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We consider the sticking of a fluid-immersed colloidal particle with a substrate coated by polymeric

tethers, a model for soft, wet adhesion in many natural and artificial systems. Our theory accounts for the

kinetics of binding, the elasticity of the tethers, and the hydrodynamics of fluid drainage between the

colloid and the substrate, characterized by three dimensionless parameters: the ratio of the viscous

drainage time to the kinetics of binding, the ratio of elastic to thermal energies, and the size of the particle

relative to the height of the polymer brush. For typical experimental parameters and discrete families of

tethers, we find that adhesion proceeds via punctuated steps, where rapid transitions to increasingly bound

states are separated by slow aging transients, consistent with recent observations. Our results also suggest

that the bound particle is susceptible to fluctuation-driven instabilities parallel to the substrate.
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The dynamics of interfacial attachment in a fluid
medium, mediated by specific adhesive bonds, is of interest
and applicability to several physical and biological
systems. Although details regarding the microscopic struc-
ture of tethers, distribution of attachment sites, and geome-
try of the substrates do vary greatly, the essential physics
involved is common to various phenomena including the
coagulation of subunits in biochemical processes [1], bind-
ing using DNA covered nanoparticles [2], aging of a stuck
colloid [3], tethering and adhesion of cells [4–8], and the
capture efficiency of immersed, sticky surfaces [9]. In
these scenarios, substrates come into close proximity,
allowing the longest polymeric tethers to provide the initial
attachment between substrates. This initial attachment
draws the two substrates closer, draining the intervening
fluid out and allowing shorter polymeric tethers to them-
selves provide further attachment. Here we explore this
generic attachment process as a function of the basic
geometric, structural, and kinetic parameters governing
the process.

A minimal model of the phenomena may be idealized in
terms of a fluid-immersed spherical particle of radius a that
can stick to a flat, rigid substrate grafted with adherent
elastic binders, illustrated in Fig. 1(a). The fluid is assumed
to have a viscosity �, density �, and temperature �, with
the particle at a distance ½aþ h0ðtÞ� from the rigid sub-
strate, as shown in Fig. 1(b). The adherent binders are
idealized as polymers with one end attached to the sub-
strate and the other capped by a sticky head of radius ab.
We model each binder as a linear Hookean spring of stiff-
ness Ks and mean rest length ‘ [10,11]. When subject to
thermal fluctuations, the binder heads may eventually con-
tact the particle and stick (here we assume that the reaction
is diffusion limited), exerting an elastic force on the parti-
cle. If binding events are rare and the mean rest lengths of

tethers are well spaced, then the particle may move towards
the substrate in a stepwise manner, where long intervals
with relatively little motion are punctuated by short busts
of transitions to more bound states closer to the substrate;
indeed, this phenomenology of punctuated aging is
suggested by recent experiments [3].
Owing to the large aspect ratio of the gap between the

colloid and the substrate, the viscous drag on the sphere is
dominated by lubrication forces and is greater than the
viscous drag on the adhesive molecule provided a=h0 �
102 � 1 and a=ab � 104 � 1, respectively, as suggested
by using typical values from the cited literature.
Additionally, this disparity in sizes allows us to neglect
the thermal agitation of the particle while retaining the
fluctuations in the binder lengths. In the limit where the
areal density of bonds, n0, is low (typical values being
n0‘

2 � 10�9 � 1), the attached binders do not impede the
flow of fluid [12–14].

(a) (b)

FIG. 1 (color online). (a),(b) Schematic of the system: The
center of the particle of radius a lies a distance aþ h0ðtÞ above a
substrate. The close-up on the right shows a two-family system,
with the rest lengths ‘1 and ‘2. (c) The binding affinity of a
tether, kþ, follows from a Kramer’s analysis, saturating when
binding events are very likely.
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Two additional simplifications allow us to focus on the
dynamics normal to the substrate and ignore tangential
displacements of the settling sphere. First, we neglect
the effect of the shear flow on the mean rest length of the
adhesive bonds. Second, we neglect the shearing effect of
the mean flow on the binders, thus causing them to bind at
an angle to the vertical. This is reasonable provided the
torque due to thermal fluctuations dominates the torque on
the binder due to the streaming flow. For the shearing flow
to have negligible effect on the statistical properties of
the bonds, we require _��‘=� � 1 with � being the char-
acteristic stiffness (a mean field value) of the bonds and _�
being a mean shear rate. Here we assume that the rest
length of the tethers is not modified by the flow and, vice
versa, that the flow is not modified by the tethers.

