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Abstract

We introduce a new method for detecting communities of arbitrary size in an undirected weighted network. Our approach
is based on tracing the path of closest-friendship between nodes in the network using the recently proposed Generalized
Erdös Numbers. This method does not require the choice of any arbitrary parameters or null models, and does not suffer
from a system-size resolution limit. Our closest-friend community detection is able to accurately reconstruct the true
network structure for a large number of real world and artificial benchmarks, and can be adapted to study the multi-level
structure of hierarchical communities as well. We also use the closeness between nodes to develop a degree of robustness
for each node, which can assess how robustly that node is assigned to its community. To test the efficacy of these methods,
we deploy them on a variety of well known benchmarks, a hierarchal structured artificial benchmark with a known
community and robustness structure, as well as real-world networks of coauthorships between the faculty at a major
university and the network of citations of articles published in Physical Review. In all cases, microcommunities, hierarchy of
the communities, and variable node robustness are all observed, providing insights into the structure of the network.
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Introduction

The topology of networks occurring in biological or chemical

[1,2], social [3,4], political [5], or technological [6] systems can

give profound insights into a variety of important aspects of these

systems, such as the processes that generated the network [7], the

stability of the system [8] or the properties of processes occurring

on it [9]. An important aspect of common real-world networks is

that of community structure [10], where subsets of the network are

densely connected internally and weakly connected externally.

Nodes in the same community have more in common than those

in distinct communities, reflected in the topology of denser intra-

community edges than inter-community edges. However, the

detection of communities in networks without apriori knowledge of

their structure is highly nontrivial, and methods for community

detection have recently attracted a great deal of interest.

Perhaps the most common approach for community detection

in networks is based on modularity maximization [11,12]. Each

node i in a network of N nodes and M edges is assigned to a single

community, ci , with the partition chosen to maximize

Q~
1

2W

X
ij

(wij{
WiWj

2W
)d(ci,cj), ð1Þ

where wij is the weight of the edge between nodes i and j,

Wi~
P

j wij is the strength of node i, W~
1

2

X
i
Wi, and

d(ci,cj)~1 if ci~cj and 0 otherwise. For an unweighted network,

wij:aij = 0 or 1, where aij is the adjacency matrix, and thus

Wi~ki is the degree of the node. Modularity compares the network

in question to a randomly generated network with each node

constrained to have the same strength, and is maximized by a

partition into communities fcig that have a higher intra-community

weight than would be expected randomly. This choice of a random

network acts as a null model, although other choices are possible

[13], and a wide variety of numerical approaches for efficiently

computing the maximal partition exist, including statistical

mechanical methods [14], bisection algorithms [11], and other

greedy searches [15,16]. While modularity maximization is both

intuitive and accurate in a variety of settings, Q has a natural

system-size resolution limit [17,13]: if the number of nodes becomes

large (N??), but the typical strength Wi of all nodes remains

finite, the total strength W?? and the second term in the sum in

Eq. 1 becomes small (since Wi and Wj do not diverge). Thus,

modularity maximization may not detect small communities in

large networks due to this resolution limit. Simple methods to

overcome this limitation include the introduction of a resolution

parameter [14,13] c, with the redefinition of Q~(2W ){1P
ij (wij{cWiWj=2W )d(ci,cj), or multiresolution methods [18]

which impose a self-loop of strength r on the network (i.e.

wij?wijzrdij ) in Eq. 1. Both of these approaches overcome the

problem of a resolution limit by introducing an arbitrary parameter

in detecting community structure that must be tuned. Alternate

approaches to community detection avoid a resolution limit through

other means, such as thresholding the resistance distance between

nodes, with nodes having low resistance distance between each

other belonging to the same community [19], maximizing the

‘fitness’ of each node in a greedy fashion [20], creating block models

to detect communities if the number of expected communities is

exactly known [21], or refining communities by finding ‘statistically

significant’ nodes [22]. In all these approaches, at least one free

parameter is required to detect the communities, which may be

useful in giving the ability to tune the resolution at which
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communities are detected, but with no a-priori method for

determining the ‘correct’ value that leads to a meaningful partition.

In this paper, we develop a new parameter-free, resolution-

limit-free method for community detection, most easily understood

intuitively in the context of a social network: a person belongs in

the same community as his or her ‘closest friend’ (the node to

which he or she has the greatest measure of ‘closeness,’ discussed

below). Our method requires a way to measure closeness (or

friendship) between nodes in a network, and a variety of such

measures are available [23]. We will focus primarily on a recently

proposed non-metric measure of closeness [24], the Generalized

Erdös Numbers (GENs), which have been found useful in a variety

of contexts in understanding the structure of network topology.

This closest-friend community detection method is shown to be

able to accurately detect communities in a variety of widely used

benchmarks, in some cases outperforming some modularity-

maximizing detection schemes in real world networks with a

known ‘correct’ partition. We also extend the method to detect

community structure at a lower resolution (macrocommunities

formed from higher resolution microcommunities) without

appealing to a free parameter. Our approach has the advantages

of being intuitively accessible, free of arbitrary parameters, and

able to accurately find communities in complex networks. We

leverage our chosen measure of closeness between nodes in

determining the robustness of assignment of each node into its

community (rather than a global measure of the quality of the

partition using modularity). Finally, our approach is applied to a

citation network and a coauthorship network, and the complex

hierarchical structure of each network is examined in detail.

Methods

Communities from Closeness
In a network with community structure, nodes in a community

have a higher density of edges internally (to other nodes in their

community) than they do externally. While one approach to

community detection maximizes global quality functions that

depend on the density of edges [10], we could alternatively search

for high densities of edges locally to find communities. Such a local

method may use an appropriate measure of closeness between

nodes, with ‘close’ nodes having multiple short-length paths

between one another (implying a locally high density of edges; see

below for examples). In the context of a social network, for

example, it is natural to expect that closest friends (those who feel

closest to one to another given a measure of ‘closeness’) should be

found in the same community. Such an expectation can be

enforced by determining the closest friend (CF) of each node i,

denoted f (i), and requiring them to be in the same community. In

other words, node i is assigned to the same community as the node

to which it is topologically closest. The closest friend of f (i)
(denoted f (f (i))) is also found in this community, and we generate

a path of closest friendship pi~fi,f (i),f (f (i)), . . .g (halting when a

self-intersection occurs after which the cycle would repeat). Nodes i

and j that share elements of their closest friend paths (i.e.

Dpi\pj D=0) will all trace to the same central loop, and each of the

elements of pi and pj are placed in the same community. If the

closeness measure is well chosen (such that a higher density of

edges implies a stronger feeling of ‘closeness’), the closest friend

paths for nodes in each community will remain within the correct

communities, allowing for an accurate partition of the network

(discussed further in Supplementary Information S1). This

approach has the advantage of generating a single partition

(rather than a tree of many possible partitions from which the

‘correct’ partition must be chosen, commonly used in clustering

algorithms) and without a system-size resolution limit [17,13], and

therefore unambiguously chooses a ‘natural’ partition of the

network.

Despite the simplicity of our method, there exist pathological

network topologies may require modification of the algorithm in

order to accurately detect the community structure. As a simple

example, a node that is connected to every other node in the

network will be everyone’s closest friend, regardless of the topology of

the rest of the network, and only one community will be detected

using our approach (see Supplementary Information S1 for further

discussion). Failure of the detection algorithm in this case can be

avoided by searching for the closest unpopular friend (CUF), where

the CUF is detected by sorting the closest friends of node i in

descending order of node degree, and choosing the first node fu(i)
who has degree less than or equal to the next-closest node. This

ensures that we avoid nodes with extremely high degree (the

popular close friends), who may have many out-of-community

connections, and choose fu(i) to be a node that is simultaneously

(a) a close friend (but not necessarily the closest) and (b) less likely

to have out-of-community edges. The path of closest friendship is

modified to be pi
u~fi,fu(i),fu(fu(i)), . . .g, and community detec-

tion proceeds as described above. We note that neither the CF nor

CUF approaches depend on the graph being Hamiltonian: the

particular path pi or pi
u need not span the entire graph for any

starting node i (and must not, if there is to be more than one

community). Additional modifications to both the CF and CUF

methods are required due to community fracture: communities

may be split into two or more disjoint pieces due to the random

fluctuations of the edges [25] (see Supplementary Information S1

for further discussion). Fractured communities may occur for any

community detection algorithms, and a greedy approach to detect

and merge fractured communities is described in Supplementary

Information S1.

