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Periodic Folding of Thin Sheets∗
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Abstract. When a thin sheet of a flexible material such as paper is fed from a horizontal spool towards
a rough horizontal plane below it, the sheet folds on itself in a regular manner. We model
this phenomenon as a free boundary problem for a nonlinearly elastic sheet, taking into
account the stiffness and weight of the sheet and the height of the spool above the plane.
By using a continuation scheme we solve the problem numerically and follow the evolution
of one period of the fold for various values of the parameters. The results are found to
agree well with observations of the folding of paper sheets.
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1. Introduction. When a thin sheet of a flexible material such as paper is fed
uniformly from a horizontal spool towards a horizontal solid plane below it, the sheet
folds on itself in a regular manner. Variants of this phenomenon occur in the man-
ufacturing of papers, textiles, and composite sheets [1], and in the creeping flow of
viscous liquids [2], [3].

Observations of a sheet that is fed slowly from far above a horizontal floor reveal
various stages in the formation of one half-period of a fold. Figures 1a–1i show these
stages for a sheet of paper as it is unrolled from a spool held above the floor and
photographed along a horizontal axis parallel to the generators of the sheet.

Suppose that the sheet is fed from the spool starting at a time t = 0. Then it
hangs vertically under the influence of gravity until it touches the floor y = 0 along
a line of contact x = 0 at a time t = t0. Further feeding causes the sheet to buckle.
Most of the deformation is limited to a narrow layer near the floor (Figure 1a). If the
plane is rough, the sheet does not slip and the contact line remains at x = 0. The
sheet buckles some more as the feeding continues, eventually becoming tangential to
the horizontal plane at a time t = t1 (Figure 1b). The line where the sheet leaves the
floor, i.e., the contact line, then begins to move away from its initial position x = 0
(Figure 1c) as more of the sheet is fed. This continues until the contact line reaches
a maximum distance from x = 0 (Figure 1d) and then begins to move back toward it
(Figure 1e). Simultaneously, the line of inflection in the sheet begins to move towards
the floor, and the sheet finally touches itself at a time t = t2 (Figure 1f). If the
sheet is rough it cannot slide through the line of contact. Instead, further feeding
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Fig. 1 Photographs of the evolution of an entire fold of a sheet of paper fed vertically from far above
a rough horizontal floor. The ruler at the bottom of each photograph is 1 m long. The various
stages illustrated show the sheet (a) just after it touches the floor and buckles, (b) when it just
becomes tangential to the floor, (c) when it has been laid out after the line of tangency has
moved away from its original position, (d) when it is in its extreme configuration, (e) when
it starts to roll back, (f) when it first touches itself on the floor and forms a second contact
line, (g) when it is rolling about the second contact line, (h) at the end of one half-period,
and (i) at the end of a full period.

causes the sheet to roll about the second contact line as this line moves toward the
feeding plane. This rolling continues until the curvature along the second contact line
becomes zero at a time t = t3 (Figure 1g). Then the second contact line stops moving
and a folded portion of the sheet held down by its own weight is left behind. As more
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of the sheet is laid out, a third contact line splits off from where the second contact
line stopped, starts to move, and arrives at x = 0 at a time t = t4 (Figure 1h). Then
the hanging part of the sheet is in the same configuration as at time t = t1 (Figure
1b) except for a reflection about the vertical plane x = 0. As the feeding continues,
another half-period of the fold is laid out in exactly the same manner (Figure 1i).
Thus it suffices to consider the evolution of a half-period of a fold. Of course, during
the evolution of the second fold, the sheet lies on top of the first fold. For very flexible
sheets the fold height is small, so this effect is small. Therefore we shall not consider
it.

In section 2 we use dimensional analysis to extract the appropriate dimensionless
parameters in the problem. We then formulate a free boundary value problem for
the quasi-static evolution of one half-period of a fold. In section 3 we describe a
numerical method to solve the boundary value problem and follow the formation of
a fold. We present the results for various parameter values. In section 4 we obtain
a solution for a free-standing fold held down by its own weight. Finally, in section 5
we present some quantitative comparisons of our calculated results with the results
of experiments using paper sheets.

