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Coiling of flexible ropes

By L. MAHADEVAN! AND JOSEPH B. KELLER?

! Department of Theoretical and Applied Mechanics, University of Illinois at
Urbana-Champaign, Urbana, IL 61801, USA
2 Departments of Mathematics and Mechanical Engineering, Stanford University,

Stanford, CA 94305, USA

A thin flexible inextensible rope fed continuously from a fixed height and falling
on a horizontal plane usually forms a circular coil. This phenomenon is analysed
as a geometrically nonlinear free-boundary problem for a linearly elastic rope. The
stiffness and velocity of the rope, the height from which it is fed and gravity are taken
into account. The problem is solved by using a numerical continuation scheme. The
coil radius is determined as a function of the various parameters. Tables and graphs
of the results are presented.

1. Introduction

When an axisymmetric viscous jet falls onto a horizontal surface under the influence
of gravity, it coils up in a fairly regular manner (Taylor 1969). A similar phenomenon
is observed when a vertical thin flexible rope falls on a rough horizontal surface such
as a floor. No satisfactory theoretical analysis has been given for either phenomenon,
although there has been some experimental (Griffiths & Turner 1988) and theoretical
(Tchavdarov et al. 1993) study of the coiling jet. Here we consider the coiling of a
flexible rope.

If the rope is fed continuously towards the floor from a fixed height, its motion
quickly settles down into a steady state in which the rope is continually laid out in a
circular coil of uniform radius. Our goal is to determine the coil radius as a function
of the feeding velocity, the stiffness and density of the rope, and the acceleration of
gravity.

The behavior of the rope is governed by the dynamic Kirchhoff-Love equations
for the motion of an elastic rod capable of large bending and twisting deformations.
In terms of these we formulate a free boundary problem for the shape of the rope
and the coil radius in §4. Then we describe a numerical method for the solution
of this problem in §5, and present results for various parameter values. Finally, the
asymptotic solution for extreme values of the parameters is examined in §6.

2. Dimensional analysis

Let us begin with dimensional analysis. There are six parameters: the density p
of the rope, the Young’s modulus E of the material of the rope, the area A and
the moment of inertia I = A?/2m of the cross-section (assumed to be circular), the
feed velocity v, the height A from which it is fed and the acceleration of gravity g.
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1680 L. Mahadevan and J. B. Keller

Therefore the number of dimensionless parameters is three, say
v? pAgh? A
= —, ’)/ = 5 C = —5
gh EI h
Here F is the Froude number given by the ratio of the kinetic energy to the grav-
itational potential energy, v is the dimensionless gravity given by the ratio of the
gravitational and flexural energies, and the dimensionless area ( is a measure of the

rotatory inertia of the rope. The coil radius R can then be written as R = hf(F,~, ().
For thin ropes fed from reasonable heights ( <« 1, so that

R = hf(F,%,() ~ hf(F,~,0). (2.2)

We now consider various asymptotic forms of (2.2). If a heavy rope is fed very slowly,
the inertial forces are much smaller than the gravitational forces. Then F <« 1,
v=0(1), and

F

(2.1)

R~ hf(0,7,0) = hgi (7). (2.3)
If R has a finite limit as the feeding height A is increased indefinitely, g; () must be
proportional to y~'/3. Then (2.3) becomes

R~ Chy /3, (2.4)

Here C is a dimensionless constant that can be found from one calculation or one
experiment.

On the other hand, if a light rope is fed at moderate velocities, so that the inertial
forces are of the same magnitude as gravity, v < 1 and F' = O(1). Then from (2.2)
we get

R ~ hf(F,0,0) = hga(F), (2.5)
The scaling law (2.4) and the expression (2.5) will serve as checks on the numerical

results to be presented in later sections.
For a nylon rope of diameter 0.5 cm, typical parameter values are

E~10Nm=2 A~10°m? p~10°kgm3 (2.6)
Ifv~1ms!and h~1mthen F~ 107!, vy~ 1and ¢~ 1075,

3. Equations of motion

We treat the rope as a naturally straight thin elastic rod of circular cross-section,
the centre line of which is parametrized by the arclength s. At any instant of time ¢,
its configuration is given by the position of its centre line and the orientation of its
cross-section at every point along it.