Since the motion of the particle towards the substrate
drives the fluid out of the intervening gap, the effect of
inertia is quantified via the Reynolds number based on the
gap size Reh0 � �ðdh0=dtÞðh0=aÞ2a=� � 1. The effect of

inertia at the colloid scale Re � �ðdh0=dtÞa=� is also
typically less than unity. For a neutrally buoyant colloidal
particle at height

hðtÞ ¼ h0ðtÞ þ að1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2=a2

q
Þ (1)

(r being the radial coordinate) above a substrate that is
decorated with Hookean tethers (spring constant Ks)
parametrized by their rest length ‘ and number density
nð‘; tÞ, the equation of motion is

6��a2

h0

dh0
dt

þ 2�Ks

Z

‘
d‘

Z a

0
nðr; ‘; tÞðh� ‘Þrdr ¼ 0:

(2)

Here the first term in Eq. (2) is the leading order force on
the sphere that models the increasing difficulty in draining
fluid out of the gap as h0 ! 0 [15], while the second term
characterizes the elastic forces on the colloid due to the
bound tethers [10,11]. In many biological systems, the
distribution of lengths of the tethers is bimodal [11], and
so here we study a two-family system of binders for which

nð‘; tÞ ¼ n1ðtÞ�ð‘� ‘1Þ þ n2ðtÞ�ð‘� ‘2Þ; (3)

niðtÞ being the areal density of bound bonds of the ith
family attached at a height h at time t and �ðsÞ is the
Dirac delta function. To close Eqs. (1)–(3), we need to
specify equations for the binder dynamics. Assuming first-
order kinetics for the attachment and detachment process
[10,11,16], we write

dni
dt

¼ konðni;0 � niÞ � koffni; (4)

where ni;0 (i ¼ 1; 2) is the total area density (attached

plus detached) of bonds, kon is the attachment rate, and
koff is the detachment rate. Given some initial conditions,

Eqs. (1)–(5) constitute a set of coupled, nonlinear
equations for the height h as a function of n1 and n2.
Since the particle is being drawn closer to the substrate

rather than being pulled away [11,17], we choose the off
rate to be a constant and explore the consequences of
a displacement dependent attachment rate. Provided the
settling rate is slow, one may assume that binders attach at
a rate that depends solely on the distance the heads have to
traverse in order to stick to the particle. In this limit, kon
depends on the extension hðtÞ � ‘. By adopting a Kramers-
style argument [16,18], in the limit of large extension

h � ‘þ ð2kB�=KsÞ1=2 the asymptotic approximation to
the mean first passage time and thus kon yields
(Supplemental Material, Sect. I [19])

kon � Db

ffiffiffi
2

p ðh� ‘Þ
�
Ks

kB�

�
3=2

e�ðKs=2kB�Þðh�‘Þ2 ; (5)

Db being the diffusion constant of the binder head. For
small extensions, the asymptotic expression (5) is not
valid. We note that the maximum value kmax

on is attained

at h ¼ ‘þ ðkB�=KsÞ1=2. To obtain a tractable, continuous
expression, we set kon ¼ kmax

on for h � ‘þ ðkB�=KsÞ1=2.
Typical values for parameters appearing in Eqs. (1)–(5)

are a � 10�6 m, � � 10�2 Pa s, n0 � ð107–109Þ m�2,
ab � 10�10 m, ‘ � 10�8 m, and Ks � ð0:01–10Þ 	
10�3 Nm�1. To make sense of these values, we introduce
the dimensionless variables H � h=‘1, R � r=a, T �
tkmax

on , Li � ‘i=‘1, and Ni � ni=ni;0. Then, Eqs. (1)–(5)
can be written as the following dimensionless versions:

�

H0

dH0

dT
¼

Z 1

0
½N1ð1�HÞ þ N2ðL2 �HÞ�RdR; (6)

HðR; TÞ ¼ H0ðTÞ þ qð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p
Þ; (7)

and

dNi

dT
¼ KðiÞ

onðRÞð1� NiÞ � KoffNi ði ¼ 1; 2Þ; (8)

where the attachment rate constants in dimensionless

variables are KðiÞ
on ¼ 1 for H � ð 1

2	Þ1=2 þLi and KðiÞ
on ¼

½2	ðH �LiÞ2�1=2e�	ðH�LiÞ2 for H > ð 1
2	Þ1=2 þLi. Three

important dimensionless parameters appear in Eqs. (6)–(8):
The parameter q � a=‘1 (typical values � 102 � 1)
characterizes the finite curvature of the particle, and the
parameter 	 � ð12Ks‘

2
1Þ=kB� controls the attachment

rate and is the thermal energy, while the parameter
� � 3�ðn1;0Ks‘1Þ�1ðkmax

on Þ contrasts the viscous time

�=ðn1;0Ks‘1Þ and the chemical limiting binding time

ðkmax
on Þ�1. Of special relevance is the limit � � 1, which

corresponds to a system where the rate limiting step is the
time for viscous drainage of the fluid from between the
particle and the substrate. Finally, � � n2;0=n1;0 is the ratio
of the number density of total bonds of the two families and
thus a measure of the contrast in grafting densities.
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The sticking process is initiated with the base of the
sphere at the rest height of the longest tethers chosen here
to be family 1, i.e., Hð0Þ ¼ 1, with no initial bonds, so that
N1ð0Þ ¼ N2ð0Þ ¼ 0. We start with a consideration of the
case of a single family of irreversible bonds so
that N2ðR; TÞ ¼ 0 and Koff ¼ 0. Then, solving the system
(6)–(8) numerically shows that the kinetics of particle
capture has two regimes—a rapid settling regime (I)
followed by a much slower aging regime (II) as shown in
Fig. 2(a). In the settling regime, bonds attach over a
characteristic region and the colloid descends rapidly to-
wards the surface. This phase terminates at a height when
central tensile forces, which push the sphere away from the
substrate, balance the dominant peripheral compressive

forces over a region with vertical extent 	�ð1=2Þ. A scaling

estimate of this height gives ð1�H

0Þ � 	�ð1=2Þ. The char-

acteristic region of adhesion over which the initial binding

occurs is R
 � q�ð1=2Þ	�ð1=4Þ (Supplemental Material,
Sect. II [19]). Within this region, all bonds are in their
bound state. Outside this region, bonds attach very
slowly—a larger fraction binding as time increases. The
region of adhesion grows very slowly, as the bonds need to
make very long excursions compared to their rest length to
be able to stick to the particle, and the balance between

the attractive forces due to slowly attaching bonds and
viscous resistance to fluid drainage determines the settling
speed (regime II). We find that the initial stages of
regime II may be described analytically (Supplemental
Material, Sect. II [19]). Past the initial rapid descent, the
sphere begins to descend slowly with the sphere height
decaying as

H0 � H

0 expð�t=
agingÞ; with 
aging � q�	 (9)

setting the characteristic time scale of the aging phase. This
scaling for the decay rate is valid so long as the radius of

adhesion is less than
ffiffiffiffiffiffiffiffiffiffiffiffi
H0=q

p
. The ultimate dynamics once

binders attach at R � ffiffiffiffiffiffiffiffiffiffiffiffi
H0=q

p
is, however, even slower

than the above equation suggests (Supplemental Material,
Sect. II [19]), and the sphere makes physical contact with
the substrate only as T ! 1 due to the divergence of the
viscous drag term. In the final state, the binders exert a net
positive force pushing the sphere towards the surface, and
hence energy has to be expended in order to dislodge the
sphere. This final bound state can be understood as the end
result of a series of differential stages. At each stage of
the descent, additional bonds must attach to the periphery
(at increasingly larger R) and then draw the colloid closer
to the substrate below until the elastic forces are in
approximate balance with the adhesion radius attaining a
certain value. The sphere waits (albeit, momentarily) and
then executes the next stage once bonds attach again
beyond the adhesion region established previously.
The settling scenario changes quite dramatically if