2. Formulation.

2.1. Dimensional Analysis. To understand the role of the various physical pa-
rameters in the problem, we use dimensional analysis. The six parameters are the
Young’s modulus E, the mass per unit length ρ of unit width of the sheet, the mo-
ment of inertia I of the cross section of unit width of the sheet, the height l of the
spool above the solid plane, the feeding velocity v, and the acceleration of gravity g.
Their dimensions are expressible in terms of mass, length, and time. Therefore, by
the Buckingham Pi theorem, the number of dimensionless parameters is three, say,

η = EI/ρgl3,

γ = v2/gl,(2.1)
ζ = I/l3.

Here η is the dimensionless stiffness given by the ratio of the flexural and gravitational
potential energies, γ is the ratio of the kinetic and potential energies, and ζ is the
dimensionless moment of inertia. Thus the fold length lf measured along the arc,
divided by l, is a function of these three parameters, lf/l = g(η, γ, ζ).

When the sheet is fed slowly so that inertial forces are negligible, γ << 1. For
typical materials, η >> ζ and ζ << 1 so that

lf = lg(η, γ, ζ) ∼ lg(η, 0, 0).(2.2)

As the drop height l is increased indefinitely, for lf to have a finite limit, g(η, 0, 0)
must be proportional to η1/3, and then (2.2) becomes

lf ∼ Llη1/3 = L(EI/ρg)1/3.(2.3)

The constant L can be found from one calculation or from one experiment.
For a thin sheet of paper, typical parameter values are

E ∼ 3× 108N/m2, I ∼ 1/3× 10−12m4,

ρ ∼ 10−1kg/m, g ∼ 10m/s2, l ∼ 1m.(2.4)

Then η = 10−3. Therefore, the effect of the stiffness will be important only in the
boundary layers near the feeding point and near the horizontal plane.
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Fig. 2. The geometry and loading of a cylindrical sheet whose generators are parallel to the z axis.

2.2. Equations of Equilibrium. We assume that the sheet is cylindrical with its
generators parallel to the z axis, so that it is determined by its curve of intersection
C with the xy plane. When γ is sufficiently small, inertial forces are negligible and
the equations of motion become those of equilibrium.

They are the same as those for the bending of a naturally straight rod lying in
the xy plane (see Figure 2). The balance of forces in this plane and the balance of
moments normal to it give the equations [4]

n1s = 0, 0 ≤ s ≤ vt,
n2s = ρg,

ms = n1 sinφ− n2 cosφ.(2.5)

Here s is the arc-length along C, φ(s) is the angle between the tangent to C and the
x axis, n1(s) and n2(s) are the stress resultants in the x and y directions, m(s) is the
bending moment in the z direction, ρg is the weight per unit length of unit width of
the sheet, and vt is the length of the sheet. As in Bernoulli–Euler beam theory, we
assume that m(s) = EIφs(s), where EI is the flexural stiffness of the sheet. The x
and y coordinates of C are determined by

xs = cosφ, 0 ≤ s ≤ vt,
ys = sinφ.(2.6)

This simple model of geometrically nonlinear elasticity is a good approximation
for the behavior of thin sheets undergoing only planar bending in the absence of
extension, shear, and warping. If gravity were not present, n2(s) would be a constant
and the problem would reduce to that of the classical elastica of Euler. However here
gravity is important and cannot be neglected.
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We now define the dimensionless variables

s̄ = s/l, t̄ = vt/l,

x̄ = x/l, ȳ = y/l,

n̄1 = n1/ρgl, n̄2 = n2/ρgl.(2.7)

Then we can rewrite (2.5) and (2.6), after dropping the bars, as follows:

n1s = 0, 0 ≤ s ≤ t,
n2s = 1,
ηφss = n1 sinφ− n2 cosφ,
xs = cosφ,
ys = sinφ.(2.8)

This forms a sixth-order system of ordinary differential equations for the variables
n1, n2, x, y, and φ as functions of s.

