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The shape of a Mobius band

By L. MAHADEVAN AND JosSEPH B. KELLER

Departments of Mathematics and Mechanical Engineering, Stanford University,
Stanford, California 94305, U.S.A.

The shape of a Mobius band made of a flexible material, such as paper, is determined.
The band is represented as a bent, twisted elastic rod with a rectangular cross-
section. Its mechanical equilibrium is governed by the Kirchhoff-Love equations for
the large deflections of elastic rods. These are solved numerically for various values
of the aspect ratio of the cross-section, and an asymptotic solution is found for large
values of this ratio. The resulting shape is shown to agree well with that of a band
made from a strip of plastic.

1. Introduction

Invented by the German mathematician F. A. Mobius in 1858, the eponymous
Mébius band is the canonical example of a one-sided surface or non-orientable 2-
manifold. A physical model of it can be made from a sufficiently long rectangular
strip of paper by twisting one end through 180° and then gluing it to the other end.
Such models always have a characteristic shape. Our goal is to determine this shape
in terms of the dimensions of the strip and the elastic properties of the material of
which it is made.

Sadowsky (1930) first attempted to do this by formulating an energy minimization
problem for the band represented as an inextensible elastic shell. Although he did not
succeed, he did find an upper bound on the minimum energy by choosing a trial
shape. Later, Wunderlich (1963) was able to lower this upper bound by choosing a
different trial shape. This early work and related geometric aspects of Mobius bands
are described by Schwarz (1990).

Instead of following Sadowsky, we model the Mobius band as an elastic rod with
a rectangular cross-section. Its ends are joined together after undergoing one half-
twist relative to each other, and at equilibrium no external forces or torques act
on it. This equilibrium configuration is determined by the equations of the
Kirchoff-Love theory for the large deflections of bent and twisted elastic rods.
When supplemented by the appropriate kinematic relations, they lead to a twelfth
order system of ordinary differential equations with six boundary conditions at each
end of the rod.

This two-point boundary-value problem is formulated in §2. In §3 it is made
dimensionless and the two-fold symmetry of the band about a certain axis is used to
halve the interval over which the problem must be solved. An exact solution of the
problem for a rod with a square cross-section is presented in §4, together with a
numerical method for solving the problem for any aspect ratio of the cross-section.
It uses continuation with respect to the aspect ratio, and utilizes the exact solution
as its starting point. Graphs of the numerical results for various values of the aspect
ratio are presented. An asymptotic solution for large values of this aspect ratio is
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150 L. Mahadevan and J. B. Keller

determined in §5, and it is shown to be in good agreement with the results for large
finite aspect ratios. In §6, the elastic energy of the asymptotic solution is calculated.
The inextensible shell model is considered in §7. A method for the construction of a
developable surface associated with the asymptotic solution is given and an upper
bound on the energy of an equilibrated Mobius band is computed. It is seen to be a
considerable improvement on the bounds in Sadowsky (1930) and Wunderlich
(1963).

2. Formulation

We consider the equilibrium of a thin elastic rod subjected to no external forces or
couples. The balance of net forces and couples at every cross-section of such a rod
gives the six equations (Love 1927, pp. 387-388)

NO —N®74Tx® =0, 2

N® — T 4 NO7 = 0, (2

T, + N®x® — NOx® = 0, 2.
GO —GOT 4 He® —N® = 0, 2
GO — Hk® + GD7 4 NO = 0, 2
H,— GOx® 4 GO = 0, 2

Here s is the arc-length along the centre line of the rod, N (s) and N®(s) are the
components of the shearing force along the principal axes, 7T'(s) is the tension, GV(s)
and G®(s) are the components of the flexural couple along the principal axes, H(s)
is the torsional couple, kV(s) and «x?(s) are the components of the curvature of the
centre line along the principal axes and 7(s) is the twist of the rod. The principal axes
of the rod at the point s along it are oriented along the orthogonal directions about
which the moments of inertia of the normal cross-section achieve their maximum and
minimum values. Note that these equations are valid in a reference frame which is
convected along the centre line at unit velocity; this frame is aligned with the
orthogonal triad consisting of the tangent to the centre line and the principal axes
of the rod at every point along it.