one allows for even a small detachment rate. In Fig. 2(b),
we show that the tail of the bound tether distribution now
has a cutoff at H ¼ Hcutoff determined by the detachment

rate Kð1Þ
on � e�	ðHcutoff�1Þ2 ¼ Koff , thereby modifying the

equilibrium height to a nonzero offset that is

Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij lnKoffj
p Þ provided that q � 1. In the absence of any

other influences, contact between the particle and substrate
is avoided, and the particle settles down as a nonzero
height.
Inclusion of additional families of tethers with different

equilibrium height distributions leads to a series of punc-
tuated regimes of adhesion. In each regime, the slow aging
process at the previous level results in the colloid being
brought into reach of the shorter families of tethers. Their
binding results in the rapid motion of the colloid before
slowing and a subsequent repeat of the same process.
Figures 3(a)–3(c) display the effect of having a second
family of bonds with ‘2 < ‘1 with the bonds attaching
irreversibly. Four distinct regimes are seen—the first
corresponds to the initial settling regime for the single
family case; the second is the aging dynamics associated
with the first family, drawing it towards the substrate
slowly. When H0 � ‘2 þ 1=

ffiffiffiffiffiffiffi
2	

p
, a strong transition in

the particle position is seen—evidenced by the knee in
Fig. 3(a) at a time T � T
. An increasing number of shorter
bonds from the second family bind onto the particle, and

(a)

(b)

FIG. 2 (color online). The height of the particle, H0, as a
function of time T for a one-family binder system with
N2;0 ¼ 0, � ¼ 100, 	 ¼ 100, q ¼ 500, and H0ðT ¼ 0Þ ¼ 1.
(a) Koff ¼ 0: An initial steep descent to a critical height is
followed by a slow aging process with Heq decaying exponen-

tially to 0. (b) Koff � 0: Unlike in (a), the region of adhesion is
bounded and the particle settles to a nonzero equilibrium height.
The insets show the evolution of attached bond density when
there is no unbinding and where there is some unbinding.
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the exponentially slow decay transitions to a more rapid
descent. An estimate of the time interval T
 may be ob-
tained when the expression for the settling rate—Eq. (9)—
is valid long enough for the particle to descend to a height
H � L2 þ 1=

ffiffiffiffi
	

p
, when the second set of adhesive bonds

start to bind. The time T
 is then given by (Supplemental
Material, Sect. II [19])

T
 � q�	

��������ln
L2 þ 1=

ffiffiffiffiffiffiffi
2	

p
H


0

��������: (10)

Our analysis has led to a simple picture for the kinetics
of adhesion as limited by the dynamics of fluid drainage
between the particle and the substrate. Our simple model
for adhesive capture relates microscopic features such as

kinetics and elasticity of individual adhesive bonds to
macroscopically measured settling rates and aging times.
We observe punctuated motion of the particle towards the
substrate, which is an outcome of rare binding events. Such
a punctuated aging process has been recently observed and
been hypothesized to reflect a small number of metastable
minima accessible to the system during attachment [3] in
agreement with our interpretation. Although the punctu-
ated aging process investigated here is due to families of
binders with distinct rest lengths, similar effects would
follow if the tethers were nonlinearly elastic. Additional
effects due to steric hindrance and hydrodynamic or elec-
trostatics effects on tether motions may also alter the
dynamics [12,13], but we expect the gross features of the
process to be preserved nonetheless.
We conclude with a brief discussion of the elastic re-

sponse of the adhesively bound particle that stores elastic
energy in the bonds which are compressed at the point of
closest approach and extended away from it. This nonun-
iformity should lead to a nontrivial transverse linear com-
pliance of the adhered particle when the sphere is subject to
small amplitude, high frequency transverse displacements
(Supplemental Material, Sect. III [19]). As the particle
ages, it is unstable to small transverse displacements,
whence the effective linear elastic compliance of the sys-