2.3. Boundary Conditions. Suppose the spool is at a height l above the hori-
zontal plane and that the sheet leaves it vertically. Therefore, at the spool s = vt, or
s̄ = t̄, we have

x(t) = 0, t ≥ 0,
y(t) = l,

φ(t) = π/2.(2.9)

Recalling the observations in section 1, we note that there are four switching
points where the boundary conditions at the other end of the sheet change. These
switching points correspond to the birth and motion of the contact lines shown in
Figure 1. For 0 ≤ t ≤ 1, the sheet hangs vertically with its bottom end free. At the
end s = 0, we have

n1(0; t) = 0, 0 ≤ t ≤ 1,
n2(0; t) = 0,
y(0; t) = 1− t.(2.10)

At t = 1, the sheet touches the horizontal plane and further feeding causes it
to buckle (Figure 1a). In the presence of friction, the line of contact remains fixed,
acting as a hinged support about which the sheet bends. Then the conditions (2.10)
are replaced by

x(0; t) = 0, 1 ≤ t ≤ t1,
y(0; t) = 0,
φs(0; t) = 0.(2.11)

At t = t1 the sheet becomes tangent to the plane at s = 0. Then φ(0; t1) = 0
(Figure 1b). As the feeding continues, the sheet gets laid out along the horizontal
plane (Figure 1c). At the first contact line (s1(t), 0), where the sheet leaves the floor,

y(s1; t) = 0, t1 ≤ t ≤ t2,
φ(s1; t) = 0,
φs(s1; t) = 0.(2.12)
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As the contact line moves, the sheet begins to dip downwards under its own
weight. At t = t2 a second contact line forms at (x(s2(t); t), 0) when the sheet touches
itself (Figure 1f). Further feeding causes the sheet to roll back about the second
contact line which moves towards x = 0. The first contact line may also move during
this process. However, in the presence of friction this motion is very small. For
simplicity we neglect it. During this rolling motion, a line reaction is exerted by the
horizontal plane along the second contact line, causing a jump in the vertical force
n2(s) at s = s2(t). At the second contact line,

y(s2; t) = 0, t2 ≤ t ≤ t3,
φ(s2; t) = π.(2.13)

The sheet continues to roll about (x(s2(t); t), 0) until the curvature φs(s2(t); t) at
the second contact line becomes zero (Figure 1g). This happens at t = t3. Then a
folded portion of the sheet from s1(t2) to s2(t3) is left behind and a new contact line
(x3(t), 0), initially at (x(s2(t3)), 0), moves toward x = 0. At this contact line

y(s3; t) = 0, t3 ≤ t ≤ t4,
φs(s3; t) = 0,
φ(s3; t) = π.(2.14)

Further feeding causes the third contact line to move towards x = 0 until it
reaches x = 0 at t = t4. Then the configuration of the hanging portion is identical to
that at t = t1 except for a reflection about the y axis. A similar process then leads to
the laying out of the second half-period of the fold, and an entire period is completed
at t = 1 + 2(t4− t1). Thus it suffices to determine one half-period of a fold by solving
(2.8) subject to the boundary conditions (2.9)–(2.14).

3. The Evolution of a Fold.

3.1. Solution by Perturbation. The vertical sheet just touches the horizontal
plane at t = 1. Further feeding causes it to buckle out of the vertical plane. We can
calculate the buckled solution at t = 1 + ε, ε << 1 by expansion in ε. For simplicity
we omit gravity and write

φ(s; ε) = π/2− εφ̂+O(ε2),
n1(s; ε) = εn̂1 +O(ε2),
n1(s; ε) = n0

2 + εn̂2 +O(ε2),
x(s; ε) = εx̂+O(ε2),
y(s; ε) = s+ εŷ +O(ε2).(3.1)