At the point s on the centre line of the rod r(s,t) = (z(s,t),y(s, 1), z(s,t)), we
consider an orthogonal triad d;(s,t), i = 1,2, 3, where d; and d; lie along the prin-
cipal axes of the cross-section of the rod and d3 = d; x d,. The cross-section of the
rod is then characterized by the orientation of d;(s,t), i = 1,2, 3 relative to a fixed
frame e;, i = 1,2,3. We denote the orthogonal transformation connecting these two
frames by L = {l;;}, so that

3
di=> lje;, i=1,2,3. (3.1)
Jj=1

Proc. R. Soc. Lond. A (1996)



Coiling of flexible ropes 1681

The {l;;} may be expressed in terms of the Euler parameters, qo, ¢q1, g2, g3, as
described in Appendix A.

For a thin rod, the extensional and shear deformations are small compared to the
bending and twisting deformations and may be neglected. Since the cross-section is
circular there is no warping. Then the tangent to the centre line of the rope coincides
with the normal to the cross-section, so that

rs = d37 (32)

where (+)s = d(-)/ds.
Differentiating (3.1) yields the spatial rate of change of the director d;, which can
be written in terms of the directors as

dis =k Xdi, 1= 1,2,3. (33)
The vector of strains k is given by
k=L,LT = xWd, + £?Pd, + 7ds. (3.4)

Here k") and k() are the components of the curvature about the d; and d, axes, T
is the twist about the centre line, and L,L7T is the axial vector associated with the
skew-symmetric matrix L,LT. The component forms of (3.2) and (3.4) are given in
terms of the Euler parameters and their derivatives in Appendix A. This completes
the kinematic description of the rod.

The stress resultant vector n(s,t) and the couple resultant vector m(s,t) at any
cross-section can be written as

n(s,t) = in(i)(s,t)di(s,t), m(s,t) = Zm(i)(s,t)di(s,t). (3.5)

Here, n™") and n(® are the shear forces and m(*) and m(® are the bending moments
along the principal axes, while n(® is the tensile force and m® is the twisting
moment. The balance of forces and couples at each cross-section yields the equations
of motion (Antman 1995)

ns + pAg = pAr,
2
me+roxn=ply (d, xd,). (3.6)

=1

Here g = —ges is the body force per unit length of the rope and # denotes the
acceleration relative to an inertial frame.

In analogy with Bernoulli-Euler beam theory, valid for slender rods, we assume
that the couple resultant m(s, t) is related to the components of curvature and twist
by the linear equation

m(s,t) = EI(sWd; + sPdy) + GJrds. (3.7)

G is the shear modulus of the material of the rod and J is the polar moment of inertia
of the rod cross-section. Equations (3.1)-(3.7) constitute the dynamical Kirchhoff-
Love theory for the time-dependent behaviour of a thin elastic rod capable of large
deformations.

Proc. R. Soc. Lond. A (1996)



1682 L. Mahadevan and J. B. Keller
4. The boundary value problem

We shall consider the motion of a steadily coiling rope. The steady motion consists
of a translation of the rope along its tangent at a constant speed v and a rotation
about the vertical axis ez with an angular velocity 2 = 2e3. The inertial accelera-
tions #, d; and dy induced by this motion are given by

P = [0, — 20802 x Py + 02 % (2 x7)]
d, = —[’de — 202 x dys + 2 x (2 xd,)], ¢=1,2. (4.1)

Substituting (3.5), (3.7) and (4.1) into (3.6) yields the steady state equations of
motion

nMd; +n®Pdy + nPds), + pAg = —pAPres — 2002 x 1o + 2 x (2 x7)], (42)

3
[EI(xVd; + kPdy))s + [GJrds], +ds x Y_nPd;
i=1
2
= wpl{}_‘l(zﬁdws — 202 xd+ 2 x (2xd))xd,|. (43)