Choosing a Closeness Measure
Before we apply the CF or CUF method for community

detection, we must choose a measure of closeness between nodes

in that network, with the only requirement being that nodes i and j

are ‘closer’ if there is a higher density of edges (multiple short-

ranged paths) between them. We focus on the use of a recently

developed closeness measure, the Generalized Erdös numbers [24]

(GENs), created with two simple principles in mind: (i) connections

from node j to nodes that feel close to a specified node (nodes {k}

with low Eik) are more important than connections to other nodes,

and (ii) a connection of high weight from j to some node k should

make node j feel more close to node k and less close to node i. This

second expectation is natural if closeness is defined with a limited

resource in mind, such as the time spent between people in a social

or coauthorship network [24]. These expectations naturally lead to

a weighted harmonic mean [24], with Eii~0 and

Wj

Eij

~
X
k[Cj

wjk

Eikzw{1
jk

:

with Cj the set of nodes that are connected to j. Eij is not a distance

metric (as Eij=Eji), a desirable property because unpopular (low

degree or low weight) individuals may feel close to popular (high

weight) nodes, but not vice-versa. The GENs are computed

numerically by setting E
(0)
ij ~(1{dij) and iteratively computing

E
(tz1)
ij ~Wj=

P
k wjk=(E

(t)
ik zw{1

jk ), halting when maxij DE
(tz1)
ij

{E
(t)
ij Dƒd for some tolerance d (we used 5|10{3. Computing

the closeness between all pairs of nodes i and j will scale as N|M,
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and is the slowest step in detecting communities using the CF or

CUF approaches.

To see how our closeness measure works in detecting

communities in a network with known community structure, we

examine the Girvan-Newman benchmark [1,12] in Fig. 1(a),

which consists of four equal-sized communities of 32 nodes, each

with kout edges leading out of the community and 16{kout edges

within the community. The connectivity between communities

can also be described by the mixing parameter m~kout=

(kinzkout)~kout=16, with detection of the correct communities

becoming difficult when kout
*> 8 or m *> 0:5. The level of

agreement between the detected and correct partition is quantified

using the normalized mutual information [10]:

I~2

P
i[Pt,j[P0

nij log
Nnij

nt
in

0
j

 !
P
i[Pt

nt
i log (nt

i=N)z
P

j[P0

n0
j log (n0

j =N)
ð2Þ

with nt
i the number of nodes in community i of the trial partition

(Pt), n0
j is the number in community j of the true partition (P0), and

nij is the number simultaneously occurring in i and j of Pt and P0.

In Fig. 1(a), we see that the accuracy of the CUF approach does

depend on the choice of closeness measure, where we compare the

performance of the GEN measure with others [23] such as the

overlap measure (Oij~DCi\Cj D with Cj the set of neighbors of j)

and the Jacard coefficient (Jij~DCi\Cj D=DCi|Cj D ). Similarly, in

real-world networks with an apriori known community structure

(shown in Fig. 1(b)) such as the Football network [1], the Political

Blogs network [26], and the Political Books network [27] (see

Supplementary Information S1), both the GENs and overlap are

consistently more accurate in community detection than greedy

modularity maximization. Because the GENs are the most

accurate on both real world and artificial networks of all of the

closeness measures attempted, we choose to focus on them as our

measure of closeness in the rest of the paper.

Additional Benchmarks of Community Detection
As a systematic test of the method on a more complex

benchmark, apply our detection method to the benchmark of

Lancichinetti, Fortunato, and Radicchi [28]. Communities are of

variable size (with the size s of each drawn from a power law

distribution, P(s)*s{b) and the degree of each node is drawn from

a scale free distribution as well (P(k)*k{c). Each node has on

average a fraction m of its edges within its assigned community and

1{m edges outside of its community. The complex structure of this

network makes community detection non-trivial, but as seen in

Fig. 1(c-f) our method is accurately able to reconstruct the correct

partition for various values of b, c, and m (for N~1000 and 50

realizations of the network for each data point). So long as mƒ0:5,

we typically find the normalized mutual information I *> 0:9,

indicating a good agreement with the correct partition. Our

approach produces partitions that are less accurate than the results

reported in Fig. 5 of Ref. [28], in accordance with the observations

in Fig. 1(a) that the method underperforms modularity maximiza-

tion when the correct partition is also modularity maximizing.

However, the CUF method still performs admirably, with the

additional benefits of no fitting parameters or resolution limits.

Hierarchical Communities
In many cases [29,20] networks have community structure at

multiple resolutions, begging the question of how to detect such a

hierarchical community structure. Instead of using a tunable

resolution parameter whose ‘correct’ value(s) are unknown a-

priori, the CF/CUF method naturally suggests a simpler

approach: to iteratively coarse grain the network using a high-

resolution partition (detected as described above) and then reapply

our detection method on the lower resolution network. Commu-

nities in the high-resolution partition act as coarse grained nodes,

and the average closeness felt between communities serves to

determine closest friends. If the GENs are chosen as the measure

of closeness, the averages are taken as (Ec
hg){1~

P
i[g,j[h

E{1
ij =ngnh, where ng is the number of nodes in g. While the choice

of a method of coarse graining the network implies an additional

degree of freedom in our algorithm, it is important to note the

differences between the CUF method and modularity maximiza-

tion with a variable resolution parameter. In the CF/CUF

method, the resolution can not be tuned continuously by choosing

different closeness measures or methods of coarse graining.

Rather, the choice of measure and method set an optimal apriori

resolution for hierarchical community detection, which is likely to

be robust to changes in the method if the closeness measure and

the coarse graining method are well chosen.

The accuracy of our hierarchical detection method on a

commonly used artificial benchmark, implemented in Ref. [18], is

shown in Fig. 1(g), with additional benchmarks discussed further in

Supplementary Information S1. A network of 256 nodes is formed

from 16 communities of 16 nodes each, in turn composed of 4

macrocommunities containing 4 communities each. Each node

has on average 13 edges within its community and 4 edges outside

of its community but within its macrocommunity, and 1 edge

outside of its macrocommunity. This is similar to the Reichardt

and Bornholdt [14,20] benchmark discussed in Supplementary

Information S1 and adapted in the next section. We compare the

partitions detected using the CUF algorithm with a simulated

annealing maximization of the multiresolution modularity (that is,

Eq. 1 with wij?wijzrdij , where r is a resolution parameter

ranging from rmin~{W=N to ?). The average modularity Qr

for the modularity maximizing partition is shown by the red points

in Fig. 1(g), and this modularity maximizing partition transitions

smoothly between the high-resolution communities detected using

our CUF algorithm for large r and the low-resolution coarse

grained using our hierarchical algorithm for small r. Additional

analysis of a similar benchmark for our hierarchical detection

algorithm can be found in Supplementary Information S1.

Robustness of Individual Nodes
It is desirable that any method for community detection be

relatively robust to small changes in network connectivity.

Modularity may be used to assess the quality of a partition on a

global level at a particular resolution, but not the robustness of a

individual node. The assignment of node i to a particular

community may be fragile (non-robust) if it (a) has few edges

within its assigned community (i.e. small kin
i ~

P
j[ci

aij ) or (b) has

a small ratio of in-community and out-of-community edges (i.e.

small kin
i =(ki{kin

i )~kin
i =kout

i ). It is useful to incorporate both of

these elements into a single measure, which we call the degree of

robustness: d
(1)
i is the number of the kin

i nodes to which i feels

closest that are in i’s microcommunity. Nodes with high robustness

can be considered the ‘core’ of their community, since of all of the

nodes in the community they have the largest number of close

friends amongst the other community members. In networks with

a hierarchical community structure, nodes may have varying

robustness at each resolution. Nodes that are robustly assigned to a

microcommunity may have a fragile assignment to its macro-

Discovering Communities through Friendship

PLoS ONE | www.plosone.org 3 July 2012 | Volume 7 | Issue 7 | e38704



community, and vice versa. To assess the robustness at each level

of the hierarchy, we can compute D
(j)
i ~d

(j)
i {d

(j{1)
i , where d

(j)
i is

the robustness of a node i at the jth resolution in the hierarchy,

setting d
(0)
i ~0 for notational convenience so that D

(1)
i ~d

(1)
i .