Upon substituting (3.1) into (2.8) and (2.10) and keeping terms to O(ε), we get

n̂1s = 0,
n̂2s = 0,
x̂s = −φ̂,
ŷs = 0,

−ηφ̂ss = n̂1 − n0
2φ̂,(3.2)
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subject to the boundary conditions

x̂(0) = 0,
ŷ(0) = 0,

φ̂s(0) = 0,
x̂(0) = 0,
ŷ(1) = 0,

φ̂s(1) = 0.(3.3)

Solving (3.2)–(3.3) and substituting into (3.1) yields the buckled solution

n1(s; ε) = O(ε2),
n2(s; ε) = j2ηπ2 +O(ε2), j = 1, 2, . . . ,
φ(s; ε) = π/2− ε cos jπs+O(ε2),

x(s; ε) =
ε

jπ
sin jπs+O(ε2),

y(s; ε) = s+O(ε2).(3.4)

We shall use (3.4) with j = 1 as an initial approximation in a numerical iterative
procedure to solve the boundary value problem with gravity for t = 1+ε. Then we shall
use that solution as an initial approximation to solve the problem for t = 1 + 2ε, and
so on. This procedure constitutes a continuation or homotopy method parametrized
by the sheet length t.

3.2. Numerical Scheme. At each step of the continuation scheme we use a nu-
merical boundary value problem solver COLSYS [5] to compute the solution. It uses
spline collocation at Gaussian points. A brief description of the method is as follows:
by forcing a collocation solution to satisfy the boundary conditions and the differen-
tial equations at the Gauss–Legendre points in a defined mesh, a nonlinear system of
equations is obtained for the unknown B-spline coefficients. A damped quasi-Newton
method is used to solve the nonlinear system iteratively starting from an initial ap-
proximation to the solution. A posteriori error estimates are used to refine the mesh
adaptively until the specified tolerances are met. The spline coefficients of the collo-
cation solution are stored to allow for the possibility of simple continuation. In the
absence of singular points such as bifurcation or fold points, the continuation algo-
rithm simply involves solving a sequence of nonlinear problems. Then each solution
gives an initial approximation to the solution at the next step.

To facilitate the use of COLSYS, we convert the original problem with moving
boundaries to one with fixed boundaries. This is done by writing the equations in
terms of a new variable ŝ = (s − s1)/(t − s1), where s1 is the x coordinate of the
contact line and t is the dimensionless length of the sheet. Then, on dropping the
hats, we can rewrite (2.8) as

n1s = 0, 0 ≤ s ≤ 1,
n2s = t− s1,

ηφss = (t− s1)2(n1 sinφ− n2 cosφ),
xs = (t− s1) cosφ,
ys = (t− s1) sinφ,
s1s = 0.(3.5)
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The last equation serves to embed the sixth-order system with a free boundary in
a seventh-order system with fixed boundaries, which requires the specification of an
additional boundary condition to complete the formulation of the problem.

The boundary conditions (2.9)–(2.14) at s = 0, s = s1, and s = t are transformed
into conditions at ŝ = 0 and ŝ = 1. At the feeding end, s = t or ŝ = 1, (2.9) can be
rewritten as

x(1; t) = 0, t ≥ 0,

y(1; t) = 1,

φ(1; t) = π/2.(3.6)

At the other end, s = 0 or ŝ = 0, (2.10) is transformed into

n1(0; t) = 0, 0 ≤ t ≤ 1,

n2(0; t) = 0,

y(0; t) = 1− t,
s1(t) = 0,(3.7)

while (2.11) becomes

x(0; t) = 0, 1 ≤ t ≤ t1,
y(0; t) = 0,

φs(0; t) = 0,

s1(t) = 0.(3.8)

Once the sheet begins to get laid out on the plane, s1(t) 6= 0. At the contact line,
s = s1 or ŝ = 0, (2.12) becomes

x(0; t) = s1, t1 ≤ t ≤ t2,
y(0; t) = 0,

φs(0; t) = 0,

φ(0; t) = 0.(3.9)

The second contact line is formed when t = t2. Thereafter, the boundary conditions
(2.13) at s = s2(t) or ŝ = (s2 − s1)/(t− s1) are transformed to

y

(
s2 − s1

t− s1
; t
)

