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Flow-induced channelization in a porous medium
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Abstract – Flow through a saturated, granular, porous medium can lead to internal erosion,
preferential flow enhancement, and the formation of channels within the bulk of the medium. We
examine this phenomenon using a combination of experimental observations, continuum theory
and numerical simulations in a minimal setting. Our experiments are carried out by forcing water
through a Hele-Shaw cell packed with bidisperse grains. When the local flow-induced stress exceeds
a critical threshold, the smaller grains are dislodged and transported. This changes the porosity
of the medium, thence, the local hydraulic conductivity, and leads to the development of erosional
channels. Erosion is ultimately arrested due to the drop in the mean pressure gradient, while most
of the flow occurs through the channels. We describe this using a minimal multiphase description
of erosion where the volume fraction of the fluid, mobile, and immobile, grains change in space
and time. Numerical solutions of the resulting initial boundary value problem yield results for the
dynamics and morphology that are in qualitative agreement with our experiments. In addition to
providing a basis for channelization in porous media, our study highlights how heterogeneity in
porous media may arise from flow as a function of the erosion threshold.

Copyright c© EPLA, 2012

The dynamics of fluid flow through porous continua is
relevant over many orders of magnitude in length scale
with applications that range from large-scale flow through
fractured rock in aquifers and oil reservoirs to small-scale
flows in natural and artificially engineered systems [1,2]. In
all these cases, flows are characterized by large variations
in hydraulic conductivity of the medium. This hetero-
geneity is usually ascribed to processes associated with
the formation and consolidation of the porous medium
via the agglomeration of grains (in geology) and cells (in
biology). But heterogeneity and channelization may also
arise due to selective erosion of material in non-cohesive
porous media. Indeed, flow-induced erosion, on the surface
of, and, in the bulk of porous media has been implicated
in the formation of patterns on planetary [3,4], littoral [5],
river-bank [6] and laboratory [7,8] scales that involve both
unconsolidated and consolidated media [9–13]. Dissolution
and liquefaction can also arise from reactive instabilities
as seen in melt migration [14,15] and cave formation [16].
Here we explore the purely physical erosive instabilities
occurring in the bulk of fluid saturated materials which

(a)E-mail: lm@seas.harvard.edu

can lead to internal channelization via the dynamic
coupling of flow and changes in hydraulic conductivity.
We start by describing some experiments that demon-

strate how erosion and channelization can occur in a
saturated porous medium (see Movie1 1.mov in the sup-
plementary information). The experiments were carried
out in a fluid-saturated porous medium confined to a verti-
cal quasi–two-dimensional chamber based on a Hele-Shaw
cell filled with bidisperse mixture of glass beads as shown
in fig. 1(A). The width between the walls of the appa-
ratus is such that gravity is unimportant owing to the
formation of arches between walls [17]. As our porous
medium, we use a mixture of beads; 60% of the initial
volume has large beads (diameter d1 = 4± 0.1mm) and
24% has small beads (d2 = 0.7± 0.1mm). The width of
the chamber, chosen to be 1.2× d1, enables visualization
of the porosity pattern, and allows the larger beads to be
rearranged locally without being transported by the flow,
while the smaller beads can be dislodged and transported
through the matrix of large beads. Since only the smaller
beads can be eroded, we scale the porosity by the maxi-
mum attainable absolute porosity, 0.4, so that the scaled
porosity or liquid volume fraction φl ∈ [0, 1]. To observe
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Fig. 1: (Color online) Experiments. (A) Schematic of the exper-
imental setup showing face-on and sectional views. (B) An
instantaneous snapshot showing the spatially varying porosity
generated by the flow. Light color indicates high porosity where
the small beads have been removed by erosion. Small beads
transported out of the porous medium are seen to pile up at
the interface between the porous bed and clear water. (C) Maps
of the scaled porosity φl (absolute porosity normalized by the
maximum attainable absolute porosity) for specific discharge
rates q= 0.65, 1.3, 1.96 and 2.62 cm/s after the system has
reached a steady state. (D) Domain-averaged φl is plotted as a
function of specific discharge q as it is ramped up over 3 hours
(red and green curves) or stepped incrementally every 10min
intervals (black points) so as to achieve a near steady state for
each flow rate. Histogram or probability distribution of rela-
tive porosity p(φl) shown after steady state is achieved for a
specific discharge rate (E) q= 0.65 cm/s and (F) q= 3.27 cm/s.
For low discharge rates (q= 0.65 cm/s in (E)), the peak in p(φl)
is slightly broadened with respect to the initial condition, but
remains at the initialized value of φl = 0.4. At higher discharge
rates (q= 3.27 cm/s in (F)) the distribution broadens further
and a second peak that represents completely eroded channels
is developed at φl = 1.