=1
We now define the dimensionless variables

§=s/l, z=z/h, y=y/h, Z=2z/h,
gD =xWp, k@ =k@h 7F=7h a® =n®Wh2/EI, i=1,2,3, (4.4)
Q= Qhjv, £€=GJ/EI=1/(1+v), I=1/h.
Here h is the drop height, [ is the length of the rope between the point of feeding and
the point of contact with the horizontal surface, v is Poisson’s ratio and 2 = [£2].
It is convenient to write the equations of motion in component form with respect to
the body-convected orthogonal system d;, i = 1,2, 3. In terms of the scaled variables

defined in (4.4), and using (3.1) to express the inertial and gravitational terms in the
body-convected frame, we can rewrite (4.2)-(4.3), on dropping the bars, as

Y —n®@7 4 n® k@ — iy = —Fy[k® — 20153 — 22(zly; + yli2)],
7 4 nW7r — n® kM — ylys = —Fy[—kD + 2003 — 2%(xly + ylia)],
10 4 n@ kM — W@ — e = FyQ2(zlsy + ylsg),
71kl 4 (6= 1)@ —n®@ =[],

—176® + (€ = Dre® —n® =¢[. ],

&, = 0.

)
(4.5)

Here the terms multiplied by ¢ denote the components of the rotatory inertia in equa-
tion (4.3). We assume that the rope is thin, so that ( < 1, and therefore we neglect
these terms. Then we use the two penultimate equations in (4.5) to get expressions
for n( and n? in terms of the other variables. Substituting these expressions into
the first three equations in (4.5) yields the scaled steady-state equations of motion.
We rewrite these equations, along with the component forms of the kinematic

Proc. R. Soc. Lond. A (1996)



Cotling of flexible ropes 1683
relations (3.2) and (3.4) (see Appendix A), as
17265 = n® kM 4 ylys + Fy[® — 202015 + 22(2la1 + ylas)]
+2 - O el — (€ - 1)r2O),

17262 = n® k@ — ylps + Fy[k® — 20ly5 — 2%(zly + ylis)]
—(2 =1 el — (6 = 1)726@),

n® = —(m(l)ngl) + K(2)I€22>) + v]l33 + F2%(xl3, +yls2)], 75 =0, (4.6)

2015 = U(qor™® — @36@ + o), 225 = U(gzr™ + qor® — q17),

2¢3s = U(—@2kW + 1@ + qo7),  2q0s = (16D — g262) — g37),

rs = 2l(q193 + 90q2);  Ys = 21(q293 + qoq1),

2o =1~ — 5+ a3 + ), se€l0,1].

The ¢; are the Fuler parameters.

To complete the formulation of the problem, we specify the boundary conditions.
We assume that the the origin of the coordinate system is directly below the feeding
nozzle which is at a height h along the vertical z-axis. In terms of the scaled variables,
r(l) = e, i.e.

z(1)=0, y(1)=0, =z(1)=1. (4.7)
The rope is fed vertically at the feeding point, so that r,(1) = es in the scaled

variables. This is equivalent to the condition that the Euler angle §(1) = 0. From
(A1) it follows that

a1(1) =0, gz(1)=0. (4.8)

In the state of steady coiling, the rope assumes a constant shape that revolves

around the z-axis with angular velocity (2, and no twist is induced in the rope as

the coils are laid out. We observe that the fourth equation of (4.6) can be integrated

to yield 7 = const. Since the rope is free of twist in its natural state, and no twist is
introduced at the boundaries, it follows that

7=0. (4.9)

In a frame rotating with angular velocity {2 about the z-axis, the point of contact
of the rope with the plane z = 0 is stationary. At this point the rope is tangential
to the plane z = 0 and to a circle centred at the origin, along which it is laid. This
osculating circle to the centre line r(s) of the rope has as its centre ¢(s), given by
(Struik 1988, p. 15)

c(s) = r(s)+ Kk 1N(s). (4.10)
Here k(s) = (kU2 + k(22)1/2 ig the curvature, and N(s) is the unit normal to the
curve, given by

N(s) =k "o = k7 dae = 67 P dy — kDdy]. (4.11)