= 0, t2 ≤ t ≤ t3,

φ

(
s2 − s1

t− s1
; t
)

= π.(3.10)

The third contact line is formed when t = t3. Thereafter, the boundary conditions
(2.14) at s = s3(t) or ŝ = (s3 − s1)/(t− s1) become

x

(
s3 − s1

t− s1
; t
)

= x3, t3 ≤ t ≤ t4,

y

(
s3 − s1

t− s1
; t
)

= 0,
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φ

(
s3 − s1

t− s1
; t
)

= π,

φs

(
s3 − s1

t− s1
; t
)

= 0.(3.11)

Here (x3(t), 0) is the dimensionless position of the third contact line. It forms at the
location where the second contact line stops and moves towards x = 0 as the sheet is
fed.

To solve (3.5)–(3.11), we start with the perturbation solution given by (3.4) for
ε << 1 as an initial guess to determine the equilibrium configuration of the slightly
buckled sheet in the presence of gravity. We use this solution as the first approxima-
tion in a continuation scheme parametrized by the sheet length t. As t is gradually
increased past the switching point t = t1, the appropriate boundary conditions given
by (3.9) are enforced. At t = t2, the second contact line forms, so that the interface
conditions (3.10) and the boundary conditions (3.6) and (3.9) have to be satisfied.
The subsequent rolling motion is more conveniently treated as a combination of two
boundary value problems with matching boundary conditions given by (3.10). Once
the curvature φs along the second contact line becomes zero, the third contact line
begins to move and the boundary conditions (3.10) are replaced by (3.11). One half-
period of the fold is competely laid out at t = t4.

For a typical value of η = 10−3, we choose the continuation step size for t to
be ε = .01. The adaptive remeshing scheme implemented in COLSYS automatically
refines the mesh in a narrow boundary layer near the horizontal plane where most of
the folding occurs. On a mesh with 40 subintervals, the quasi-Newton method takes
between 3 and 5 iterations per continuation step when the error tolerances on the
coordinates x and y are 10−5.

3.3. Results. Figures 3a–3i show the curve of intersection C of the sheet with
the xy plane at various stages during the feeding of a sheet with η = 10−3 as it is
fed quasi-statically. Comparison with the experimental observations of Figures 1a–1i
shows good agreement. Figure 4 shows an enlarged view of the boundary layer near
the horizontal plane showing the sequence of equilibria during the formation of one
half-period of a fold.

Table 1 shows the location of the switching points for t = t1, t2, t3, t4 for three
different values of the dimensionless stiffness η = 10−3, 10−4, and 10−5. In Figures
5a–5b, the locations of the contact lines si(t), i = 1, 2, 3, are shown over one period of
a fold for two typical values of the dimensionless stiffness η1 = 10−3 and η2 = 10−4.
We observe that the ordinates in Figures 5a and 5b are nearly identical except for a
scaling factor of 2. This is in accordance with the dimensional arguments that predict
that the length scales should vary asymptotically as the cube root of the dimensionless
stiffness, and (η1/η2)1/3 = 101/3 ∼ 2. We also observe that for η = 10−3 the sheet
rolls back a smaller fraction of the fold length than for η = 10−4. In fact, for large
enough η, the sheet touches itself before reaching its extreme position and therefore
does not roll back at all. For very small η, the fold length lf ∼ O(η1/3) and all three
contact lines approach each other, eventually coalescing when η = 0.