the evolution of the porosity induced by fluid flow, we use
a back-lighting technique and an intensity-density calibra-
tion that allows us to obtain the volume fraction of liquid
(void fraction) or porosity as a function of space and time
at a grid resolution of d1× d1 (4× 4mm2) in 2 dimensions
(fig. 1(C)).

We control the inlet flow rate Q, which is applied
uniformly to the lower boundary of the experimental
domain to provide a uniform specific discharge q=Q/A
over the cross-sectional area A. Since the sudden impo-
sition of a large flow rate (and pressure gradient) can
cause the entire medium to fluidize, we gradually ramp up
the flow rate at the inlet from 500 to 2500 cm3/min over
3 hours so that q increases from 0.65 and 3.27 cm/s. The
increase in flow rate is carried out smoothly, as well as in
steps of 0.13 cm/s over time intervals of 600 s to allow for
equilibration, but the behavior is qualitatively the same
in both cases (fig. 1(D)). The outlet at the upper bound-
ary is maintained at atmospheric pressure. By measuring
the pressure at the inlet, we determined the average pres-
sure gradient and found that it increases linearly with the
flow rate for a constant porosity, confirming that the flow
within the porous medium obeys Darcy’s law even after
channels are formed. With each increment in the flow rate,
erosion occurs for a few minutes before stopping. As a
consequence, the porous medium which is initially fairly
uniform in porosity, becomes increasingly heterogeneous
as the flow rate is increased, as erosion generates regions
of enhanced porosity that connect to form channels with
high conductivity (fig. 1(B), (C)). The erosion patterns
coarsen with time and eventually, just a few channels pref-
erentially conduct most of the flow.
Mechanistically, we observe that as the flow rate is

gradually increased, the flow-induced stress, i.e., the mag-
nitude of the local pressure gradient, can exceed the local
threshold required to dislodge and mobilize particles that
are held in place by the confinement pressure due to parti-
cle packing between the walls. For our bidisperse medium,
the process involves the dislodgment and movement of the
smaller grains from the interstices between the larger
grains. This leads to a local increase in the hydraulic
conductivity and a readjustment of the flow. As the mate-
rial erodes and porosity increases, the pressure gradient
drops below the critical erosive stress threshold and ero-
sion stops. Thus, for every increment in the flow rate, the
pressure gradient is raised above the threshold and leads
to further erosion for a short while before it stops. For a
given flow rate, the porosity evolves in space and time until
it reaches a steady state that is a function of the initial
heterogeneity in the porosity of the medium. Although
deposition can act to mitigate the erosion patterns by
decreasing the porosity and the hydraulic conductivity
downstream, this effect is strongly dependent on whether
the outflow region serves to sieve the mobile particles or
trap them; in our system, this effect is negligible.
The spatial pattern of porosity can vary significantly

from one experiment to another due to the slight inhomo-
geneity in the initial conditions of the medium. However,
in all cases, the basic phenomenon is robust; preferen-
tial erosion, coupled to flow through positive feedback
leads to the formation of channels of highly variable
conductivity from a relatively uniform porous medium.
The average porosity over the region is observed to
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increase linearly with flow rate for scaled porosity in the
range 0.4–0.6 as shown in fig. 1(C), (D). The distribu-
tion (pdf) in porosity values over the region is shown in
fig. 1(E), (F) for small and large flow rates, respectively.
Initially, the distribution is broadly peaked at φl ∼ 0.4
corresponding to 60% large and 24% small beads. As the
flow increases, a second peak develops at φl ∼ 1 corre-
sponding to regions containing only large beads where
complete erosion of the finer beads has occurred, a process
that is concomitant with channelization.
Motivated by these qualitative observations, we now