tem, Keff�2�
P

i

R
a
0Ksniðr;tÞðh�‘i

h Þrdr, is seen to change

sign and become negative as the sphere gets closer to the
substrate, as shown in Fig. 4 for both the case when the
binders may detach or not. The physical mechanism
underlying this linear instability is that attached binders
near the center line are compressed while those attached
far away are extended, so that the particle can move
sideways and eventually has a soft mode associated
with movement in a circle around the energetic minimum
due to a competition between tether shear and compres-
sion. Incorporation of higher order terms and allowing
bonds to attach at an angle to the vertical regularize this
behavior. A careful experimental test of our theory is an
obvious next step.
Funding for this research was provided by NIH via Grant

No. 1R21HL091331-02 and the MacArthur Foundation
(L.M.).
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FIG. 3 (color online). Adhesion dynamics due to a two-family
system for parameters N2;0=N1;0 ¼ 100, Koff ¼ 0, � ¼ 100,
	 ¼ 100, L2 ¼ 0:25, and q ¼ 500. (a) Height H0 versus time
T. (b),(c) N1 and N2 as a function of radial distance from origin,
R, and time T, respectively.
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FIG. 4 (color online). The transverse linear elastic compliance
Keff due to the linear elasticity of attached binders for (a) koff ¼
0 and (b) koff > 0. As the sphere settles, the sign of the resultant
elastic force changes. Parameter values are the same as in Fig. 2.
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I. CALCULATION OF THE FIRST PASSAGE TIME

Consider the motion of the binder (bond) head in a parabolic energy potential well where the

energy U(x) is a function of the reaction co-ordinate, x - in this case the (vertical) extension relative

to the rest length ℓ. We choose to measure energies relative to x = 0 so that U(0) = 0. When the

binder reaches a height x0 such that U(x0) = U0, the well terminates - this point corresponds to

the binder head attaching to the sphere. For attachment on the spherical colloid at a height h(t),

we require x0 = h − ℓ. A thermally agitated, unbound bond in such an environment will spend

most of its time inside the well and primarily close to the minimum. Every now and then however,

it might acquire a large enough kick due to random noise that enables it to scale the barrier. The

flux or current of bonds that escape the barrier is thus related to the first passage time for escape.

To calculate this flux, we use two simplifications. We first posit that the binders do not spend

time in reorientations required to attach when at the surface i.e, they attach immediately when

encountering the surface. Thus the time needed for the chemical bond to form with the surface

is assumed to be very small compared to the diffusive time scale of the head. The situation in

our case is additionally complicated by the fact that the surface of the colloid is not stationary

but is in motion. Close to the rigid substrate the particle settles slowly and its velocity ḣ0 is

small relative to the rapidly fluctuating velocity of the unbound binder heads. The diffusion of the

colloid is itself quite small compared to that of the much smaller binder heads. In this scenario,

we can assume that the sphere descends negligibly in the time it takes for the binder heads to

fluctuate appreciably. Using these two approximations, the escape flux may be used to obtain the

attachment rate kon for a binder to attach on the sphere at radial position r.

To obtain an analytical expression for the rate we calculate the steady solution to the Fokker-

Planck equation governing the probability of finding a single binder with extension x0. The binder



2

heads are restricted to move vertically and in this distinguished single dimension, the appropriate

Fokker-Planck equation for the probability of finding a binder with extension x is

∂P

∂t
= Db

∂2P

∂x2
− ∂

∂x

(

F (x)

η
P

)

.

Here resistivity, η, arises due to the interaction of the binder molecule with the viscous surrounding

fluid. Db is the diffusion constant associated with a single adhesive binder molecule - in our case

the binder head - of radius ab in the ambient fluid at a given temperature. Since ab ≪ ℓ, we ignore

the change in the resistivity due to the presence of the wall. Finally, the binder head is assumed

to move in a parabolic potential that exerts a force F of the form

F = −∂U

∂x
= −Ksx.

Here K is the stiffness in the linear limit valid for Hookean springs.