Nodes with small D
(j)
i are weakly connected to the other nodes in

their community (i.e. their assignment to the micro- or macro-

community is fragile, regardless of the robustness in communities

of other resolutions). Note that the normalized degree of

robustness D
(j)
i =ki is useful in detecting nodes on the boundary

between communities (having many edges, but few close friends in

their assigned community), but that D
(j)
i more directly indicates

robustness as the number of strong in-community edges. At each

level of resolution, the average robustness of any community can

be estimated as r(j)
c ~SD

(j)
i Ti[c~n{1

c

P
i[c D

(j)
i .

An Artificial Benchmark with Variable Robustness
In order to introduce variable node robustness into an artificial

benchmark, we modify the benchmark of Reichardt and

Bornholdt [14,20] (similar to that in Fig. 1(g)) which includes

512 nodes, 16 microcommunities of 32 nodes, and 4 macro-

communities of 128 nodes (see Supplementary Information S1 for

more details). Each node i has on average kin
i edges connecting it

to its microcommunity, kout
i zkin

i edges in its macrocommunity,

and kmix
i edges outside of its macrocommunity. In order to

modify the benchmark to allow for variable node robustness, we

choose kin
i , kout

i , and kmix
i to depend on i in a simple fashion,

depending on the macrocommunity it is assigned to (labelled A–

D in Fig. 2(a)) and an asymmetry parameter a§0, with a~0
corresponding to the standard Reichardt-Bornholdt benchmark

[14] (see the table in the caption of Fig. 2 and discussion in

Supplementary Information S1). This modified benchmark allows

us to examine the effectiveness of the multi-level hierarchical

community detection as well as the utility of the degree of

robustness D
(j)
i .

An example of the benchmark is shown explicitly in Fig. 2(a)

for a~8, for which the in-, out-, and mix-degrees of nodes vary

significantly with i (see the caption of Fig. 2). Fig. 2(b-c) show the

in-degrees and in-out ratios for the highest resolution of the

hierarchy and (e-f) for the coarsest resolution, with a decrease in

kin
i implying a node is less connected to its community and a

decrease in r
(1)
i ~kin

i =(kout
i zkmix

i ) indicating a node is highly

connected to nodes outside of its community. When we apply

our community detection algorithm, the CUF approach

recovers the correct partition with a mutual information of

SImicroT~0:95 on the micro-scale and SImacroT~0:85 on the

macro-scale (see eq. 2) at a~8. The mutual information at each

scale increases for for decreasing a, but begins to drop rapidly

near a *> 10. The high value of the mutual information shows

that the CUF algorithm accurately detects the intended

communities for reasonably large asymmetry in the community

structure (see Supplementary Information S1 for further

hierarchical benchmarking).

The benchmark shows that the degree of robustness D
(j)
i

accurately determines nodes that are less robustly assigned to their

intended community at both levels of resolution (shown in Fig. 2(d)

and (g)). Nodes in macrocommunity A are less connected to the

network overall (and are less robustly assigned at all scales), with

and unsurprisingly both D
(1)
i and D

(2)
i are decreasing with

i�~½(i{1) mod 32�=31 as expected. In macrocommunity B,

nodes have a constant in-community degree and a decreasing ratio

of in- to out-of-community degree at each scale, so nodes should

Figure 1. Benchmarks of the community detection algorithm. (a) shows the mutual information between the detected and true partitions for
varying kout and for different closeness measures on the Girvan-Newman benchmark [1,12]. Up and down triangles show modularity maximization
using a greedy [16] (implemented in Mathematica) and Potts model [14,32] for comparison with the CUF method implemented using the Jacard
Coefficients (black circles), GENs (red squares) and overlap (blue stars) as closeness measures. (b) Percent improvement of the CUF approach over a
greedy modularity maximization [16] using the GENs (red), overlap (blue), and Jacard Coefficients (black) as a closeness measure for real world
networks with a ‘correct’ partition known apriori. Taken together, (a) and (b) suggest the GENs are typically more accurate measure of closeness. (c-f)
show the CUF method implemented on the benchmark of Lancichinetti, Fortunato and Radicchi for varying k, b and c (compare to Fig. 5 and 7 of Ref.
[28]). The CUF method performs well for mƒ0:5, although modularity maximization is more accurate (as is the case in (a)), and beings to fail
significantly for mw0:5 as expected. (g) shows the multiresolution modularity [18] Qr of the high (solid black line) and low (dashed blue line)
resolution partitions using our CUF algorithm, alongside the maximum modularity determined via simulated annealing. The modularity maximizing
solutions transition smoothly between the coarser partition for small r and the finer partition for larger r as expected, indicating that our CUF method
does indeed detect the two levels of hierarchy accurately without appealing to arbitrary parameters.
doi:10.1371/journal.pone.0038704.g001
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be less robust with increasing i�. While the expected decrease in

robustness is clearly observed for D
(1)
i , at the macro-scale there

is a slight (but unexpected) increase in the robustness of each

node as i� increases. This is due to errors in the macro-scale

community detection, with macrocommunity B being the most

difficult to detect of all of them. Nodes in macrocommunity C

have constant in-degree and in-out ratio at the micro-scale

(with the corresponding robustness D
(1)
i nearly constant), but at

the macro-scale are less robust with both the in-degree and in-

out ratio decreasing (leading to an expected decrease in D
(2)
i

with increasing i�). Finally, the nodes on the micro-scale in

macrocommunity D simultaneously have increasing in-degree

but decreasing in-out ratio with increasing i�. While we find the

degree of robustness D
(1)
i increasing, the rate of increase of D

(1)
i

depends on the interplay between the increased robustness due

to more in-community edges and the decreased robustness due

to more out-of-community edges. D
(1)
i in macrocommunity B

and D and D(2)
s in macrocommunity D are both clear examples

of the dependence of the rate of increase in D(j)
s on both kin and

r(j). The successes in correctly determining not only the

hierarchical community structure but also node robustness of

this simple benchmark suggest that our approach may be

fruitfully applied to complex real world networks with

hierarchical structure.

Results and Discussion

The Harvard Coauthorship Network
Turning now to real examples, we look at the network of

scientific journals which we expect can be divided into sub-fields at

varying resolutions. We construct a network from publications

found in the Digital Access to Scholarship at Harvard (DASH)

repository, a database of journals, book chapters, and conference

proceedings uploaded by Harvard faculty. The available metadata

includes the authors and the journal of publication, which we use

to generate a weighted network with each journal as a node. The

weight of the edge between nodes i and j, wij , is the number of

article pairs that have at least one author in common, with one

article published in journal i and the other in journal j. The largest

connected component of this network (comprising N~779
journals as nodes, shown in Fig. 3(a)) has a complex structure:

while the degree of each node (the number of edges with non-zero

weight) is exponentially distributed, P(ki~k)*e{k=15:1, the

strength of each node is log-normally distributed, with a good fit

given by P(Wi~W )*W{1e{0:24½log (W ){5:3�2 (see Fig. 3(b-c)). It is

Figure 2. Benchmarks with variable node robustness. (a) A snapshot of the benchmark with hierarchical community structure and variable
node robustness at a~8. The behavior of the nodes as a function of a and i�~½(i{1) mod 32�=31 is described in the table, with

r
(1)
i ~kin

i =(kout
i zkmix

i ) the average in-out ratio at the microcommunity resolution, and r
(2)
i ~(kin

i zkout
i )=kmix

i is the in-out ratio at the
macrocommunity resolution. In the table, down arrows, up arrows, and dashes denote increasing, decreasing, and constant values (respectively)
of the quantities on average. (b) and (e) show the in-degrees at each resolution, kin

i for microcommunities and kin
i zkout

i for macrocommunities.