turn to a continuum theory for the dynamical evolution
of channels via flow-induced erosion within a saturated
porous medium. Our theory for the active co-evolution of
the phases in a porous medium is qualitatively different
from the single phase diffusive models for the evolution
of free surfaces by aggregation and erosion [6,7], but
has some superficial similarities to multiphase bulk
theories for particle production and migration in porous
media [11–13], and geophysical theories for multiple reac-
tive fluids interacting with each other [14,16] in that it
accounts for multiple phases. Indeed, we combine features
of these previous models in considering the fluid-induced
erosion and deposition processes acting in the bulk of
a solid skeleton. To correctly account for the onset of
erosion and its evolution as observed in the quasi–two-
dimensional bidisperse granular medium, we propose
a multiphase theory that involves fluid, granular and
immobile phases interacting with each other. However, we
do not consider the microscopic mechanisms in detail and
instead use simple symmetry-based arguments for the
form of the interaction between these phases, in the spirit
of effective theories in condensed-matter physics [18].
To enable a continuum field description of the process,

we use a representative volume much larger than the
grain/pore size with φs(x, y, z, t) the volume fraction of
the immobile solid phase, φg(x, y, z, t), the volume frac-
tion of the granular mobile phase, and φl(x, y, z, t), the
liquid volume fraction in the medium so that φs+φg +
φl = 1. Volume conservation for the individual phases
(each assumed to be incompressible) implies that

∂tφs =−e+ d, (1)

∂tφg =+e− d−∇ · (φgug), (2)

∂tφl =−∂t(φs+φg) =−∇ · (φlul), (3)

where the erosion rate, e, is the rate of transformation
of the immobile phase to mobile phase, d, is the rate
of deposition (or conversion of mobile phase to immobile
phase), and ug and ul denote the velocity of the granular
and liquid phases, respectively. We note that adding
eqs. (1)–(3) yields the global continuity equation

∇ · (φgug +φlul) = 0. (4)

For simplicity, we will assume that ug = ul = u, i.e., the
granular and liquid phases have the same velocity and

the effects of inertia and body forces associated with sedi-
mentation are negligible, a reasonable approximation for
slow flows of nearly jammed grains. Then the continuity
equation reduces to ∇ · (φu) = 0, where φ≡ φg +φl. In a
saturated porous medium, erosion of φs can occur only
when the fluid-induced stress exceeds a critical threshold
σ that is determined by the confinement pressure induced
by the packing of the grains. Then we may write the local
erosion rate as

e= keφs
(

(γ−1∇p)2−σ
)

! 0, (5)

where ke = q0/L is a characteristic rate related to the
specific discharge q0 and a system length L (determined
experimentally), and γ = q0/D0 the ratio of the charac-
teristic specific discharge (q0 = 10−2m/s) to characteris-
tic hydraulic conductivity (D0 = 10−6m3 s kg

−1), is used
to normalize the pressure gradient. The form of e follows
from considerations of symmetry: a hydrostatic pressure
p cannot lead to erosion, but a gradient can. However,
the sign of the gradient is not important, so that we
have chosen the simplest analytic dependence consistent
with this symmetry (using the asymptotically correct, but
non-analytic form |∇p| instead of (∇p)2 yields qualita-
tively similar results). We assume that the critical thresh-
old for erosion σ is a regionally averaged function of the
solid volume fraction φs given by φs = V

−1
∫

V φsdv, since
elastic stresses induced by flow are felt over a scale V
compared to a few grain volumes. Although the form of σ
is difficult to gauge from our experiments, we use the func-
tion σ= 2(tanh(2π(φs− 0.6))+ 1), where 0" φs " 1 which
mimics the sharp dependence of the failure stress σ on the
solid volume fraction.
A simple model for d, the rate at which the mobile

granular material is converted back to the immobile solid
phase, is given by

d= kd(φs−φ
∗

s) φg ! 0. (6)