Consider now the steady solution to the Fokker-Planck equation that satisfies the boundary

conditions

P (x = x0) = 0, and
∂P

∂x
(x = x0) = j0.

Integrating once and using normalization factors we obtain an expression for the escape flux, j0 as

a function of x0:

1

j0(x0)
=

1

Db

∫ x0

0

exp (
−Ksx

2
1

2kBθ
) dx1

∫ x0

y
exp (

Ksx
2
2

2kBθ
) dx2.

Considering large extensions 1
2
Ksx

2
0 ≫ kBθ allows us to localize the integrals and evaluate them

asymptotically. The inner integral gets its dominant contribution from the region around x0 while

the outer integral is mainly derived from evaluating around 0. The inner integral may be estimated

as

∫ x0

y
exp (

Ksx
2
2

2kBθ
) dx2 ∼

∫ 0

−∞
exp (

Ks(x0 + q)2

2kBθ
) dq

∼ kBθ

Ksx0
exp (

Kx20
2kBθ

).
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The outer integral is approximately

∫ x0

0

exp (
Ksy

2

2kBθ
) dy ≈ (

kBθ

2Ks
)
1

2 .

Combining these expressions, we obtain the dimensional form of equation (5) of the main text

1

j0(x0)
≈ 1

Db
(
kBθ

2Ks
)
1

2 (
kBθ

Ksx0
) exp (

Ksx
2
0

2kBθ
)

II. ESTIMATES OF THE REGION OF ADHESION, Rc AND TRANSITION-TIME, T ∗.

The end of the settling phase in figure (2a) occurs when the majority of forces in the system are

balanced and enough time has not elapsed for bonds to start attaching outside the near-contact

region. Attached bonds are extended differently according to the value of R, thus exerting a

different force on the sphere. It is clear that bonds within R = 1 are compressed while bonds at

the periphery beyond the radius of adhesion, Rc, are extended. Said more quantitatively, there is

a narrow region, 1 < R < Rc, where bonds attach efficiently with Kon = 1. The dimensionless

expression for Kon makes clear that the vertical extent of this region is 1/
√
2β, which naturally

defines Rc according to

1 +
1√
2β

= H0 +
qR2

c

2
. (SI-1)

obtained using the paraboloid approximation to the sphere surface. This yields one relationship

between H0 and Rc. A second relationship follows from the approximate force balance between

the compressed and extended bonds

∫ 1

0

(1−H)N1 R dR ≈
∫ Rc

0

(1−H)R dR = 0. (SI-2)

Note that within R < Rc all bonds are bound, N1 = 1. Combining the two equations above yields

approximate expressions for the height at which the rapid descent ends and the extent of adhesion,

(1−H0,c) ∼ β−1/2, and Rc ∼ q−1/2β−1/4. (SI-3)

Said another way, were the attachment rate a simple step function, Kon = 1 for H ≤ ( 1
2β )

1

2 + 1

and Kon = 0 for H > ( 1
2β )

1

2 + 1, then H0,c would be the rest height of the particle. The settling

phase is defined as the phase during which the particle settles to this new height, H0,c.
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The question that follows is of course what happens after this initial settling phase? Consider

the dimensionless statement of force balance for a single family of bonds

α

H0

dH0

dT
=

∫ 1

0

N(1−H)R dR, (SI-4)

and lets consider the geometry of the attachment process as the adhesion radius slowly grows. The

lubrication approximation expressing the height H(R) as a quadratic function of R is valid close to

the centerline. Far from the center R ≫
√

H0/q, where one may no longer use the simple parabolic

approximation for the surface. As the colloid descends, one expects three distinct settling regimes

that are different due to a combination of geometry and kinetics. In the first, bonds attach only

in the (inner) region close to the center and cause the sphere to descend rapidly. In the second,

this rapid descent ends and the adhesion extent now very slowly increases with time as bonds

start to attach at heights significantly larger than their rest length but still at radial positions

R <
√

H0/q. The final aging process corresponds to bonds attaching near the edge of the sphere

where
√

H0/q < R < 1.