Likewise, (c) and (f) show the ratio of in- and out-degrees at each resolution, r
(1)
i and r

(2)
i . (d) shows the degrees of robustness D

(1)
i at the micro-scale

and (g) shows the robustness D
(2)
i on the macro-scale. The behavior of the degrees of robustness at both resolutions agrees with the expectations in

most cases: if the in-degrees or in- to out-degrees decrease, the nodes become less robust.
doi:10.1371/journal.pone.0038704.g002

Table 1.

Macrocom. kin
i

kout
i kmix

i kin
i r

(1)
i

Behavior kin
i zkout

i r
(2)
i

Behavior

A kin
0 {ai� kout

0 (1{ai�=kin
0 ) kmix

0 (1{ai�=kin
0 ) ; – Less robust ; – Less robust

B kin
0

kout
0 zai�=2 kmix

0 zai�=2 – ; Less robust – ; Less robust

C kin
0

kout
0 {ai�=2 kmix

0 zai�=2 – – Constant ; ; Less robust

D kin
0 zai� kout

0 z2ai� kmix
0 z3ai�=r(2)

i
: ; More robust{ : – More robust

{The robustness with increasing i� depends on how slowly kin
i increases.

doi:10.1371/journal.pone.0038704.t001
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interesting to note that an exponentially distributed degree

sequence is indicative of network growth without preferential

attachment [30], while log-normally distributed strengths may

indicate growth with a localized preferential attachment in the

weight (see ref. [31] and below for further discussion). This may

illuminate some of the details of how a publication network grows:

while authors preferentially publish in high-profile journals or

proceedings (leading to the fat tail on the strength distribution),

they may choose to publish in new or lower profile journals if

necessary (leading to the exponential, non-preferential attachment

distribution of the degree sequence).

In Fig. 3(a), 36 microcommunities in the DASH network are

found, and in most cases an inspection of the group memberships

showed the members of each community were related (a full list is

found in Supplementary Information S1). It is worth noting that

using a Potts model approach to modularity maximization [14,32]

(with resolution c~1) yields 32 distinct microcommunities, and the

partitions generated by the two methods share much in common,

suggesting the CUF results are reasonable. The hierarchical

detection scheme shows that each of the microcommunities falls

into 6 natural macrocommunities (see Fig. 3(a)). The two largest

macrocommunities show a division between the Physical Sciences

(physics, biology, chemistry, and geology) and the Mathematical

Sciences (pure mathematics, economics, and computer science).

Three additional macrocommunities consist of a combination of

Philosophy and the History of Science, Linguistics, and Law, and a

final macrocommunity having no obvious meaning on inspection

(see Supplementary Information S1 for the member journals of

each community). We note that this hierarchical partition is not

easily detected using the Potts modularity maximization approach:

even for c~0:02, there are still 23 microcommunities detected via

modularity maximization. Thus, the partition into distinct

scientific fields naturally arises from the coarse graining in our

approach, but is difficult to detect using modularity methods

alone. Further coarse graining shows that there is no additional

hierarchical structure to be found in the DASH network.

The average robustness of the nodes in each community of the

DASH data is very heterogeneous (the multi-colored bars in

Fig. 3(d)), which can be of use in determining which micro-

communities are held together weakly, either because of the

complex network topology involving the nodes in the community

or due to an incorrect partitioning of the network. Many of the

detected communities have few nodes, and are correspondingly

less robust on average. Even some large communities have low

average robustness, which could indicate an incorrect assignment

or an unexpected network topology around a community. For

example, Phys. Sci. 5 (PS5 in Fig. 3(d)) consists of 26 journals, with

a very small average degree of robustness of r
(1)
PS5~2:8. The

surprisingly low robustness of PS5 is not due to sparse connections

between nodes within the community (the average degree of nodes

in PS5, Skin
i T~7:6), but is because of the fact that these journals

are highly connected externally (SkoutT~5:5).

The robustness of a node’s assignment to its macrocommunity

(the thin black bars in Fig. 3(d)) is not determined by how robustly

assigned it is to its microcommunity. The average robustness r(2)
c

gives an indication of how strongly a microcommunity is attached

to its macrocommunity, and we find that Philosophy/History 1

(PH1) is the most weakly assigned, with r
(2)
PH1&0:12, despite the

very robust assignment of the nodes in the microcommunity

(r
(1)
PH1~9:8). Two journals in PH1 are very strongly connected to

the Mathematical Sciences macrocommunity (so much weight is

directed to Math. Sci. from PS1), while many journals in PH1 are

more weakly connected to the journals in its own macrocommu-

nity (so more edges are directed towards Philosophy and History).

The degree of robustness is thus able to home in on micro-

communities that may be on the boundary between macrocom-

munities and identifying particularly complex topologies.

The Physical Review Citation Network
Another real-world network where one may expect a hierar-

chical structure is that of a citation network (independent of their

journal of publication), with an expectation of divisions between

fields and sub-fields as was observed in the DASH network. We

examine the citation network of articles published in the Physical

Review journals [33,31], with articles as nodes and citations

between articles as edges. Citations naturally form directed edges

(a citation between i and j does not imply a citation between j and

i), but to apply our methods we study the undirected (wij~wji)

version. The degree distribution of this network has been

previously shown to be log-normally distributed [31], which may

indicate the underlying dynamics of the growth of the network.

Network growth coupled with with preferential attachment

produces a scale free degree distribution [30,7], but Redner [33]

has noted that a modified, locally defined preferential attachment

process explains the emergence of a log-normally distributed data.

Rather than citing the most important papers, an author chooses

to cite either a randomly chosen paper or one of the citations of

that paper (with the latter likely to be highly cited [34]). The log-

normal distribution is also observed in the highly-cited subset of

the network considered (see below for further discussion),

suggesting that this smaller sample is reasonably representative

of the structure of the full network.

Applying the CUF method to the Physical Review network detects

four distinct hierarchies of community structure, ranging from the

finest resolution of numerous small microcommunities to the

coarsest resolution with two large macrocommunities (see Fig. 4(a-

c) for a schematic ranging from coarsest to finest). At the highest

resolution, 266 communities are detected, and the partition has

the modularity Q1~0:63 (at c~1). This is in reasonable

agreement with a similar previously studied Phys. Rev. network

[33] with 274 detected communities and a modularity of Q~0:54,

suggesting that this fine resolution partition of the more current

data is reasonable. High-modularity partitions are also detected

using our coarse graining method, with the modularities Q2~0:75
for the 62 communities on the second level of the hierarchy and

Q3~0:74 for the 11 communities at the third level (see Fig. 4(a-b)).

The final level of coarse graining does not produce a very high

modularity (with Q4~0:33) for two macrocommunities, but the

meaning of the partition recognizable on inspection of the

component communities for its distinction between earth-bound

and cosmological research. At each level of hierarchy, the

partitioning is both reasonable from a scientific perspective as

well as generally producing a large modularity, suggesting that

CUF approach is able to discern the natural partitions of the

network without need for a resolution parameter.

The distribution of the degrees of robustness found in the

Physical Review network is shown in Fig. 4(d), along side the degree

distribution of the nodes. As mentioned earlier, the degree

distribution is well fit by a log-normal distribution [31]

P(ki~k)*k{1e{1:1½log (k){2�2 , with a fatter tail than exponential

but vanishing faster than a power law. The distribution of node

robustness D
(j)
i , which indicates how robustly the node i is assigned

at the jth level of the hierarchy, decays much more rapidly for large

D
(j)
i for all four of the hierarchical levels. At the finest resolution

(blue squares in Fig. 4(d)), the degrees of robustness are well fit by

an exponential decay P(D
(1)
i ~D)*e{D=4:5, and although the tail
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beyond D~20 (incorporating below 2.5% of the nodes) is slower

than exponential, it remains faster than log-normal. The far more

rapid decay of the degrees of robustness suggest that highly-cited

papers have applications in a wide variety of fields (i.e. are have

many out-of-community edges). The robustness of the nodes at the

lower-resolution partitions are all similar to one another (triangles

and stars in Fig. 4(d)), all satisfying an exponential initial decay of

P(D
(j)
i ~D)*e{D=2:8 over a somewhat shorter range. Each node

has roughly the same robustness on each level of the hierarchy,

suggesting that an equal fraction of nodes are involved in forming

the edges of the different levels of the hierarchies.