The ordinary approximate theory of a naturally straight thin rod is a
generalization of Euler-Bernoulli beam theory. In it, it is assumed that the stress-
couples are connected to the curvature and the twist by the equations (Love

1927, p. 389) GO = EIVxk® GO = FIOx® | H = yJ7. 2.7)

Here F is the Young’s modulus and g is the shear modulus of the material of the rod,
I and I® are the principal moments of inertia of the cross-section of the rod and
pdJ is the torsional rigidity of the cross-section of the rod. The equations (2.1)—(2.7)
form the Kirchhoff-Love approximation in rod theory, in which warpage and shear
effects are neglected.

Some kinematic relations are required to describe the centre line of the rod and the
orientation of the cross-section at every point along it. These are most conveniently
expressed in terms of the Euler angles, i, 6 and ¢, of the tangent to the centreline.
The direction cosines with respect to the moving frame /, 7 and %, expressed in terms
of those with respect to the fixed frame I, m and =, are (Love 1927, p. 385)

i ~8,8,+C,C,C, C)S,+8,0,0, —8,C,7 /1
w) = |-s,0,-0,8,0, €,0,~8,8,¢, 8,8, [[m]. (28
n 8,0, 8,8, c, 1\n
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The shape of a Mdbius band 151

Figure 1. The Euler angles i, 6, and ¢ determine the orientation of the moving coordinate axes Z,
4, 2 relative to the fixed coordinate axes x,y,z. The tangent to the centreline of the rod is along
Z, and the principal axes of the cross-section are along & and .

Here, S, =sin(-) and C., = cos(*). This determines the orientation of the cross-
section at every point along the centre line as shown in figure 1. Then the coordinates
of the centre line of the rod with respect to a fixed basis, z, y and z, satisfy the first-
order ordinary differential equations (Love 1927, p. 413)

x, =sinfcosyr, y,=sinOsiny, 2z, = cosb. (2.9)

The Euler angles also enable us to write down the components of the curvature, and
the twist of the centreline, which describe the strain in the rod as (Love 1927,
p.- 386)

kW =0 sing—y sinfcosgp, «® =0,cosp+y,sinfsing, 7=¢,+y,cosb.
(2.10)

Upon substituting the expressions for GV, G® and H from equation (2.7) into
equations (2.4)—(2.6), we get six equations. Along with the equations (2.9) and (2.10),
they form a system of 12 first-order ordinary differential equations for the twelve
variables k), k® 7, NO N® T o 6, ¢, x, y and z as functions of s.

To specify the boundary-value problem completely, we need 12 boundary
conditions. Fixing the two ends of the rod at the origin of the fixed coordinate system
gives six conditions. Aligning the moving frame at one end of the rod, s = 0, with the
fixed axes results in three more conditions. Finally, by observing that the principal
axes of the moving frame corresponding to the other end, s =/, have undergone a
half-twist about the tangent to the centreline, we get another three conditions. By
adopting a configuration that avoids the polar singularities of the Euler angles at
6 =0 and 6 = &, we can write the boundary conditions as

z(0) =0, z()=0, ¥(0)=0, y()=2n,
y(0)=0, y()=0, 6(0)=3rn, 06() =3, (2.11)
20)=0, z()=0, ¢0)=0, ¢(I)=m.
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152 L. Mahadevan and J. B. Keller
This completes the formulation of the boundary-value problem for the equilibrium
configuration of the rod.
3. Simplification
To facilitate analysis, we simplify the equations by eliminating some variables and

scaling the rest to make them dimensionless. By using (2.4) and (2.5), we can
eliminate N and N® from equations (2.1)—(2.3). Next, we define the dimensionless

variables s=2mns/l, ¥=2nx/l, §=2my/l, z=2nz/l,
KD = k®/2m, &2 = k@12, T=1l/2n, t=TE/4nul, (3.1)
oa=EIV/uJ, pB=EI?/ul.
Then the twelfth-order system of equations for the variables kY, «® 7. ¢, 4, 0, ¢, «,
y and z becomes, upon dropping the bars for convenience,
akd) = — (1 =) (16?),+ (@ — 1) 72D + pre® + 1@,
pr® = (1—a) (kD) + (f—1) kP —arkd + tc®,
7, = (a—f) kP,
ty = —okWVkD — @D — (. — B) kW7,
Uy = (—kW cosp+ k@ sin ¢)/sin 0,
0, = kVsin g +«k® cos @,
¢, = (kP cosp—kPsing)/tan O+,
x, = sin @ cos Y,
- Yy =sinfsiny,

z, = cos 0. )