Following on from the discussion above, let us decompose the integral into three regions:

∫ 1

0

dR =

∫ R|H=1

0

dR+

∫ Rc

R|H=1

dR+

∫ 1

Rc

dR.

Utilizing the parabolic approximation for a sphere H = H0 + qR2

2
, we have dH = qRdR thus

allowing the integral to be expressed as

αq

H0

dH0

dT
=

∫ 1

H0

(1−H)dH +

∫ 1+ 1
√

2β

1

(1−H)dH

+

∫ H0+q

1+ 1
√

2β

N(H0, R)(1 −H)dH (SI-5)

In the first two integrals N = 1. In the last integral represents we have made explicit N ’s de-

pendence on both R and H0 and thus ultimately on time in two senses - the change in H0 as the

sphere settles and more subtly the intrinsic dependence on time that arises as a result of waiting

for the binder heads to execute the first passage past the barrier. The first two integrals may be
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evaluated to yield

αq

H0

dH0

dT
=

1

2
(1−H0)

2 − 1

4β
+

∫ H0+q

1+ 1
√

2β

N{H,T}(1 −H)dH. (SI-6)

That is, the compressed springs in the center behave as an effective nonlinear spring but with an

R independent stiffness. Balancing the first two integrals recovers our expressions for the end of

the settling phase, H0,c and Rc derived above and described briefly in the main text.

The third integral controls the ultimate dynamics of the aging colloid and in the remainder of

this section, we will attempt to approximate its value. To convince ourselves that the final state

of the system has the particle making contact with the substrate at infinite time, we evaluate the

force imposed on the colloid if all the peripheral bonds were attached (as they would be at infinite

time),

∫ H0+q ≈ q

1+ 1
√

2β

N{H,T}(1 −H)dH ≈ −q2.

Since q ≫ 1, this force far exceeds the maximum resistive force arising from the compressed springs.

The sphere’s ultimate fate is to rest on the substrate with the binders effectively holding it in by

exerting a net adhesive force. To detach the colloid will involve expending enough energy to break

these bonds and overcome this force. This final bound state can be understood as the end result

of a series of differential stages. At each stage of the descent, additional bonds must attach to the

periphery (at increasingly larger R), and then draw the colloid closer to the substrate below until

the elastic forces are in approximate balance with the adhesion radius attaining a certain value.

The sphere waits (albeit, momentarily) and then executes the next stage once bonds attach again

beyond the adhesion region established previously. Of course, we also have the constraint that the

sphere can only move as fast as permitted by the drainage of intervening fluid.

Let us evaluate
∫ H0+q ≈ q

1+ 1
√

2β

N{H,T}(1 − H)dH using the method of steepest descent. The

dominant contribution to this integral comes the lower limit. The force an individual bond imposes

on the colloid is approximated 1 −H ≈ 1/
√
β and the width of the dominant contribution to be

dH ≈ 1/
√
β. Estimating this width as the vertical scale over which the attachment rate varies

significantly yields

α

H0

dH0

dT
≈ − 1

β
(SI-7)
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This straightforwardly gives us an exponential behavior for the colloid

H0 ≈ exp (−T/τaging),

where τaging = αβq. This is however only an intermediate asymptotic regime valid for times that are

small enough that no significant attachment occurs beyond R >
√

H0/q. As bonds begin to attach

at radial positions R >
√

H0/q, the geometric approximations made to derive the exponential

relationship fail and in fact, a decay rate that becomes progressively slower is expected (note the

strong decay of the attachment rate with R indicating progressively larger waiting times for bonds

to attach).

To summarize, when a single family of bonds is present and the detachment rate is zero, the

initial steep descent is followed by an exponential aging and eventually by an even slower settling

regime. Regardless, the divergence in viscous forces ensures that contact cannot happen in finite

time, and the zero-detachment rate ensures that the adhesive elastic forces will be perpetually out

of balance.

Assuming that the expression for the settling velocity, H0 ≈ exp (−T/τaging), extends far enough

to allow us to estimate the time for the particle (the lower surface) to descend to a height H ≈
L2 + 1/

√
β, whence the second set of adhesive bonds can attach to the particle. Substituting the

previous expression into equation (5) we get

T ∗ ∼ qαβ ln |L2 + 1/
√

2β|. (SI-8)

shown in Eq. (10) of the paper.