4. The Free-Standing Fold. At the end of every half-period, a free-standing fold
held down by its own weight is left on the horizontal plane, as is shown in Figure 1h.
We now examine the solution for this fold. The only length scale for it is the fold
length lf measured along the arc. It is given by (2.3), in which L is a constant to be
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Fig. 3 Numerical results for the evolution of an entire fold for η = 10−3 showing the same stages
as in Figure 1. The curve of intersection C of the sheet with the xy plane is shown for (a)
1 ≤ t ≤ t1; (b) t = t1; (c) t1 ≤ t ≤ t2, as the contact line moves away from x = 0; (d)
t1 ≤ t ≤ t2, when the contact line is at its extreme position; (e) t1 ≤ t ≤ t2, as the contact
line moves towards x = 0; (f) t = t2; (g) t2 ≤ t ≤ t3; (h) t = t4; and (i) t = 1 + 2(t4 − t1).
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Fig. 3. (continued)

determined. Using lf/L as the scaling length, we can rewrite the equations (2.5) and
(2.6) in dimensionless form as

n1s = 0, 0 ≤ s ≤ L,
n2s = 1,
φss = n1 sinφ− n2 cosφ,
xs = cosφ,
ys = sinφ.(4.1)

Each end of the fold lies on the horizontal plane and is tangential to it. Its curvature
also vanishes at both ends. Fixing one of the ends s = 0 at the origin, we can write
the boundary conditions as

x(0) = 0, y(0) = 0,
φ(0) = π, φs(0) = 0,
y(L) = 0, φ(L) = 0,
φs(L) = 0.(4.2)
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Fig. 4 An enlarged view of the sequence of equilibria 1–8 during the laying out of one half-period of
a fold.

Table 1 Location of the switching points ti, i = 1, 2, 3, 4, and the length of one half-period t4 − t1
for different values of the dimensionless stiffness η.

η = 10−3 η = 10−4 η = 10−5

t1 1.105 1.053 1.023
t2 1.912 1.313 1.154
t3 1.973 1.499 1.268
t4 1.993 1.508 1.271

t4 − t1 0.888 0.455 .248

Integrating the first two equations in (4.1) and substituting into the third, we get

φss + (n0
2 + s) cosφ− n0

1 sinφ = 0.(4.3)

Here n0
1 and n0

2 are constants. Multiplying (4.3) by φs and integrating along s, we
obtain

φ2
s(s)
2

+ (n0
2 + s) sinφ(s) + n0

1 cosφ(s)− y(s) = H ≡ constant.(4.4)

Substituting the boundary conditions (4.2) at s = 0, L into (4.4) yields the equations

n0
1 = H, n0

1 = −H.(4.5)
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Fig. 5 The location of the contact lines si(t) and the switching points ti, i = 1, 2, 3, 4, as a function
of the amount of sheet fed, t, for (a) η = 10−3 and (b) η = 10−4. For η = 10−3, the
positions of the contact lines corresponding to the sequence in Figure 4 are also indicated.

Therefore, H = 0, so that n1(s) = n0
1 = 0 and there are no horizontal forces on the

free-standing fold.

To solve the nonlinear boundary value problem (4.1) and (4.2) for the fold shape
and the constant L, we use a continuation method similar to that described in sec-
tion 3.2, implemented in two stages. In the first stage, we consider the feeding of a
horizontal sheet lying on the solid plane with the feeding end s = 0 clamped and the
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Fig. 6. The shape of a free-standing fold, computed numerically by solving (4.1) and (4.6).

far end s = a fixed but hinged. Then the boundary conditions (4.2) are replaced by

x(0) = 0, x(a) = 1, 1 ≤ a ≤ L∗,
y(0) = 0, y(a) = 0,
φ(0) = π, φs(a) = 0.(4.6)

In the absence of gravity, a perturbation solution to (4.1)–(4.2) for a = 1+ε, ε <<
1 is given by

n1(s; ε) =
−π2

4
+O(ε2),

n2(s; , ε) = O(ε2),

φ(s; ε) = π − ε cos
πs

2
+O(ε2),

x(s; ε) = s+O(ε2),

y(s; ε) =
2ε
π

sin
πs

2
+O(ε2).(4.7)

Using (4.7) as an initial approximation in COLSYS, we first use a continuation
method to find the solution of (4.1) and (4.6) that includes gravity, as in section 3.2.
Next, we increase a in steps of 0.1, solving the system at each step until at some value
of a that we call L∗, we have φ(L∗) = 0. This completes the first stage. In the second
stage, we release the far end of the sheet s = a, allowing it to move freely as a is
increased beyond L∗. This corresponds to replacing the condition x(a) = 1 in (4.6)
by φ(a) = 0. Using the solution for a = L∗ as the initial guess in COLSYS, we follow
the deformation of the sheet until φs(0) = 0 for some value of a that we call L. The
converged solution then gives the free-standing fold determined by (4.1) and (4.2). In
Figure 6 we show the computed shape of the fold, which agrees well with the shape
of the folds shown in Figures 1h and 1i.