Observation of a model of the M&bius band shows that it has a two-fold symmetry
about an axis joining two points on the centreline. These points have a dimensionless
arc-length separation of m and have the minimum spatial distance between them.
Choosing them to be s = 0 and s = w, we need consider only the domain [0, n] for the
purposes of analysis. Then, the boundary conditions for the dimensionless variables
at the points s =0 and s = & are

2(0)=0, y0)=0, z(rn) 0,
20)=0, ¥(0)=0, () ¢(m) = im, (3.3)
0(0)=in, ¢(0)=0, «Pm)=0, «Pm)=0
The equations (3.2) together with the boundary conditions (3.3) constitute a
nonlinear two-point boundary-value problem.
Before outlining the solution procedure, we pause to consider some facts about a
physical model of the Mobius strip made of a thin sheet of paper. For a rod with a

rectangular cross-section of width 2a and height 2b, the flexural and torsional
rigidities are (Love 1927, p. 324)

0, 2(m) =
na

EIY =3Ea*h, EI® = iEb%a,

(3.4)

uJ = uab*(16/3—3.361b/a), a/b> 1.

In fact, the expression for uJ is very accurate for a/b > 3.
Therefore, the ridigity ratios « and g defined in (3.1) are given by

8(1+v)a? 8(1+v)
= = .5
= S16/3—3.361b/a)’ P~ 3(16/3—3.361b/a)’ (3-5)
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where v = (£/2u)— 1 is Poisson’s ratio.
Typically a/b ~ 500 for a sheet of paper or plastic. Hence,

ax 105(1+v), B~0.5(1+v). (3.6)

Since Poisson’s ratio v, lies in the range 0 < v < 0.5 for ordinary materials, (3.6)
shows that the dimensionless rigidity £, lies in the range 0.5 < £ < 0.75. We shall
calculate the solution only for the extreme values of this range, namely £ = 0.5 and
B =0.75. However, as (3.6) shows, we must consider large values of a.

4. Method of solution

For a rod with a square cross-section, we have a = b, so that « = . Then an exact
solution of the boundary-value problem (3.2) and (3.3) is given by

xy(s) =s8ins, y,(s) = L—coss, z,(s) =0, 6,(s)=1in,
Yols) =8, @ols) =35 &(s) = —cos(3s), «{(s) = sin (3s) (4.1)
%7 ty(s) = 0.

This solution corresponds to a very narrow Mobius band with a circular centre line
of unit radius and centre at (0, 1,0), lying in the xy plane.

When the symmetry o = £ is broken, so that a > S, the rod no longer stays in the
plane. Instead, it assumes the shape of a space curve with torsion different from zero.
Of course when a — # < 1, this space curve is very nearly circular. We exploit this fact
by using the circular solution (4.1) as the initial guess in an iterative procedure to
solve the boundary-value problem for « = £+ 4, where ¢ is a small quantity. Once the
solution for & = #+ ¢ has been found, we use it as the initial guess to find the solution
for a = #4248, and so on. This procedure constitutes a continuation method or
homotopy method with « as the continuation parameter.

At each step of the continuation scheme, we use COLSYS (Ascher ef al. 1983), a
numerical boundary-value problem solver, to compute the solution. It uses spline
collocation at gaussian points. A brief description of the method is as follows: a
nonlinear system of equations for the unknown B-spline coefficients is obtained by
forcing a collocation solution to satisfy the boundary conditions and the differential
equations at the Gauss—Legendre points in a previously defined mesh. A damped
quasi-Newton method is used to solve the nonlinear system iteratively, with a
starting guess as the first iterate. 4 posteriori error estimates are then used to refine
the mesh adaptively until the specified tolerances are met. The coefficients of the
collocation solution are stored to allow for the possibility of simple continuation. In
the absence of bifurcation and turning or fold points, as in our case, the continuation
algorithm simply involves solving a sequence of nonlinear problems. Then each
solution gives an initial approximation to the solution at the next step.