Conclusions
In this paper, we have described a new and intuitive method for

detecting hierarchical community structure in complex networks that

does not rely on free parameters or require advanced knowledge of

the number or size of the communities. Given a method for

measuring the ‘closeness’ between two nodes in a network, one can

trace a path of closest friendship that defines a high-resolution

partition of the community, resulting in a method with (1) reasonable

computational complexity in comparison to other methods [10], (2)

easy detection of multiple levels of community structure without the

need for an (unknown apriori) resolution parameter [17,13], and (3) a

simple yet powerful method of measuring the robustness of the

assignment of an individual node to its community. We must note

that there are also limitations to our approach, including the free

choice of a closeness measure, pathological network topologies

(which, for example, necessitates the use of the CUF over the CF; see

Supplementary Information S1), and the requirement that no

community can be formed from only one node. Despite these

possible limitations, the advantages of our approach in automatically

detecting and evaluating hierarchical community structure are

significant. Using the recently proposed Generalized Erdös Numbers

[24] as a closeness measure (which performs better than other

measures in benchmarks) we examined two real world systems where

a hierarchical community structure is naturally expected: a

Figure 3. The network of journals from the DASH data. (a) Low weight edges (with 1ƒwijƒ5) are shown in blue, while higher weight nodes
(wij§6) are shown in red. Nodes are ordered in order of descending macrocommunity size, then descending microcommunity size, and finally in
descending strength. The 36 microcommunities are denoted by the smaller black squares, while the 6 macrocommunities are shown in the larger

thick black squares. Some microcommunities are labelled with their two most robust nodes (having largest D
(1)
i ). The degree distribution of the DASH

data in (b) is exponential, while the distribution of node strengths in (c) appears to be log-normal. In (d), the average robustness of nodes in the

microcommunities (r(1)
c , thick bars of varying color) and macrocommunities (r(2)

c , thin black bars) for the DASH data. In (d), the bar for Mathematical

Sciences 2 (MS2) is cut off, having a very high average degree of robustness of r
(1)
MS2~39:8.

doi:10.1371/journal.pone.0038704.g003

Figure 4. The hierarchical community structure of the Physical Review network. (a-c) shows a progressively coarsened view of the network,
with the text labels of the communities composed of the most statistically significant words found in the titles of the articles in the communities. (a)
shows the microcommunity structure of 148 nodes, with (b) a zoomed-out picture of the 625 nodes in one macrocommunity of the second level of
the hierarchy, and (c) the full network (showing the final two levels of hierarchy). (d) shows the degree distribution as well as the distribution of node
robustness at each level of the hierarchy (shown log-linear in the inset). Black circles show the degree distribution, which is log-normally distributed
[31] (the best fit is the black line). The distribution of robustness on the micro-scale, D

(1)
i , is shown with the blue squares, while the distribution for the

other hierarchical degrees of robustness D
(j)
i are all quite similar (shown with the up triangles, down triangles, and stars). The initial decay of the

robustness is well-fit by an exponential in all cases (with the best fit for each shown as lines).
doi:10.1371/journal.pone.0038704.g004
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coauthorship network defined by the DASH data and a citation

network generated from the Physical Review data. Our approach is able

to detect a high-resolution partition of each dataset that is composed

of well defined communities of variable size, and an inspection of the

member nodes suggests that the partition is meaningful in both the

DASH- and Phys. Rev. networks. Our coarse graining method of

detecting hierarchy finds a reasonable macrocommunity partition for

the DASH data (with each of the macrocommunities clearly linked

upon inspection), with this coarse-grained partition not obviously

detected using modularity maximization. By examining the degree of

robustness of these communities on the micro- and macro-scale, we

are able to rapidly home in on the most interdisciplinary communities

(those with many significant connections to other communities). The

Phys. Rev. citation network naturally partitions into four distinct

hierarchies of communities (without any apriori assumption of the

correct number of hierarchies), with the nodes in the communities

generally related to each other upon inspection. The ability to find

communities of arbitrary size, detect the structure of a natural (and

system-defined) number of hierarchies, and locate particularly insular

or interdisciplinary communities are all significant advantages of our

method, and clearly displayed in the analysis of both the DASH and

Phys. Rev. networks.
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1 Closeness Measures and Community Detection

A schematic diagram of a network with easily-detected community structure is shown in
Fig. 1(a). In this network, a pair of communities with |c| = N/2 nodes each is con-
nected by exactly one edge (between α and β). For any reasonable measure of closeness, a
node will feel closer to other nodes within its community rather than those in a different
community, with the Generalized Erdös numbers (GENs), Jacard Coefficients (JCs), and
overlap explicitly demonstrated as having this property. Resistance Distance, the mean
first passage time between nodes, and the Adar / Adamic coefficient[1] all behave in a
similar manner (not shown). There is a clear separation between in-community and out-
of-community closenesses for the network in Fig. 1(a), which can be used to determine the
correct community structure. Each node i is constrained to be in the same community as
their closest friend, f(i). This is similar in spirit to the resistance-distance approach of Wu
and Huberman[2], but does not require an arbitrary threshold for defining communities.
Each measure of closeness will behave differently when fuzzy communities are detected,
with some outperforming others in the ability to detect communities (as discussed in the
main text). We note that no nodes in a network can be in a community by themselves
using this approach, since all connected nodes necessarily have a closest friend. It may be
possible to remove this restriction by introducing self-loops into the network, but we leave
this to later work.

In Fig. 1(a), it is important to note that it is not possible to continuously tune an arbitrary
parameter to find different partitions. Using modularity maximization with resolution
parameter γ as an example, at γ = 1 we expect to detect the correct partition of two
communities. For γ → 0, we expect to find only a single community, including all nodes in
the network. No reasonable measure of closeness will ever produce this coarsest partition of
Fig. 1(a), since it would require a node in c1 to feel closer to nodes it has fewer connections
to than those it has many connections to. Regardless of the closeness measure chosen (and
even if a tunable free parameter included in our the measure), a single community can not

be detected using the CF approach so long as nodes feel closer to their neighbors than their
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non-neighbors. The coarser partition of a single community is, however, readily detected
using the hierarchical approach described in the text.

In Fig. 1(b), we show a pathological network topology for which the CF method will fail:
two distinct communities with each node connected to a single, central node (δ). Most
measures of closeness will find all nodes feel closest to δ (and all reasonable measures will,
so long as the intra-community edges are sufficiently sparse and the network sufficiently
large), so the CF approach will assign all nodes to the same community as δ. In such a case,
only a single community will be (incorrectly) detected. This can be avoided by searching
for the closest unpopular friend: after sorting nodes into ascending order of how close
node i feels to them, the closest node with degree less than or equal to the next-closest is
selected as f(i). Note that for the closest unpopular friend algorithm on a weighted graph,
we still search for lower degree ki rather than strength Wi, which avoids nodes that are
connected to many other nodes (ki � 1) but not nodes that are strongly connected to a
few nodes (Wi � 1). The node δ is assigned to the community its closest unpopular friend
is in, which will depend on the details of the network topology and the choice of closeness
measure.

2 Fractured Communities

While the CF and CUF algorithms provides a intuitive method for detecting communities
in an arbitrary graph, it is possible for a correct community to be fractured into two or
more parts due to the local variability of the density of edges. As pictured in Fig. 2), an
intended community A may be split into two groups, A1 and A2 due to the asymmetric
connections each of these sub-communities has to the communities B and C. As pictured,
there are either more edges leading from A1 to B than there are between A1 and C or the
total weight between A1 and B is larger than between A1 and C. While useful information
could be found in the structure of the fractured communities, is also desirable to recover
the ‘correct’ communities despite these local variations. In order to produce a more useful
method for community detection, we must supplement both of these approaches with an
algorithm to merge fractured communities to better recover the ‘correct’ partition.