The constant L is found to be 4.6833 so that the characteristic fold length lf
measured along the arc is given by

lf = 4.6833(EI/ρg)1/3.(4.8)
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Similarly the maximum height hf and the maximum width wf of the fold are given
by

hf = .9066(EI/ρg)1/3, wf = 3.2324(EI/ρg)1/3.(4.9)

5. Experiment. Qualitatively, the numerical solution for the evolution of one
half-period of a fold, shown in Figure 3, agrees well with observations of the folding
of paper sheets, shown in Figure 1. Now we will compare our theoretical predictions
for the free-standing fold with the results of some simple folding experiments.

The experiments were done with various types of paper that were unrolled and
left hanging for a few hours to straighten them out. We use the simple gravity loaded
cantilever beam experiment to determine the stiffness of the paper sheets. It involves
measuring the deflection of the free end and using a calibration diagram to read off
the stiffness.

Consider a thin sheet of naturally straight paper of length l that is clamped
horizontally at the end s = 0 and free at the end s = l, as is shown in Figure 7a.
The equilibrium shape of the sheet of unit dimensionless length and dimensionless
stiffness η = EI/ρgl3 is determined by the solution of the equations (2.8) subject to
the boundary conditions

x(0) = 0, y(0) = 0, φ(0) = 0,
φs(1), n1(1) = 0, n2(1) = 0.(5.1)

As the length of the sheet is slowly increased or as η is decreased, the sheet droops
more and more under its own weight. Using the numerical continuation described
before, we compute the sequence of solutions parametrized by the length of the sheet
l or the stiffness η. Following [6], we calculate tan θ = y(l)/x(l), where θ is the angle
made by the horizontal axis with the chord from one end of the sheet to the other,
and in Figure 7b we plot η−1 versus tan θ.

In the experimental setup, we calculate tan θ by measuring the coordinates of the
free end x(l), y(l). Using the calibration diagram in Figure 7b, we can then read off
η−1 = ρgl3/EI. Finally, by determining the mass per unit area ρ of the sheet, we can
evaluate the stiffness EI of the sheet and use (4.8) to predict the fold length lf .

Next, the sheet is folded over and the length of a free-standing fold l̂f is measured.
Table 2 shows the values of the theoretical and experimental fold lengths lf and l̂f
for three types of paper and plastic sheets. A comparison of the results shows that
the predicted fold lengths are in good agreement with the experiments.

6. Postscript. An earlier paper of Lloyd, Shanahan, and Konopasek [7] was
brought to our attention after our work was published. It treated numerically the
folding of heavy fabric sheets, based on equations equivalent to ours, and obtained
many of the same results. Our study goes beyond it in determining the paths of the
various contact points as functions of the sheet length, determining the sheet stiffness
from the cantilever experiments, comparing the theory with experiments, etc.

Subsequently, we analyzed the related problem of coiling of a flexible rope fed
from above onto a horizontal plane [8]. In that case, we considered the time-dependent
motion in three dimensions, which becomes steady in a rotating coordinate system.
Recently we have studied the analogous problem of coiling of a filament of viscous
fluid falling onto a horizontal plane [9].
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Fig. 7 (a) Experimental setup and (b) calibration diagram for the measurement of the stiffness of
a thin sheet.

Table 2. Experimental results for free-standing folds.

l̂f (m) lf (m) |lf − l̂f |/lf
0.253 0.266 .04
0.622 0.633 .02
0.556 0.540 .03
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attention.
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