To follow the continuation path, we start with the exact solution for a = = 0.5
or a = f#=0.75 and increase a in steps of 0.1, solving a nonlinear problem at each
step. As @ becomes larger, we increase the step size. On a uniform mesh with 40
subintervals, the quasi-Newton method takes two iterations per continuation step
when the error tolerances on the coordinates x, y and z are 107%.

Figure 2a—c shows the orthographic projections of the rod solution on the three
coordinate planes for f = 0.5 and & = 0.5, 1, 5, 10 and 50 respectively. They trace the
evolution of the shape of the centre line of a band of given thickness as a function of
its width. Comparisons of the results show good agreement with physical M&bius

To(8) =
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y
0 1 2
y
Figure 2. The projections of the centreline of the rod on the three coordinate planes for # = 0.5 and
a=0.5 (- ), 1 (—-—), 5 (——), 10 (--—) and 50 ( ). (a) Projection on the xy plane. (b)
Projection on the zz plane. (c) Projection on the yz plane.
08} 08} (b) T
04l e
K L
0
—04¢
—0.8¢
0 3 6
s s
Figure 3. (a) The curvature k' (s) and (b) the corresponding flexural couple y(s) = ak®(s) for g =
0.5 and the same six values of a as in figure 2, i.e. a =0.5 (-++ o 1 (——), 5 (——), 10 (—-)
and 50 ( ).

bands of various widths; wider Mobius bands are further out of the plane than
narrower ones and approach a limiting shape. Figure 3a, b shows the corresponding
values of the curvature k¥ (s), and the flexural couple y(s) = akV(s), for # = 0.5 and
the same values of a.

The curves in figures 2 and 3 indicate that the shape of the centreline of the Mobius
band, its curvature in the stiff direction k™ (s), and the corresponding flexural couple
v(s), all converge to limiting values as a — c0. The limiting value of kV(s) in figure
3a appears to be kV(s) = 0, while figure 3b shows that y(s) = ak®(s) tends to a finite
non-zero limit. In view of these numerical results, we shall seek an asymptotic
solution of (3.2) and (3.3) for a > 1.

Proc. R. Soc. Lond. A (1993)
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Figure 4. The projections of the asymptotic solution for & > 1 on the three coordinate planes for
f = 0.5 (——). The projections of the solution to the exact equations for &« = 50 (—-—) and g =

0.5 are shown for comparison, but they are almost indistinguishable from the exact solution. (a) zy
plane. (b) zz plane. (c) yz plane.

5. Asymptotic solution for a > 1

We assume that for large o, the asymptotic form of kV(s, «) is y(s)/o and that the
asymptotic form of all other unknowns is independent of a. Thus
Y(s,a) ~ (), O(s,a) ~0,(5), P(s,a) ~ P (), a(s, @) ~ 2, (s), (5.1)
Y(s,2) ~ Yoo(s),  2(s,a) ~ 25,(8)-
We substitute (5.1) into (3.2) and equate the coefficients of «°, which are the terms
of highest order. Then, upon dropping the subscripts, we get the equations
= (f—1) (1kP@)+y1* + pr&?,
Pk = —2’)/ST+ (p— 1)7 2k ® —y1 + k@, 1 =Yk ®,
t, = — PcPk® —yP7, . = kP sin@/sin b, (5.2)
0, =k®cosp, ¢,=—k®Psing/tanb+r,
x, =sinfcosyy, y,=sinbOsiny, 2z, = coso.
These equations are just the limiting forms of (3.2) as a - c0. Equations (5.2) along
with the boundary conditions (3.3), with y(n) = 0 instead of kV(n) = 0, constitute
the boundary-value problem for the asymptotic solution.

To solve (5.2) and (3.3) numerically we use the same continuation procedure used
to solve (3.2) and (3.3). The configuration (4.1), with y,(s) = —fcoss/2 instead of

Proc. R. Soc. Lond. A (1993)
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Figure 5. Photographs of a Mébius band made of plastic when viewed along the three coordinate
axes. The centreline is shown as a dark line. The photographs correspond to the projections on the
(a) xy plane, (b) az plane, (c) yz plane and should be compared with the corresponding projections
of the computed solution shown in figure 4.

k§V(s) = —coss/2, suffices as an initial guess for the iteration scheme. On a uniform
mesh of 40 subintervals, and an error tolerance of 107% on the coordinates z, y and
z, the quasi-Newton method implemented in COLSYS takes six iterations to
converge to the asymptotic solution.