The form of the deposition, with rate kd = q0/L (which
can be determined experimentally), is based on a binary
collision picture —mobile grains will come to rest only if
they interact with immobile grains; hence the dependence
on φs with a threshold φ∗s, which we take to be 0.
In the porous medium, we assume that the volumetric

flow rate per unit cross-sectional area, i.e., the specific
discharge q≡ u(φl+φg), is given by Darcy’s law1

q≡ uφ=−D(φ)∇p, where D=
φ3 l2p

Aµ (1−φ2)
. (7)

Here, D(φ), the hydraulic conductivity, is assumed to
follow the Carman-Kozeny relation [2] and is in general
a nonlinear function of the porosity φ= φl+φg. Here

1This can be generalized to a Brinkman-like equation if necessary
in regions of high porosity.

58003-p3



A. Mahadevan et al.

lp is the nominal pore size (which scales with the grain
diameter), µ is the dynamic viscosity of the interstitial
fluid, and the dimensionless constant A= 180 for spherical
grains [2]. For lp = 1mm, µ= 10−3 kgm−1 s−1, D ranges
from 0.6× 10−7 to 1.6× 10−5m3 s kg−1 for φ between 0.1
and 0.9.
We use the domain size, L= 1m, specific discharge

q0 = 1 cm/s, and time scale T =L/q0 to make the problem
dimensionless, so that the dimensionless parameters in the
problem include the thresholds for erosion and deposition
σ and φ∗s as well as the ratio of deposition to erosion rates
Π1 =

kd
ke
, and the ratio of advection to erosion rate Π2 =

q0
keL
. Our choice of ke and kd implies that Π1 =Π2 = 1. We

solve eqs. (1)–(7) numerically in 2 dimensions (x, y) using
a finite volume method. In the x-direction, we use periodic
boundary conditions at x= 0 and x=Lx, with a square
domain of dimension Lx = 0.32, Ly = 0.32 and a uniform
grid resolution ∆= 0.05. Prescribing the inlet pressure
instead of the inlet discharge leads to either no erosion
(if (γ−1∇p)2 < σ) or catastrophic erosion if the pressure
gradients are larger than the erosion threshold. Thus, we
prescribe a constant scaled specific discharge q0 = 1 at
the inflow boundary y= 0, while at the outflow boundary
y=Ly we set pressure p= 0 (atmospheric pressure). The
pressure is determined by iteratively solving the Poisson
equation ∇(D(φ)∇p) = 0 obtained by substituting (7)
into (4), then calculating the erosion rate e and the
deposition rate d, and finally evolving eqs. (1)–(3) to
update the volume fraction of the phases φs,φg,φl from
one time step to the next, with scaled time step ∆t=
10−4. Starting with an initial volume fraction of mobile
grains φg = 0 throughout the domain, and a mean liquid
volume fraction φl = 0.2 with an additive white Gaussian

noise (standard deviation sd=
√

〈φ2l 〉− 〈φl〉
2
1/2
= 0.01)

that describes the weak heterogeneity in σ, we allow
the system to evolve until it reaches a quasi-steady
state. The non-local form of the erosion threshold σ is
based on φs, the weighted spatial average of φs, which
is calculated numerically as φs(i, j) = 0.2φs(i, j)+ 0.1φs
(i± 1, j± 1). Averaging over the 8 surrounding neighbors
of a grid point amounts to a radius of influence of the stress
that extends a few grain diameters, in contrast to using
a local value of φs that would lead to runaway erosion at
individual grid cells.
In fig. 2(A), (B) we show two snapshots of the porous