We choose the point of contact s = 0 to be on the z-axis, so that the tangent to the

rope at s = 0 is along the y-axis. Then the Euler angles at s = 0 are ¥(0) = i,

2
0(0) = %7‘(‘ and ¢(0) = 0, or equivalently, following (A 1),

41(0) = —%, 112(0) = %, q3(0) = %, QO(O) = % (4‘12)
Proc. R. Soc. Lond. A (1996)



1684 L. Mahadevan and J. B. Keller

Substituting these values into (A 3) and the result into (3.1) yields expressions for
d;(0), i = 1,2,3 in terms of e;(0), i = 1,2,3. Using these expressions in (4.11) and
the result in (4.10) gives us three equations for the centre of the osculating circle.

To use these equations we recall that the centre of osculation of the rope at s =0
is the origin (0,0, 0). This allows us to write (4.10) in dimensionless form as
x(1)(0) k3 (0)

=0 0) =0, 0) — —=-=0. 4.13

K,2(O) ) y( ) Z( ) ’{2<0) ( )
By our choice of the point of contact, y(0) = 2(0) = 0. Substituting this into (4.13),
and recalling that k2 = kM2 + k(2 yields the following conditions:

y(0) =0, =2(0)=0, &®@0)=0 ~r®(0)2(0)=-1. (4.14)

Assuming that the rope does not slip after contacting the plane, all of it is laid
out along the osculating circle. Since the velocity of the contact point is ve; and the
rope steadily rotates about the z-axis with an angular velocity {2, continuity requires
that £2 x 7(0) = 2e3 x z(0)e; = ves. Rewriting this in dimensionless form gives

0x(0) = 1. (4.15)

The system of differential equations (4.6), along with the boundary conditions
(4.7)-(4.9), (4.12), (4.14), (4.15), constitutes a thirteenth-order nonlinear two-point
boundary value problem. It contains the two given parameters F' and -+, and the
unknown parameters (2 and I. The unknown variables k, k@) n®) 7 ¢, g, g3,
qo, x, y and z are functions of s.

z(0) +

5. Numerical solution

To solve the nonlinear boundary value problem posed in §4 we use a continuation
method in which we follow the solution as the parameters F' and ~ are varied. This
requires an initial solution for some particular values of F' and ~y, which we choose
to be v = F' = 0. For these values, a solution to (4.6) is given by

z(s) =1—singms, y(s)=0, z(s)=1-cossms,
kD(s) =0, w@(s)=-1, 7(s)=0, ns(s)=0, qo(s)=0,

qi(s) = —sinjm(1—s), qo(s) =0, qs(s)=cosin(l—s), =1, I=1inr
(5.1)
This solution corresponds to a static rope of dimensionless length %w lying in the
x—z-plane, with its ends at (0,0,1) and (1,0,0). Since v = 0, gravity is absent and
the rope forms a quarter-circle.

This solution (5.1) does not satisfy all the boundary conditions at s = 0. Therefore,
we introduce a family of boundary conditions at s = 0 with three parameters o €
[0,1], 8 € [0,7/2] and o € [0,1] and replace the boundary conditions (4.12), (4.14),
(4.15) by

1
2

a(@(0)k® +1) + (1 — a)(z(0)s® + 1) =0,
2z(0)=1, y(0)=0, 2(0)=0,
q1(0) =2""2cos 1B, ¢2(0) = —272sin 13, (5.2)
g3(0) =272cos 13, qo =2""2sinip,
ok® +(1-0)(p—2)=0.

Proc. R. Soc. Lond. A (1996)



Coiling of flexible ropes 1685

Figure 1. The instantaneous shape of a steadily coiling rope fed very slowly with negligible grav-
ity, so that ' = 0, v = 0. The values of  and R are found to be ! = 1.7921 and z(0) = R = 0.6811.