Figure 4a—c shows the projections of the asymptotic solution for = 0.5 on the
three coordinate planes. For comparison, the numerical solution of the exact
equations (3.2) and (3.3) with f = 0.5 and @ = 50 is also shown. We observe that the
asymptotic solution and the solution to the exact equations are indistinguishable to
graphical accuracy.

Three photographs of a Mobius band constructed from a sheet of plastic are shown
in figure 5 (a—c). The centreline is shown as a dark line. The projections of this line as
shown in the photographs, are very similar to the computed results shown in figure
da—c.

6. Energy
The energy stored in a bent and twisted rod is given in terms of its curvature, twist,
and by elastic
l
U= j HEID (kD (5))2+ EI® (k@ (5))? + pJ73(5)] ds. (6.1)
0
Using the variables, s,&,k?, o and B, we may write
U= (2rul/l)U,. (6.2)
Proc. R. Soc. Lond. A (1993)
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On dropping the bars the dimensionless energy is

Uy = f’r%[OL(K“)(S))2 + AP (5))* +7(s)] ds. (6.3)

0

To compute this integral, we make use of the existence of a conserved quantity. From
the third and fourth equations of (3.2), it follows that

ty+akVkP + PP + 717, = 0. (6.4)
On integrating, we get
£(s) + 3ok V()2 + B(kP(s))2 4+ 7%(s)] = H = const. (6.5)

Here H is the equivalent of the energy of a free rigid body in the kinetic analogy due
to Kirchhoff (Love 1927, §260).
Integrating (6.5) over the dimensionless length of the rod gives

27
j [+ 2o (k D)2+ 18(kP)2 + 472 ds = 2nH. (6.6)
0
For a closed self-equilibrated rod,
27
f t(s)ds = 0, (6.7)
0
so that
21
U, = f Yo (kM) +18(k?)2 4+ 172 ds = 2nH. (6.8)
0
In the asymptotic limit & > 1,k ~ 0, the energy is
271
Uy~ j AP )24+ 72]ds = 2rH g . (6.9)
0
The numerical solution computed in §5 yields H,, , = 0.6256 for v =0, and
H,gom = 0.7997 for v = 0.5. Therefore, using the expression from (3.4) for u.J when
a > b, we calculate the energy of the rod for v = 0 to be
U= (uab®/1)13.35n* = (Kab®/1) 6.67n?, (6.10)
and for v = 0.5 to be
U = (uab®/1)17.06n* = (Kab®/1) 5.69m*. (6.11)

This completes our analysis of the rod model of a Mébius band, and we now
consider the shell model.

7. Thin inextensible shells

A Mobius band made from a flat strip of paper may be viewed as a thin elastic shell
in equilibrium with no external forces acting on it. Since paper is almost inextensible,
the elastic energy of deformation is due to bending alone. It can be written as
4nab®E[3(1 —v*) ]!V, where the dimensionless energy V is given by

47mj j %(u, s) duds. (7.1)
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Here £ is the Young’s modulus for paper, 2b is the thickness of the paper, [ is the
length of the strip, 2a is its width, and &(u, s) is the mean curvature of the middle
surface of the band. The equilibrium configuration of the band is determined by the
requirement that V be stationary with respect to small inextensible variations. The
shape will be stable if V is a local minimum in this space of variations.

Since the band is a developable surface, it is completely determined by its centre-
line and the generators of the surface at every point along it. Let the angle between
the generator and the tangent to the centreline at the point s along it be denoted by
£(s). Then the two-dimensional integral (7.1) can be reduced to a one-dimensional
integral along the centreline and rewritten as (Wunderlich 1963).

I ["[k%(s)+w?*(s)]*sin? & {sin'2 £+ ags] ds

a m 0 K2(S) gs Sinzg_a’gs

(7.2)

Here «(s) and w(s) are the curvature and torsion of the centreline of the band, and

&(s) is related to them by
&(s) = arctan (k(s)/w(s)). (7.3)

It is convenient to use the dimensionless variables §= 2ns/l, K = «l/2n and
@ = wl/2m to rewrite (7.2), with overbars omitted, in the following form:

b [PFKA(s)+ wP(s)]Psin®E | [sin?E4-27mal E,
i, ew g Mawe—smare | e
It is necessary that £(s) satisfy the condition
[sin?&(s)| > 2mal™Y&,(s)] (7.5)

to preclude the possibility that the generators intersect each other within the band.
The variational problem consists of finding the middle curve that makes V, given by
(7.4), stationary among all closed curves of length / for which the corresponding band
has one half-twist.