medium as it erodes and channelizes (see Movie2.mov
in the supplementary information). This process involves
positive feedback: flow is enhanced through the regions
of low solid fraction (high hydraulic conductivity), while
regions with a higher solid fraction and lower hydraulic
conductivity are circumvented by the flow. Indeed, in
fig. 2(C), (D) we see the interplay between the hetero-
geneity in the erosion threshold σ and the squared pressure
gradient (γ−1∇p)2. The material is transformed from solid
to mobile phase where (γ−1∇p)2 > σ and transported by
the flow, reducing φs, lowering σ, and augmenting erosion.
The channelization leads to enhanced flow through regions
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Fig. 2: (Color online) Numerical solution to eqs. (1)–(7) with
a steady specific discharge q= q0 prescribed at the lower
boundary y= 0, and constant pressure at the upper boundary
y= 0.32. (A) Spatial distribution of porosity φ at t= 1 and
(B) at t= 6. (C) (γ−1∇P )2 (red) and σ (black) are plotted
along a–a (at y= 0.16) at t= 1 and (D) at t= 6 corresponding
to the panels above. Erosion occurs where (γ−1∇P )2 > σ.
At early times, this occurs at several locations. As erosion
progresses, the pressure gradient drops, heterogeneity in σ
increases, and erosion is limited only to the channels. (E)
The flux in the y-direction, v(φg +φl) plotted at section
a–a at t= 0.5 (black), t= 1.5 (red), and at t= 6 (blue). As
the flux increases in eroded regions, it decreases in non-
channelized regions. (F) Domain-averaged time evolution of
the scaled pressure gradient squared (solid red line) and erosion
threshold (solid black line), with one standard deviation plus or
minus (dash-dotted lines) indicated. Initially, the area-averaged
(γ−1∇p)2 > σ, but as erosion progresses, the pressure gradient
decreases, (γ−1∇p)2 < σ, and erosion no longer occurs, except
in a few places.

of high hydraulic conductivity at the expense of other
regions (fig. 2(E)) even as the total flow rate remains the
same. In fig. 2(F), we provide a global view of the process.
As erosion progresses, the average porosity and hydraulic
conductivity over the entire domain increases. The pres-
sure gradient required to sustain the same flow rate drops
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Fig. 3: (Color online) The final distribution of porosity φ at
t= 6 depending on the specific discharge q (scaled by q0)
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each q, the average porosity increases with time, until as steady
state is achieved. (E) The final porosity (at t= 6) is a function
of q at the inlet. (F) Histograms of the porosity distribution
for q= 0.3, 1 and 3 shows bimodality and a peak at φ= 1 due
to channelization.

until it falls below the threshold for erosion almost every-
where and the system asymptotically approaches a steady
state.
To understand how this steady state depends on the

dimensionless parameters, we first vary the scaled specific
discharge at the inlet q/q0. When q < qc, a critical scaled
flow rate that depends on the initial porosity distribution
in the medium, no erosion or channelization occurs,
because the pressure gradient is everywhere smaller than
the erosion threshold. For q= qc, a single narrow channel
and secondary partial channel are formed as shown in
fig. 3(A). As q is increased further, the number of channels
as well as the width of channels increases (fig. 3(B));
for even higher flow rates, the entire medium begins
to erode away as shown in fig. 3(C). In all cases, the
porosity increases with time after initiation of the flow
(fig. 3(D)), linearly at first, and then slowly approaching
a steady-state value that depends on the inlet specific
discharge. Much like the experiments, the average porosity
of the medium is a function of the inflow q (fig. 3(E)).
Histograms of the porosity for varying inflow rates are
shown in fig. 3(F); the case q= 1, produces the most
bimodal porosity due to channelization.
Varying the erosion and deposition rates also leads to

variations in the erosion patterns. A 10-fold increase in
erosion rate ke (Π1 = 0.1), leads to a faster evolution of
channels. Increasing kd 100-fold so that Π1 = 100 increases
the deposition rate and causes blockages that leads to
termination and re-initiation of channels. In this model,
deposition remains small even when kd = ke, because φg)
φl and a significant (100-fold) increase in kd is needed
before we begin to see the effects of deposition. The
average number or size of channels does not change in
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Fig. 4: (Color online) The final distribution of porosity (at
t= 6) is shown to be sensitive to the initial heterogeneity in σ
arising from φs. The upper row shows the porosity distribution
resulting when the initial distribution of φs is set to 0.8
everywhere, except in specific places where it is decreased by
1% from the uniform background value (A) along two lines, and
(B) along 10 lines, each being one grid cell wide. In the lower
row, the standard deviation (sd) in the initial perturbation to
φs is varied from its previous value of sd= 0.01. (C) sd= 0.001.
(D) sd= 0.03.