The parameters «, 3 and o characterize the direction of the tangent to the rope at
s = 0. We observe that when o = 1, 8 = 11, 0 = 1, (5.2) is equivalent to (4.12),
(4.14), (4.15), while for « = 8 = 0 = 0, we get the boundary conditions satisfied
by the quarter-circle solution (5.1). Thus, we can obtain a solution to the boundary
value problem posed in §4 from the quarter-circle solution (5.1) by changing these
parameters gradually. This is a continuation or homotopy method.

At each step of the continuation scheme we use Auto (Doedel 1986), a numerical
package for continuation and bifurcation analysis of boundary value problems, to
compute the solution. In the absence of bifurcation and turning or fold points, the
continuation algorithm simply involves solving a sequence of nonlinear problems.
Then each solution gives an initial approximation to the solution at the next step.

To follow the continuation path, we start with the exact solution (5.1) for v = 0,
F =0and a = =0 = 0and increase 3 in steps of 11—07r, solving a nonlinear problem
at each step. On a uniform mesh with 10 subintervals, the quasi-Newton method takes
two iterations per continuation step when the error tolerances on the coordinates z,
y and z are 107°. Once § = im, we keep it fixed at that value and use a as a
new continuation parameter, gradually increasing it from its value o = 0 till o = 1.
Finally, we increase o from its value o = 0 till o = 1 in a third continuation scheme.
In this manner, we obtain the solution to the original boundary value problem for
v =0 and F = 0. This corresponds physically to the zero-gravity zero-velocity limit
of a coiling rope, the centre line of which is shown in figure 1.

To determine the solution for non-zero values of F' and «y, we start with the solution
just obtained for F' = v = 0 and use the continuation method again. We first follow
the solution as v is changed in small increments from v = 0 to the desired value,
say v = 71, keeping F' = 0 fixed. Then, fixing v = ~;, we follow the solution branch
by changing F' in small increments from F = 0 to the desired value, say F = F;.
This two-parameter continuation scheme is implemented in AuTo (Doedel 1986),
and allows us to determine the dependence of the solution on v and F'. In particular,
the variation of the angular velocity 2 = 1/R and the dimensionless rope length I
can be determined.

In tables 1 and 2, we present the dimensionless coil radius z(0) = R and the

Proc. R. Soc. Lond. A (1996)



1686 L. Mahadevan and J. B. Keller

Table 1. The dimensionless coil radius R = x(0) for various values of v and Fy

y=10 ~y=10*> ~=10>° ~=10*

Fy=1 0.4386  0.2480  0.1293  0.0659
Fy=10 04174 0.2301  0.1219  0.0643
Fy=10* 0.6857 0.2510  0.1012  0.0529
‘ Fy =10 1.1622 0.5058  0.1614  0.0486

Table 2. The dimensionless rope length | for various values of v and F~y

y=10 ~y=10> ~=10>° ~=10"

Fy=1 1.5117  1.2617  1.1193  1.0163
FPy=10 1.5808 1.2742  1.1196  1.0549
Fy=10* 3.2500 1.4605  1.1355  1.0675
Fy=10* 95785 3.8037  1.5105  1.0770

dimensionless rope length [ for different values of v and F'y. Reading table 1 vertically,
we observe that for a light rope, i.e. v = 10, the radius of the coil initially decreases
but then increases as the velocity of feeding, characterized by F', is increased. For
moderately heavy ropes, i.e. v = 10 or 103, a similar trend is seen but is delayed
until F' becomes sufficiently large. For a heavy rope, i.e. v = 10, the radius of the
coil decreases monotonically as F' is increased for the range of values tabulated. This
may be explained by the fact that inertial effects, which cause the rope to balloon,
become important only when F' = O(1). This effect is delayed further and further
for heavier ropes. Reading table 2 vertically, we observe that as F' is increased, [
increases monotonically. This is consistent with the fact that for higher and higher
feeding velocities, the rope starts to whirl with an increasing radius so that the rope
length [ increases. Reading tables 1 and 2 horizontally, we see that for fixed Fy, as v
is increased, R and ! decrease monotonically. As v becomes larger gravity dominates
inertial and elastic effects, and the rope remains nearly vertical for most of its length.