The absolute value of the factor

g 1sin*EIn [(sin® £+ 2mal ' £) (sin? § —2mal 1E,) 1)
in the integrand in (7.4) is greater than or equal to 4mal™'. Therefore,

V>fWﬁ@+wwwd

0 K*(s)

s=V,. (7.6)

In fact, V, is the asymptotic form of the energy for small a/l, i.e. for a narrow band.
Sadowsky (1930) constructed a developable surface with one half-twist, not in
equilibrium, for which V, = 7.5n. Later Wunderlich (1963) constructed one, also not
in equilibrium, for which V, = 6.763n. Therefore, the dimensionless energy of a
narrow Md&bius band at equilibrium V¢, satisfies

Ve < 6.763m. (7.7)

We shall obtain a smaller upper bound on V. To do so, we consider the centreline
of the rod as given by the asymptotic solution in §5. The dimensionless curvature and
torsion of the centreline, x(s) and w(s) respectively, are

k(s) = kD(s), w(s) =7(s). (7.8)
Here, «?(s) and 7(s) are the curvature and twist of the centreline corresponding to

Proc. R. Soc. Lond. A (1993)
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b

o 3 6 0 3 6
s s
Figure 6. (@) The curvature «(s) and (b) the torsion w(s), of the centreline corresponding to the
asymptotic solution with a > 1 and g = 0.5.

the asymptotic solution (see Appendix A). Figure 6 shows the curvature and torsion
of the centreline for the Poisson’s ratio v = 0, i.e. f = 0.5. We observe that at s =0
and s = 27, the curvature vanishes but the torsion is non-zero. Near these two points
&(s), given by (7.3), is very small while £,(s) = (k* +w?®) ™ (k,0 —w k) is moderately
large. Therefore the inequality (7.5) is not satisfied in the domains where the
generators intersect within the band, namely [0, s,] and [21 —s,, 2r]. Here s, is given
by the solution of the equation

sin*{(sy) = (2ma/l) £(s,)- (7.9)

In fact this is the condition for neighbouring generators at a point s, along the centre-
line to intersect at the edge of the band of width 2a.

To allow for the construction of a continuous closed developable surface, we
replace the centreline computed in §5 by a ‘helix’ in the domains [0, s,] and
[21 — s, 2n]. This curve is assumed to have a linearly varying curvature and a
linearly varying torsion and is determined by the equations

_ {K(80>3/307 5€[0, 0]

<) = K(2m—5,)8/(2M—s,), SE[2M—s,,2m], (7.10)
_ (8) 8/, se[0,5,]

wis) = {w(2n—so)s/(2n—so), se[2m—s,,2m). (7.11)

The generators of the associated developable make a constant angle £(s) = arctan
(k(sy)/w(s,)) with the tangent to the centreline and do not intersect each other
anywhere. When patched together with the existing developable surface on the
domain [s,, 2 — s, ], it yields a surface with one half-twist that we expect to be a good
approximation to the actual Mobius band.

Next, we rewrite the dimensionless energy of a narrow Mdbius band, given by
(7.6), as

V, = Vi+ V2, (7.12)
where
V= jzn_sowd& (7.13)
5 K*(s)
V2 = 2J8°st. (7.14)
0 K*(s)

Proc. R. Soc. Lond. A (1993)
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Table 1. The energies V and V,, corresponding to the asymptotic solution for v =0

a/l EN K(8) w(S,) 14 v

n

0.05 0.5027  0.9615  1.1939 5.20m 4.95n
0.10 0.6912  1.3287 1.1261 4.6971 4.231
0.15 0.8796  1.5240  0.9382 4.24n 3.63m

Table 2. The energies V and V,, corresponding to the asymptotic solution for v = 0.5

a/l Sq K(8y) w(sy) V |4

n

0.05 0.5027 1.0440  1.2857 5.08n 4.791
0.10 0.6912  1.3287 1.1261 4.41n 3.92n
0.15 0.8796  1.5240  0.9382 4.07n 3.26m

Both integrals depend on s, ; V}, is the energy of the surface whose centreline is given
by the asymptotic solution and V32 is the energy of the surface associated with the
curve given by (7.10) and (7.11). To find s,, we first evaluate £(s) for the centreline
of the asymptotic solution using (7.3). Then we solve (7.9) numerically for s, and find
k(s,) and w(s,) using (7.8). We evaluate V), numerically as a Riemann sum, and V%
analytically by substituting (7.10) and (7.11) into (7.6). Finally, we use (7.12) to
compute V.