III. LINEAR VISCOELASTIC RESPONSE TO LATERAL DISPLACEMENTS

Experiments probing the viscoelastic response of settling particles do so by subjecting a con-

strained, localized particle (held for instance by a laser trap) to oscillatory displacements in

the plane parallel to settling direction. We analyze this scenario, assuming that the settling

particle executes these lateral oscillatory displacements with an externally controlled frequency

and small amplitude ∆(t) = ∆o(t)e
iωt. In order that the response corresponds to the linear,

quasi-static regime we require that max(∆o) ≪ min(ho, ℓ1, a), ∆o(t)/ho ≪ 1 (for all t) and

ω−1 ≪ min [ho(dho/dt)
−1, ni(dni/dt)

−1]. Under these conditions, over the time scale over which

the response is evaluated, the sphere has not settled significantly and the number of attached bonds
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is approximately constant.

An interesting and non-intuitive feature we observe from a linear response analysis is that a

particle can be unstable to small transverse displacements. To illustrate this we consider a spring

(belonging to family i) attached at radial position r so that the extension is h − ℓi. To leading

order in ∆o/ho, the restoring force to an imposed lateral displacement ∆(t) is,

FElastic(t) = −∆o(t) exp (iωt)Keff (SI-9)

where, we have defined an effective lateral compliance (spring constant)

Keff ∼ 2π
∑

i=1,2

∫ a

0

Ks ni(r, t)(
h − ℓi

h
) r dr. (SI-10)

Choosing a reference state with zero lateral displacement ∆(t) = 0 and extension h − ℓi > 0,

we find from these equations that for pre-extended springs, the restoring force tends to push the

sphere back to the reference state. However, for springs that are in a state of compression (in

the base state), the imposed elongation results in a restoring force that acts in the direction of

the applied elongation - thus providing an effective negative spring constant. A spring that is at

its rest length h = ℓi does not contribute to any force at this order as the induced extension is

second order in ∆(t). Figure (4a) illustrates this feature. Eventually the lateral compliance, Keff

becomes negative and increases in magnitude until the particle touches the planar substrate. When

a finite value of the detachment rate is introduced, as illustrated in figure 4(b), the compliance

Keff reaches a limiting value at finite time as the sphere reaches a non-zero equilibrium position.

This apparent instability arises as a consequence of the linearization. For a spherical particle, the

rest height is either zero (when koff = 0) or a value less than the rest height of the families (ℓ1 and

ℓ2). Binders near the centerline are compressed while those attached far away are extended. As we

described earlier, while a binder that is extended when vertical extends even more when displaced

laterally and thus exerts a restoring force opposing the displacement, a binder that is compressed

in its rest state is in an unstable state with the spring force actually acting in the direction of the

displacement. The combination of the two thus yields a height dependent effective compliance -

i.e, Keff is a function of h0 and thereby a function of time, T . Addition of higher order non-linear

terms regularizes this instability.

In addition to the frequency independent elastic resistance from the binders, fluid interactions

yield both in-phase and out of phase, frequency dependent contributions to the linear response
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function. The in-phase elastic response is an inertial effect and results from forces proportional to

the acceleration of the entrained fluid around the sphere. While no general analytical expression

for the forces on a sphere oscillating in a plane parallel to a bounding wall is known, at the level

of scaling we can write [1, 2]

FViscous(t) ∼ −A1
d∆

dt
+A2

d2∆

dt2

(

1 + ln

(

ho
a

))

where as h0/a → ∞,

A1 → 6πµa(1 +
a

δ(ω)
), andA2 → 3πa2(1 +

2

9

a

δ(ω)
)(
2µρ

ω
)1/2.

Here δ(ω) ≡
√

( 2µρω ) is the frequency dependent viscous penetration depth (boundary layer) on the

sphere surface. The effective elastic response has thus both a frequency independent part due to

attached binders and a frequency dependent part due to viscous effects. As the sphere slows down,

the elastic contribution dominates the viscous contribution.
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