In figure 2a we plot log R versus log I for v = 10, 102, 10® and 10%, and observe
for large F, that R ~ hF'/3. In figure 2b we plot log! versus log F' for the same
values of 7, and see that for large F, [ ~ hF'/2,

In figure 3a we plot log R versus log I for Fy = 1, 10, 102 and 103. For F <« 1,
we see that R ~ hF''/3, Since F7y is constant on each curve, then R ~ hy~'/3 in
agreement with (2.4). In figure 3b we plot logl versus log F' for the same values of
Fv. For F' < 1, we note that [ ~ h.

The scaling regimes shown in figures 2 and 3 suggest that an asymptotic description
of the coiling rope is valid for extreme values of the parameters F' and . When
Fv <« 1 and v < 1, the shape of the coiling rope is close to that shown in figure 1.
In this case the stiffness is important along the entire length of the rope. When F' > 1
or F' <« 1, corresponding to the cases of either inertia- or gravity-dominated coiling,
the stiffness of the rope is relatively unimportant except in the regions near the
feeding point and near the horizontal plane. In figures 4a and b we show the steady

Proc. R. Soc. Lond. A (1996)
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log R

log 1

log F
Figure 2. Dependence of (a) the dimensionless coil radius R and (b) the dimensionless rope

length [ on F', for: Ly =10; -,y =10% - - -, vy = 10% - — -, v = 10*. Note the scaling
regime for large values of F, i.e. inertia dominated coiling.

shape of a representative case from each regime corresponding to (a) a rapidly fed
light coiling rope (y = 10, F = 1.5 x 10%) and (b) a slowly fed heavy coiling rope
(v = 10%, F = 1073) which is nearly vertical along most of its length.

In figure 4c we show the shape of a rapidly fed heavy coiling rope (y = 10%,
F =107"). Here the rope is nearly vertical in the region close to the feeding point,
but balloons outwards close to the horizontal plane. This corresponds to the case
when the bending stiffness is dominated by both inertia and gravity, with F' = O(1).

6. Asymptotic solution

A finite bending stiffness in the rope is necessary for the onset of coiling. However,
its importance decreases when elasticity is dominated by gravity and inertia, and

Proc. R. Soc. Lond. A (1996)
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1 ! T ! ! ! B !

log R

log 1

log F
Figure 3. Dependence of (a) the dimensionless coil radius R and (b) the dimensionless rope
length [ on F, for: ,Fy=1;...., Fy = 10; - - -, Fy = 10%; - — -, Fy = 10. Note the
scaling regime for small values of F, i.e. gravity dominated coiling.

its effect is restricted to the boundary layers near the feeding point and near the
horizontal plane. In the outer region away from the boundary layers, we can model the
rope as a perfectly flexible string. However, since the coil radius R and the rope length
{ arc determined by the competition between elastic and gravitational or inertial
effects, we cannot predict these quantities without solving the exact equations.

For a perfectly flexible string, the bending or twisting stiffnesses are EI ~ GJ ~ 0.
From (3.7) and the second equation in (3.6), it follows that r, xn = 0. Then the axial
tension 1 = nry is the only force that can be sustained by the string. Substituting
the first equation in (4.1) into the first equation in (3.6), we get

ng + pAg = —pA[viry — 2002 x v, + 2 x (2 x 1)) (6.1)

This is the equation of motion for a perfectly flexible string moving at a constant
speed v along its tangent and rotating about a fixed axis with angular velocity 2.

Proc. R. Soc. Lond. A (1996)
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0.1 -0.1

0.1 -0.1

Figure 4. The instantaneous shape of a steadily coiling rope for (a) inertia-dominated coiling,
F=15x10% v =10 (b) gravity-dominated coiling, F' = 1072, v = 10* and (c) inertia- and
gravity-dominated coiling, F' = 107}, v = 10%.
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1690 L. Mahadevan and J. B. Keller

Here 7(s) characterizes the centre line of the string, £2 = 2e3, g = —ges and pA
is the mass per unit length of the string. In order to close the system (6.1) we need
an additional equation for n(s). Assuming that the string, like the rope considered
previously, is inextensible gives

rs-rs = 1. (6.2)
_ Using the dimensionless variables 5 = s/l, T = x/h, y = y/h, Z = z/h, 2 = Qh/v,
Il =1/h, F =v*/gh and i = n/pAgh, we can rewrite (6.1), (6.2), on dropping the
bars, as

