about which the original ridge folds, as seen during the bending of a
drinking straw. A cascade of these instabilities on ever-decreasing
length scales leads to the formation of new conical dislocations as
the sheet crumples, and the energy of deformation is pumped down
to smaller and smaller scales. As the size of these folds becomes
smaller, the incremental deformation is concomitantly less, and a
cross-over to the regime where stretching and bending deforma-
tions are of the same order is likely8. However any analysis of this
stage in crumpling must also account for inelastic deformations. On
length scales much larger than the thickness but much smaller than
the length or breadth of the sheet, these dynamical snap-throughs
constitute a self-similar cascade and are accompanied by acoustic
emissions. While preliminary experiments17,18 are suggestive of
power-law behaviour for the statistics of these sounds, they
remain incompletely quanti®ed: much work remains to be done
in this area. M

Received 1 February; accepted 17 June 1999.

1. Calladine, C. Theory of Shell Structures (Cambridge Univ. Press, Cambridge, 1983).

2. Wierzbicki, T. & Jones, N. (eds) Structural Failure (Wiley Interscience, New York, 1988).

3. Connelly, R. Rigidity and energy. Invent. Math. 66, 11±33 (1982).

4. Nelson, D. R., Piran, T. & Weinberg, S. Statistical Mechanics of Membranes and Surfaces (World

Scienti®c, Singapore, 1988).

5. Amirbayat, J. & Hearle, J. W. S. The complex buckling of ¯exible sheet materials. Int. J. Mech. Sci. 28,

339±370 (1986).

6. da Vinci, Leonardo Notebooks Vol. I., Studies of Drapery (Dover Reprint, New York, 1984).

7. Rayleigh, Lord, Theory of Sound Vol. I, Ch. X a (Dover, New York, 1945).

8. Lobkovsky, A., Gentges, S., Li, H., Morse, D. & Witten, T. Stretched ridges in crumpling. Science 270,

1482±1485 (1995).

9. Lobkovsky, A. & Witten, T. A. Properties of ridges in elastic membranes. Phys. Rev. E 55, 1577±1589

(1997).

10. Chaieb, S. & Melo, F. Experimental study of developable cones. Phys. Rev. Lett. 80, 2354±2357 (1998).

11. Cerda, E. & Mahadevan, L. Conical surfaces and crescent singularities in crumpled sheets. Phys. Rev.

Lett. 80, 2358±2361 (1998).

12. Ben Amar, M. & Pomeau, Y. Crumpled paper. Proc. R. Soc. Lond. A 453, 729±755 (1997).

13. Nabarro, F. R. N. Theory of Crystal Dislocations (Dover, New York, 1993).

14. Struik, D. J. Lectures on Classical Differential Geometry (Dover, New York, 1988).

15. Love, A. E. H. A Treatise on the Mathematical Theory of Elasticity (Dover, New York, 1944).

16. Timoshenko, S. & Gere, J. Theory of Elastic Stability (McGraw-Hill, New York, 1961).

17. Kramer, E. & Lobkovsky, A. Universal power law in the noise from a crumpled elastic sheet. Phys. Rev.

E 53, 1465±1468 (1996).

18. Houle, P. & Sethna, J. Acoustic emission from crumpling paper. Phys. Rev. E 54, 278±283 (1996).

Acknowledgements

E.C. was supported by the Chilean Presidente de la RepuÂ blica postdoctoral fellowship
during the course of this work at MIT in 1997±98. S.C. was supported by a postdoctoral
fellowship at Universidad de Santiago de Chile in 1997±98 during the course of this
work. Additional support was provided by the Chilean CaÂtedra Presidencial en
Ciencias (F.M.), the Karl van Tassel career development chair and the Sloan fund (L.M.)
at MIT.

Correspondence and requests for materials should be addressed to L.M. (l_m@mit.edu).

.................................................................
Direct observation of d-orbital holes
and Cu±Cu bonding in Cu2O
J. M. Zuo*, M. Kim*, M. O'Keeffe² & J. C. H. Spence*

* Department of Physics and Astronomy, ² Department of Chemistry,
Arizona State University, Tempe, Arizona 85287, USA
..............................................................................................................................................

A striking feature of metal oxide chemistry is the unusual
electronic and chemical behaviour of Cu(I) and Ag(I): a case in
point is that detailed understanding of Cu±O bonding is essential
to the theory of high-temperature copper oxide superconductors.
Both cations are usually coordinated in a linear fashion to two
oxygens, particularly for Cu(I). In many compounds, the Cu(I) and
Ag(I) cations also adopt close-packed (and related) con®gurations
with short metal±metal distances that are strongly suggestive of
the occurrence of metal±metal bonding1,2 despite their formal
nd10 con®guration. Such observations have been explained3,4 by
invoking the participation in bonding of electronic orbitals of
higher principal quantum numberÐthat is, �n � 1�s and
�n � 1�pÐaccompanied by the creation of d-orbital holes on
the metal ion. To test this hypothesis, we have used a recently
developed method of quantitative convergent-beam electron
diffraction5 combined with X-ray diffraction to map the charge-
density distribution in the simple oxide Cu2O, the results of which
we then compare with electronic-structure calculations. We are
able to image directly the d holes on the copper atoms, and also
demonstrate the existence of Cu±Cu bonding in this compound.

Cu2O has a cubic structure with no free internal parameters (only
Ag2O is isostructural). The copper atoms are at the points of a face-
centred-cubic lattice, with oxygen atoms in tetrahedral sites at
positions (1/4,1/4,1/4) and (3/4,3/4,3/4) of the cubic cell. The
resulting arrangement of Cu±O links is made up of two interpene-
trating networks (Fig. 1). The simplest description of Cu2O using an
ionic model with closed-shell (spherical) Cu+ and O2- ions is known
to be inadequate. Not only does it fail to explain the observed linear
2-coordination of Cu but also it is not in accord with the obser-
vation that the two sublattices repel each other electrostatically, so
that to account for their interpenetration some short-range Cu±Cu
attractive interaction must be invoked6. We note that the closest
approach of atoms of the two networks is a Cu±Cu distance of
3.02 AÊ Ðthe shortest O±O distances are 3.70 AÊ .

Considerable progress has been made in mapping the charge
density of light-element molecular crystals by X-ray diffraction7,
especially using a synchrotron source8. The extension of this method

Figure 1 The structure of Cu2O. Left, as a ball and stick model with O atoms blue, Cu

atoms red and bonds green. One network is coloured darker than the other. Note that

there are no bonds joining the two nets. Right, as corner-connected OCu4 tetrahedra. Dark

and light tetrahedra are on independent networks. In both sketches, dotted white lines

outline a unit cell.