Similarly, the dimensionless energy of a wide Mobius band, given by (7.4), is
written as a sum of integrals over the domains [s,, 2n—s,] and [0, s,] and evaluated
by following an identical procedure. In table 1, we show V, and V for some values of
a/l, using the asymptotic solution when the Poisson’s ratio v = 0. In table 2, the
corresponding values are shown when v = 0.5.

We note that V>V, as (7.6) shows, and as a/l is decreased, V approaches V,,.
Furthermore, V, is much less than the bound given by (7.7). The energy V shown in
tables 1 and 2 is an upper bound on the actual energy of an equilibrated M&bius band
of given a/l, and is probably close to it.

Finally we compare the upper bound EKab?® I *[4V/3n(1—v?)] on the energy of the
shell with the energy U of the rod, expressing each in units of n?£ab®('. For the
narrowest band listed in table 1 we have a/l =0.05, v =0 and V = 5.20n so the
energy is 4(5.20)/3 = 6.93, while for the rod with v = 0, (6.10) yields 6.67. Thus for
v = 0 the shell energy is just 4% greater than the rod energy. The corresponding
energies for v = 0.5 are 9.03 for the shell (from table 2) and 5.96 for the rod (from
(6.11)). This discrepancy is a consequence of the different hypotheses underlying the
two theories, which difference is unimportant when v = 0.

Appendix A. The curvature and torsion of the centreline

The equations of equilibrium for a rod, as presented in §2, are valid in a frame of
reference that is convected along the centreline. The structure of the cross-section of
the rod makes it most convenient to choose a frame that consists of the principal axes
of the cross-section and the tangent to the centreline of the rod. This frame, which
we shall call the rod frame, is in general, not the same as the Frenet frame consisting
of the normal, the binormal and the tangent associated with the centreline.
Therefore the curvature components and the twist as measured in the rod frame are
not the same as the curvaturc and torsion as measured in the Frenet frame.
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The curvature of the centreline «(s) is given by
K(5) = [(K V() + (kD (s) ] (A1)

Here k¥ (s) and k®(s), given by the first two equations in (2.10), are the components
of the curvature in the rod frame. Also, the torsion of the centreline w(s) differs from
the twist 7(s) given by the third equation in (2.10). This may be seen easily in a simple
example: a thin wire that is twisted and straight has twist but no torsion.

In the asymptotic case, kV(s) ~ 0. From (A 1) it follows that k(s) = k®(s). Thus
the curvature vector lies along the «® principal axis, which is coincident with the
binormal. Then the rod frame and the Frenet frame are coincident everywhere along
the centreline. As a consequence the twist of the centreline is identical with its
torsion, thus justifying (7.8).

Appendix B. A lower bound on V,

We shall derive a crude lower bound on the dimensionless energy of a narrow
Mobius band. For a non self-intersecting smooth closed space curve with curvature
k(s), projected onto a fixed plane oriented so that the projection has no self
intersections

K,(8) = k(s) cos(s). (B 1)

Here «,(s) is the curvature of the planar projection of the space curve and #(s) is the
angle that the osculating plane to the curve makes with the given plane. For a
smooth planar closed curve with curvature «,(s) without any self-intersections

fzn Kp(s)ds = 2m. (B 2)

0

Upon substituting (B 1) into (B 2), we get

Jw k(8) cosy(s)ds = 2m. (B 3)
0
Since k(s) = 0 and |cosy(s)| < 1, we have
Fﬂ k(s)jds = 2m. (B 4)
0
Therefore, using (B4), we get
fzn k2(s)ds = Jm [(k(s)—1)*+2k(s)—1]ds

0 0

= J-zn [k(s)—1]>+2n

This provides a lower bound on V,,.
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