(nxy)s = —F (w5 + 2002y, — 20%x),  (nys)s = —F(yss — 200z, — 120%y),
(nzg)s = —Fzes + 12, 224+ y2+22 =12

(6.3)
Here [ is the length of the string, h is the height of the feeding point above the
horizontal plane and F' is the Froude number defined by the ratio of the kinetic
energy to the gravitational potential energy. To derive an equation for the tension
n(s), we multiply the first three equations of (6.3) by x5, ys and zs, respectively,
and add them together. Using the inextensibility condition to simplify the resulting
expression yields

ne = FO*(zzs + yys) + 2. (6.4)
This equation can be integrated immediately to yield
n(s) = FQ*(z* + y*) + 2 + ny, (6.5)

where ng is the constant of integration. The solutions of these equations for the draw-
ing and whirling of a string have been investigated in Antman (1995) and Antman
& Reeken (1987).

To complete the formulation of the outer problem we need some matching condi-
tions that relate this solution to the inner solutions in the boundary layers. In the
regions near the feeding point and near the horizontal plane, the bending stiffness
cannot be neglected, and the boundary-layer equations of motion are obtained by
rescaling the exact equations (4.6). These have to be solved numerically to derive
matching conditions for the inner problem.

If the size of the boundary layers is very small, the outer solution should go from
the feeding point to a point on the circle of radius R at z = 0. The corresponding
boundary conditions at the feeding point s = 0 and the point of contact with the
horizontal plane s = 1 are

z(1)=0, y(1)=0, =z(1)=1, =z(0)=R, y(0)=0, z(0)=0. (6.6)

To solve the two-point boundary value problem given by (6.3) and (6.6), we have
to specify the dimensionless coil radius R = z(0) and the dimensionless rope length
[. Here, we will restrict our analysis to deriving the general form of the asymptotic
solution.

When v > 1 and F' = O(1), both inertia and gravity are important in determining
the configuration of the rope in the region between the boundary layers. Figure 5
suggests that the form of the rope is similar to a catenary near the feeding point
but changes to that of a helix near the horizontal plane. Therefore, we consider the
following solution to (6.3):

z(s) = asechbscosws, y(s) =asechbssinws, z(s)=cs—dtanhbs. (6.7)
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Figure 5. The asymptotic shape of a steadily coiling string for (a) F = O(1), (b) F > 1, and
(c) F < 1. These shapes are similar to those shown in figures 4a—c, respectively, except in the
boundary layers near the feeding point and the horizontal plane.
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Substituting (6.7) into the last equation in (6.3) gives the conditions ¢ = [ and
a = d = 2bc/(b* + w?) for the inextensibility constraint to be satisfied. The tension
in the string is determined by substituting (6.7) into (6.5) and gives

n(s) = F2%a?sech® bs 4 (s — atanh bs) + ng. (6.8)

Figure 4a suggests that the form of the rope in inertia dominated motion, F' > 1,
is that of a whirling helix. Putting b = 0 in (6.7) gives

z(s) = acosws, y(s)=asinws, z(s)=cs. (6.9)

Here a is the radius and ¢ is the pitch of the helix. Substituting (6.9) into the
last equation in (6.3) gives the condition ¢ = (I — a?w?)'/? for the inextensibility
condition to be satisfied. Rescaling the tension n(s) in (6.8) to absorb F', and letting
F — oo gives n(s) = F2%a® + ny.

Figure 4b suggests that the form of the rope in gravity dominated motion, F' <« 1,
is that of a catenary. Putting w = 0 in (6.7) gives

z(s) = asechbs, y(s)=0, z(s)=cs— dtanhbs. (6.10)

Substituting (6.10) into the last equation in (6.3) gives the conditions ¢ = [ and
a = d = 2¢/b for the inextensibility constraint to be satisfied. Letting F' — 0 in (6.8)
gives the tension in the string: n(s) = (s — atanh(2s/a)) + no.