The fracture of communities can be due to two aspects of the detection: first, the decisions
are purely local (even if the closeness measure incorporates the global topology). Because
the decisions are not made with a global quality function, the splitting of a community
into two pieces is not penalized. Second, the random nature of the networks allows for
variability in the local density of edges. These fluctuations in density will affect all com-
munity detection methods[3], and in some cases may call into question the ‘correctness’ of
the intended partition.

In Fig. 2, the detected groups A1 and A2 (which are in the same community in the

2



‘correct’ partition) will likely have a large number of edges between them. If we imagine
a single community is mistakenly broken into two sub-communities of the same size (n
nodes apiece), the number of edges between the sub-communities should scale as n2 (with
a uniform density of edges in the correct community A). This allows us to build a relatively
simple greedy search for communities to merge. Once a CF or CUF partition has been
determined, we perform a search for the pair of communities g and h with the largest value
of kg→h/max(ng, nh)2, where kg→h is the number of edges leading from group g to group h

and ng is the number of nodes in group g. Before we merge the communities g and h, we
check to ensure that kg→h ≥ min(kg→g, kg→h). If the inequality is not satisfied (i.e. there
are fewer edges between g and h are in either g or h alone) the greedy search is halted,
otherwise g and h are merged and the search repeats.

In Fig. 3, we use the GENs to compare the CF and CUF methods for with or without
community merging (averaged over 100 realizations of the network). We see that the CUF
approach with merging gives the best overall results, with the largest normalized mutual
information[4, 5] (as defined in eq. 2 of the main text) for all values of kout, with only a
moderate improvement over the CF approach. However, the CUF approach is more prone
to community fracture (where the black circles do not converge to I = 1 as kout → 0), and
greedy merging is therefore essential for reliable reconstruction of the network. We note
that the merging of fractured communities as implemented here could also be used with
modularity maximizing methods and may improve the spurious splitting of communities
in some cases.

As noted in Fig. 2, variability in the local density of edges can lead to fractured parti-
tions. The propensity of modularity maximization for finding spurious sub-communities
can perhaps be most clearly seen by considering a random network without any community
structure. We generate networks with the probability of an edge between any nodes is
pedge, with 0.04 ≤ pedge ≤ 1. In Fig. 4, we show the number of communities detected
in these networks using both greedy modularity maximization (squares) and the CUF ap-
proach (circles). The CUF performs far better than the greedy modularity maximization
for pedge � 0.1, while modularity maximization consistently finds more than one community
for all pedge < 1. For small pedge, we expect fluctuations in the edges will produce a locally
higher density of edges randomly, which may be detected using any community detection
method[6]. However, as pedge increases, these fluctuations should be less significant, and
the CUF that detects only a single community may be preferable.

3 A Common Hierarchical Benchmark

It is natural to define a coarse grained network formed with the communities in the higher-
resolution partition acting as nodes in the new, lower-resolution network in order to detect
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a hierarchy of community structure in the network. However, it is not immediately obvious
how to choose the new edges in the new network, and rather than attempt to define coarse-
grained edges at this resolution, we take the closeness between the coarse-grained nodes
to be the average closeness between communities in the high-resolution partition. In the
particular case of the GENs, the harmonic mean is the appropriate way to average the
closeness, as the closeness between communities should be dominated by the nodes in each
that feel close to one another (small Eij , thus more significant in the harmonic mean),
rather than the nodes that do not feel close to one another (large Eij , less significant in
the harmonic mean). For other closeness measures, it a linear mean may be the more
reasonable choice for averaging the closeness between communities.

It is worth re-emphasizing that we do not expect to be able to continuously tune the
resolution of the coarse-grained network with a free parameter. Our ability to detect
hierarchical structure of course depends on the accuracy of the higher resolution partition
(with an inaccurate partition unlikely to accurately detect the correct macrocommunities),
and the existence of a ‘correct’ hierarchical partition. If nodes in communities g and h are
very close to one another in the original network, a reasonable method of averaging should
ensure they are close in the coarse grained network. While the detected partition will
weakly depend on the method of coarse graining, it is not possible to tune the averaging
as it is in the case of modularity maximization (or other approaches), where choosing a
resolution γ � 1 will assign all coarse-grained nodes to the same community.

We apply our coarse graining approach to detect the community structure of the benchmark
presented by Rechardt and Bornholdt [7] depicted in Fig. 5. The network of N = 512
nodes is composed of 16 microcommunities with on average kin = 16 edges internally per
node. Four of these microcommunities form a macrocommunity, with on average kout edges
per node within a macrocommunity and kmix edges per node between macrocommunities.
Note that this is the benchmark that is modified in order to produce the benchmark of
variable robustness as described in the main text. The mutual information between the
correct and detected partitions of the micro-communities (using the CUF approach with
the GENs as the closeness measure) is shown in Fig. 6(a) for varying kout and kmix. The
microcommunities are detected accurately for small kout, with the transition from ‘good’
to ‘bad’ detection occurring for kout + kmix ≈ 34 (the point at which I = 0.5, averaged
over the four curves shown), more than twice the value of kin = 16. It is worth noting that
for the larger values of kout (12 or 14), often the failure to saturate to I = 1 at kmix = 0
is due to the fact that the method will fail to detect the microcommunity structure of
16 communities, but rather the macrocommunity structure of 4 macrocommunities. For
sufficiently dense connections within the macrocommunities, the CUF method does fail to
detect the finest resolution of the network. However, so long as the microcommunities are
accurately detected, the macrocommunity structure is also correctly determined (as shown
in Fig. 6(b)). For kout = 16, we generally fail to find the macrocommunity structure
because of the poor detection of the fine-resolution structure, while for kout = 12 or 14, the
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macrocommunity structure is not reliably found as kmix → 0. Modularity-based methods
or other approaches may outperform these results[7, 8] if the correct (but a priori unknown)
resolution parameter is chosen. However, our approach gives a single partition for each scale
(both micro- and macro-), and performs very well so long as the micro-communities are
not too fuzzy (kout is sufficiently small), without using an unknown parameter.

4 Common Real-World Community Benchmarks

Modularity maximization performs quite well on the artificial GN benchmark precisely
because of the modular structure inherent in the test: the correct solution was also the
modularity maximizing one. This may not be the case in real world networks, where
the ‘correct’ partition is determined from external information and is independent of the
partition’s modularity. To see the utility of the CF or CUF methods, we examine three
simple real-world benchmarks with an a priori known partition in the main text. The
football network[9] is comprised of nodes representing american football teams, with edges
denoting games played between them in 2000. The ‘correct’ partition groups each team
within their externally-defined division. The political blogs network[10] is a set of blogs
in the leadup to the 2006 US midterm election, with an edge representing a link from
one blog to another (we use an undirected version of this network). The political books
network[11] is a set of books purchased on amazon.com around the 2004 US presidential
elections, with an edge representing a co-purchase of a pair of books. In the political blogs
and books networks, the ‘correct’ partition is the node’s apparent political leaning: liberal
vs. conservative in the former and liberal, independent, or conservative in the latter. All
of these benchmarks are unweighted networks (with wij = 0 or 1).