either case relative to when Π1 = 1 (corresponding to
fig. 2(B)).
A question that naturally arises is the mechanism for the

selection of channel spacing and width when fluid flows
through a nominally homogeneous porous medium. We
find that the spacing and width of channels is insensitive
to the domain size; doubling the model domain size does
not change the picture. The natural length scales in the
problem are the system size L, the nominal pore size lp,
which evolves with time, but remains a microscopic length,
and the length scales q0/ke, q0/kd; the latter control
the dynamical evolution of the channels but not their
final state. What remains is the role of the threshold
for erosion σ. The onset of channelization is strongly
influenced by fluctuations in the porosity (and thus the
fragility) of the medium, and stability analysis of the
uniform base state predicts that channels form at locations
where σ is smallest initially. Thus, for the same inlet
specific discharge, the size and number of channels are
a function of σ(x, y, 0). In fig. 4(A) we show that for
a given inlet specific discharge, if σ(x, y, 0)≡ f(x) has a
single minimum, a single channel forms and grows until the
pressure gradient falls below the erosion threshold, while
in fig. 4(B), we see that if σ(x, y, 0) has multiple minima,
multiple channels form. Of course, it is not sufficient to
consider the mean value of the threshold; instead one
must account for the complete probability distribution of

58003-p5



A. Mahadevan et al.

0
0

0.32

y

0
0

y

0.32

0.32

0.32x x

A B

0.4 0.9

Fig. 5: (Color online) The evolution of the porosity is sensitive
to the functional form of the erosion threshold σ. Here the
final distribution of porosity φ is shown for other choices of σ.

(A) σ= φs, (B) σ= φ
2
s. These results can be compared with

fig. 1, where σ= 0.5(tanh(2π(φs− 0.6))+ 1) (subtracting 0.6
instead of 0.5 provides a slight asymmetry to the tanh profile).

the erosion threshold. For our simple Gaussian model of
disorder, if the variance in the threshold for erosion (or
equivalently the porosity fluctuations) is also changed, this
leads to variations in the patterns as well. In fig. 4(C), (D),
we show that an increase in the standard deviation of the
initial white noise leads to greater heterogeneity in the
channel number and spacing. These considerations change
qualitatively if there are body forces such as gravity, which
would lead to the introduction of a new length scale due to
the competition between flow-induced stresses and gravity.
Finally, we consider the functional form of the erosion

threshold σ(φs). In fig. 5, we see that as σ varies more
strongly with φs, the final morphology of the erosion
patterns becomes more variable; indeed the form of the
erosion threshold function, and its initial, possibly hetero-
geneous spatial distribution are crucial in determining the
growth and form of the channels.
Our model qualitatively captures the basic features of

our physical experiments: below a critical flow rate, little
or no erosion occurs. Above this threshold, the porous
medium starts to erode heterogeneously at locations
where the critical threshold is lowest; positive feedback
then enhances erosion locally in other regions leading to
oriented regions of higher porosity, i.e., channels which can
branch, start or stop in the medium. For a given flow rate,
the pressure gradient and erosion rate decay with time as
channels form. Consistent with this, we find an increase
in the average porosity of the region for higher flow rates.
The strong dependence of the channelization patterns
on the heterogeneity of the initial porosity is a feature
of both our experiments and our numerical simulations.
Indeed this is why we cannot predict the wavelength of the
channelization patterns, which are instead determined by
a combination of the prescribed flow rate and the initial

distribution of variations in porosity. Taken together, our
qualitative experiments and continuum model allow us
to describe flow through porous media by accounting for
erosion, deposition, and dynamic permeability changes,
which lead to channelization. A natural next step is a
quantitative comparison with experiments and a micro-
scopic derivation of the model equations that we have
proposed here.
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