In figures 5a—c we show the asymptotic shape of the coiling rope in the outer
region, corresponding to the string solution, given by (6.9), (6.10) and (6.7) for
F > 1, F <« 1and F = O(1), respectively. The values of [ and R = 1/{2 in each
case are chosen to be exactly the same as for the solutions shown in figures 4a—c.
The parameters b and w are chosen so that the boundary conditions at s = 1 are
satisfied in each case. Of course this is not possible for the ‘whirling helix’ solution.
We observe that the asymptotic shapes agree well with the shapes determined by
solving the exact equations in the regions away from the boundary layers, i.e. away
from the feeding point and the horizontal plane.

Appendix A. Euler angles and Euler parameters

In Kirchhoff-Love rod theory, the cross-section is characterized by specifying the
orientation of an orthogonal triad fixed in the frame relative to another orthogonal
triad fixed in space, as shown in figure 6. This requires a choice of some convenient
parametrization of the group of rotations SO(3).

Rotations are usually given in terms of the classical Euler angles denoted by 1,
0 and ¢. However, this representation of the Euler angles breaks down at the po-
lar singularities # = 0, 7. To describe arbitrary rotations, we use a singularity-free
parametrization in terms of the Euler parameters ¢i, g2, ¢3, go (Whittaker 1937,
p. 9), which are just the components of the quaternions of Hamilton.

Here, we collect various expressions for the rotation matrices and the components
of curvature and twist in terms of the Euler angles and Euler parameters for use in
our analyses. The Euler angles are related to the Euler parameters by (Whittaker
1937, p. 11)

q1 =sin(0/2) sin((¢ — 9)/2), g2 = sin(8/2) cos((¢ — 1) /2), (A1)
gs = cos(0/2) sin((¢ + ) /2), qo = cos(6/2) cos((¢ + 1)/2),
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Figure 6. The Euler angles 1, 6 and ¢ determine the orientation of the moving coordinate axes
di, d2, ds relative to the fixed coordinate axes e, ez, e3. The tangent to the centre line of the
rod is along d3, and the principal axes of the cross section are along d; and da.

where
4 +a;+45+ a5 =1 (A2)
In fact this relation between the Euler angles and the Euler parameters is a conse-
quence of the isomorphism between the rotation group SO(3) and the unitary group
SU(2).
In terms of the Euler parameters, the transformation matrix defined in (3.1) is
given by (Whittaker 1937, p. 8)

G-G-GB+% 209+ 94s) 2(q193 — q0a2)
L= 212 — q083) —G+ G -G+ G 2(q293 + qoq1) . (A3)
2(q193 + q092) 2(g2q3 — qoq1) —qi — ¢+ 43 + 4

The components of the strain vector x defined in (3.4) are (Whittaker 1937, p. 16)

k1) = 2(qoq1s + 93925 — 42935 — G1G0s)
K®) = 2(—g3q1s + qoGos + G135 — 920s) (A4)
T = 2(g2q1s — q1G2s + Q0435 — G3G0s)

To derive a system of first-order ordinary differential equations for the Euler pa-
rameters, we first differentiate (A 2) and get

0 = 2(q1q15s + 92925 + 93435 + qo40s)- (A5)
Inverting (A 4)—(A5) yields the following first-order system of ordinary differential
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equations for the Euler parameters

qis = %(QOKJ(U — 3P + @T), @ = %(QB/@“) + qok® — qi7), (A6)
q3s = %(‘CDH(D + @@ 4+ q7),  qos = %(—qm(” — g2k — gs7).

Finally, we write the first-order ordinary differential equations for the coordinates
of the centre line of the rod x(s), y(s) and z(s). In terms of the Euler parameters
they are

s =2(q1g3 — q0q2), Ys = 2(qoq3 + qo@1), 2s=—G — @3 +q3+qa. (A7)

We thank Professor E. J. Doedel for providing us with a copy of the numerical bifurcation
analysis package AuTO (Doedel 1986).
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