One common benchmark with a known community structure not mentioned in the main
text is Zachary’s Karate club[12]. This is a very small network of 34 nodes representing
members of a karate club at an unnamed university, with edges denoting the out-of-club
interactions between individuals. The club split into two parts due to a disagreement
over the club’s leadership, and the ‘correct’ partition denotes which individuals fell on
a particular side of the disagreement. The karate club is partitioned using a number of
approaches in Fig. 7, with from left to right modularity maximization, CF/CUF using
the GENs, using the JCs, and using overlap. For the Karate club benchmark, we find
surprisingly that both overlap and the GENs perform extremely poorly while the Jacard
coefficients (JCs) perfectly reconstruct the correct partition. However, if the closest friend
(CF) approach is used (rather than the closest unpopular friend approach, which avoids
high degree nodes when assigning communities and is implemented throughout the main
text), the GENs perfectly reconstruct the network, followed by overlap and then by the
JCs. This illustrates that pathological networks do indeed exist that have not been fully
accounted for in the CUF methodology, and it is difficult to predict exactly which method
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will be optimal a priori. We also note that a CF partition can be generated rapidly
when generating a CUF partition, and by examining a global quality function (such as
modularity), one can easily distinguish which partition better represents the structure of
the network. Thus, despite the unexpected behavior of our approach when considering the
Karate Club network, we determine that (a) the GENs remain a reasonable choice for the
closeness measure and (b) that it may be necessary to compare the results of the CUF
approach to a global quality function (such as modularity) to determine if the partition is
reasonable.

5 Simulated Annealing of the Benchmark

In order to generate the network used in benchmarking the community detection and ro-
bustness measure in the main text, we used simulated annealing to produce a network
with the desired properties. The desired in-, out-, and mixing-degree of each node were
computed: k

in,0
i , the desired number of edges from node i to nodes in its microcommunity,

k
out,0
i , the desired number of edges leading from i to any node in its macrocommunity (but

not in the microcommunity) and k
mix,0
i , the number of edges leading from i out of its macro-

community. From these the total number of edges M = 1
2

�
i(k

in,0
i + k

out,0
i + k

mix,0
i ) was

determined, and a network of N = 512 nodes was generated having precisely M randomly
distributed edges. The network was then randomly rewired, with a new trial configuration
generated by removing one edge connecting the randomly chosen i and j, and a new edge
being drawn between i and k. This trial configuration was accepted using a metropolis
criterion: pacc = min(1, e−β(Eold−Etrial)), with the energy of a configuration

E =
1
2

�

i

�
(kin

i − k
in,0
i )2 + (kout

i − k
out,0
i )2 + (kmix

i − k
mix,0
i )2

�
(1)

where the first term of E is minimized if the in-, out-, and mix-degrees of each node satisfy
our desired conditions.The temperature parameter β is set to β = 1 initially, and incremen-
tally increased by 2×10−5 at each attempted rewiring. A total of 500,000 rewiring attempts
were made, with each edge on average experiencing ≈ 975 attempted rewirings.

6 How Ties are Handled

Unlike many real world networks, the network in Fig. 1(a) is highly symmetric and the
closeness between nodes in groups A or B is likewise symmetric so that there is not a unique
closest friend. In this case, we must develop a rule for handling ties in the closeness. In
the case of a tie, we randomly but consistently select the ‘closest’ neighbor of i, f(i). This
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is accomplished by initially randomizing the node index, and choosing the node with the
lowest (random) index as closest. In practice, the importance of ties in the artificial or real
world networks networks depends on the choice of closeness measure. The Jacard coefficient
JCij = |Ci ∩ Cj |/|Ci ∪ Cj | can easily produce ties[13] for complex networks, whereas the
GENs require highly symmetric networks to see a tie. The lack of ties is an additional
advantage of measures that incorporate the global topology of the network, rather than
purely local information.

7 Details of the DASH robustness

The DASH database, downloaded in June 2010 contained N0 = 918 journals and 2404
articles published by 3385 unique author names, not all of which work at Harvard. Because
of the interdisciplinary and highly connected nature of the journals Science, Nature, and
Proc. Natl. Acad. Sci, these three journals are removed from the network. This alteration
does not alter the shape of either the degree or weight distributions (although the removal
of edges does affect their particular fitting parameters).

While briefly discussed in the text, it is worthwhile to examine the structure of the DASH
network in detail, to determine the power of the degree of robustness in finding complex
topologies or incorrectly assigned nodes. When we examine the degrees of robustness
observed in the network, nodes with few edges connecting them to their community have
a correspondingly low degree of robustness, reflecting the fact that they are only weakly
connected to their assigned community. Low values for the degree of robustness D

(1)
i for

these weakly connected nodes is unsurprising. We can use the degree of robustness to find
nodes that are on the boundary between communities (i.e. that are strongly connected
both to their assigned community as well as to a different community to which they are
not assigned). We find 142 nodes with D

(1)
i ≤ 2, 53% of which have kin

i ≤ 2 (indicating that
they are simply of low degree, rather than on the boundary of a community). However,
there are a few nodes that have D(1) ≤ 2 but are strongly connected to their respective
communities (having high degree and weight directed into ci). Due to their large values
of kin

i , these nodes are most likely on the boundary of their respective communities. The
five journals with smallest D

(i)
1 /ki with D

(1)
i = 1 or 2 are shown in Table 1. Some of these

journals have a kin
i � ki (so many edges lead from i to different communities), while others

have kin
i ≈ ki (so most of the edges from i are within its assigned community).

Examining the topology of the DASH network connected to these nodes that are boundary-
like shows two distinct causes of high in-degree and low degree of robustness. Cognition,
the second journal in Table 1 has more than twice as many out-edges as in-edges, but these
out-edges are distributed amongst a wide range of communities. In Table 1, Cognition

has the most weight (W in
i = 14) directed towards its community (Phys. Sci. 4, primarily
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focused on Oceanography and Atmospheric Science), but has a large weight of 12 directed
towards the Phys. Sci. 3 community (focused primarily on Psychology and Neuroscience,
a more natural choice of community assignment for Cognition). It is likely that this node
was incorrectly assigned, but the fact that the highest weight points towards Phys. Sci.
4 makes the misassignment understandable. The degree of robustness has allowed us to
locate this possible error with ease, while the in-degree (kin

i = 8), total degree, the ratio
of in- to total degrees (kin

i /ki = 0.32, and is the 17th worst of all journals), or the ratio of
in- to total strengths (W in

i /Wi = 0.34, the 10th worst of all journals) would not highlight
Cognition as a particularly troublesome node.

The other journals in Table 1 all have a low degree of robustness for a different reason.
For these, the largest number of edges point towards their assigned communities, and in
all but one case (the Journal of Economic History) the largest weights are also pointed
towards their respective communities. However, in each case the journal is connected to
the ‘core’ of a different community: nodes in a different community with both high in-
weights or in-degrees and high robustness. While the assignment of each node in Table
1 to its respective community is often reasonable (since the majority of edges are within
its assigned community), each of these nodes is also connected to one or more nodes that
effectively define a neighboring community. These journals act as a bridge between the
(generally less robust) communities to which they are assigned and the core of a robust,
strongly connected community.

It is also of interest to determine the quality of the assignment of each microcommunity to
its macrocommunity. The thin black lines in Fig. 2 of the main text denote the macrocom-
munity robustness r

(2)
c = �D(2)

i �i∈c of each assignment. We note that a robust microcom-
munity (with high rc = �D(1)

i �i∈c) does not necessarily imply a robust assignment to its
macrocommunity, and that many well formed microcommunities have a very low value of
r
(2)
c . Table 2 shows that the lowest values of r

(2)
c typically occur for communities that have

relatively few out-edges (and thus their assignment to their macrocommunity is expected
to be fragile). However, the assignment of the Philosophy and History 1 (PH1) microcom-
munity to its macrocommunity is surprising, as it has a very low ratio of in- to out-degree
and in- to out-strength. While the placement of PH1 to the Philosophy and History macro-
community may appear to be an error, the surprising assignment is due to the fact that
75% of the out-of-macrocommunity edges and 84% of the out-of-macrocommunity weight
are due to only two journals: the strong connections that Social Studies of Science and
Annual Review of Sociology have towards Mathematical Sciences 3 (also focused on the
Social Sciences). There are three journals in PH1 that are connected to the Philosophy
and History macrocommunity, Isis, Persepectives on Science, and Journal of the History

of Ideas. Two of these journals are in the ‘core’ of PH 1 (with D(1) = 17), while only
one of the journals strongly connected to Math. Sci. is in the core (with D(1) = 16).
Thus, the assignment of PH1 to the Philosophy and History macrocommunity is due to
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the fact that, while more weight is directed out of the assigned macrocommunity, the core
journals of PH1 are more strongly connected to Philosophy and History journals. PH 1
is clearly boundary-like, and our robustness measure of r

(2)
c accurately detects this fragile

assignment.

8 Additional details of the Phys. Rev. Network

The Physical Review network included over 462,000 articles published in any Physical
Review journal up to July 2010. Due to the size of the network , we consider only the
subset of articles that have garnered at least 100 citations, with the largest connected
component including 3651 articles and over 16,000 edges. While the network is unweighted
(one citation is neither stronger nor weaker than another, thus wij = 0 or 1) and directed
(article i cites article j, but not vice-versa), we consider the non-directed version (with
wij = wji=0 or 1). The community structure at one resolution of the Phys. Rev. network
up to 2007 has previously been determined[14]. The detected communities are similar in
many respects to the community structure we have detected, although these other papers
did not report an examine of any additional hierarchical structure, as we discuss in the
main text.
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Tables

Name Community D
(1)
i kin

i ki W in
i Wi

J. Econ. Hist. Math. Sci. 3 2 16 24 71 157
Cognition Phys. Sci. 4 1 8 25 14 41

Ecol. Appl. Phys. Sci. 5 1 8 10 18 22
Oikos∗ Phys. Sci. 5 1 8 10 18 22

Brit. Med. J. Math. Sci. 6 2 14 15 29 32
∗
Oikos is an ecology journal published by the Nordic Ecol. Soc., and has exactly the same connections as

Ecol. Appl.

Table 1: The five most boundary-like nodes (with the lowest non-zero values of D
(1)
i /kin

i ).
The first, J. Econ. Hist., has a high degree and strength and large kin and kout. Similarly,
Cognition has the smallest ratio of in-edges to total node degree, and is connected to a
large number of other communities. The last three elements in the table are surprising in
that they have a few connections outside of their communities (kout

i = 1 or 2 compared to
kin = 8 or 10) but still have low degrees of robustness. This is because while they have many
in-community connections, their few out-of-community connections lead to strong, central
nodes in other communities. These boundary-like nodes would not be easily detected by
simply looking at the in-degrees or in-out ratio.
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Community Focus r
(2)
c kin

c W in
c kout

c W out
c

Phil. & Hist. 1 History 0.12 3 7 28 45
Phys. Sci. 13 Info. Theory 0.2 1 1 0 0
Math. Sci. 10 Drug Addiction 0.25 1 1 0 0
Math. Sci. 11 Crystallography 0.33 1 1 0 0
Phys. Sci. 9 High En. Physics 0.38 3 6 0 0

Table 2: The five least robust macrocommunity assignments. kin
c and W in

c denote the total
number of edges and total weight from the microcommunity to other microcommunities in
its macrocommunity respectively, while kout

c and W out
c denote the total number and weight

of edges into any other macrocommunity. Philosophy and History 1 (PH 1) is the worst, and
lies on the boundary of the Philosophy and History macrocommunity and the Mathematical
Sciences macrocommunity. The other macrocommunity assignments are very fragile do to
the very small number of connections, and are peripheral microcommunities.

Figure Captions
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Figure 1: Detecting communities with the CF and CUF methods. (a) An example of two
clearly defined communities (c1 and c2), each of size N/2 with exactly one edge connecting
them. Any plausible measure of closeness based on the network topology will clearly
distinguish between intra- and inter-community connections. The closeness between nodes
within the community as measured by the GENs (Ein), JCs (J in), and overlap (Oin),
with |c| the number of nodes in each community. Likewise, the closeness between nodes
in different communities is shown with the superscript ‘out’. (b) A schematic network
of a single highly connected node (δ) to which all nodes in the network will feel closest.
Assigning each node to the same community as their closest friend (the CF approach)
will assign all nodes to the same community as δ, thus detecting only one community.
By avoiding high-degree nodes (the CUF approach), the two communities are correctly
detected, with δ assigned to one or the other.
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Figure 2: Merging of fractured communities. Community A is fractured into two commu-
nities, A1 and A2 due to the fact that A1 is more strongly connected to B (connections
labelled ‘stronger’) than to C (connections labelled ‘weak’), while community A2 is more
strongly connected to C than B. In this coarse-grained schematic, ‘stronger’ may represent
either high weight or many edges between them. Because A1 and A2 are truly subsets of
the same community in the ‘correct’ partition, we expect a large number of edges between
them.
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Figure 3: Improvements in the methods using fracture merging. A comparison of the ap-
proaches for community detection using the GENs, using the Newman-Girvan benchmark.
Red squares denote the CUF after community merging, which gives the best overall re-
sults. Black circles denotes the result of the CUF without merging, and has a low mutual
information to the expected partition due to fracture (even for clear communities, with low
kmix). The blue up and purple down triangles are the results for the CF algorithm with
and without fracture correction, respectively.
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Figure 4: Community detection in unstructured networks. The number of communities
nc detected using greedy modularity maximization (up and down triangles) or the CUF
method (squares and circles) for a randomly linked network (with no intended community
structure) as a function of the probability of an edge between two nodes, pedge. Greedy
modularity maximization is shown in the purple down triangles for N = 100 nodes and
black up triangles for N = 200 nodes, while the blue circles shows CUF detection for
N = 100 and red squares for CUF with N = 200. When there is no intended structure in the
network, modularity maximization tends to find a relatively large number of communities,
while the CUF method typically finds only one community (for sufficiently large pedge � 0.1.
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Figure 5: The adjacency matrix of the Reichardt-Bornholdt hierarchical benchmark. Each
node is a member of a micro-community of 32 nodes, with kin = 16 connections to the other
nodes in its micro-community on average. Each micro-community is a member of one of
four macro-communities, and each node in a macro-community has kout edges internally on
average. Each node has on average kmix edges to nodes outside of their macro-community.
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Figure 6: Accuracy of the hierarchical benchmark. The detection of (a) micro- and (b)
macro-communities averaged over 100 realizations of the network. For all samples, kin = 16
is held fixed. kout is varied as kout = 8 (blue circles), 10 (red squares), 12 (black up triangles)
and 14 (purple down triangles). The mixing between macrocommunities is varied with
2 ≤ kmix ≤ 30. The CUF approach accurately detects the microcommunities over a wide
range of values of kout and kmix, and is clearly able to accurately detect the microcommunity
structure for sufficiently clear communities. So long as the microcommunity structure is
accurately detected, the macrocommunity structure seems reliably determined as well.

15



0

0.1

0.2

0.3

0.4

0

0.25

0.5

0.75

1

Modularity GENS Jacard Overlap

Modularity GENS Jacard Overlap

(a)

(b)

Gre
edy

Potts

CF

CUF

M
u

tu
al

 In
fo

rm
at

io
n

M
o

d
u

la
ri

ty

Figure 7: The karate club network. Mutual information (a) and modularity (b) of the
partitions of the Karate club[12] detected by a variety of approaches, with the a priori
correct partition known. The leftmost results show the results of partitions using the greedy
(striped red) and Potts model (striped blue) modularity maximizing partitions. For the
remainder, red denotes the closest friend (CF) while blue denotes the closest unpopular
friend (CUF) approach, with the GENs, JCs, and overlap shown. Surprisingly, the GENs
implemented using the CUF method performs the worst in all respect (in contrast to most
other benchmarks where it performs the best). For the Karate club network, the GENs do
reconstruct the exact ‘correct’ partition if the CF method is used.

16



Community Membership of the DASH Network

Greg Morrison and L. Mahadevan

May 29, 2012

Natural Sciences, Community 1

Accounts of Chemical Research ACS Nano Acta Materialia

Advanced Materials Animal Behavior Annals of Applied Statistics

Annals of Statistics Applied and Environmental Microbiol... Applied Physics A

Applied Physics Letters Behavioral Ecology and Sociobiology BMC Genomics

Chemistry and Biology Defect and Diffusion Forum Environmental Science and Technolog...

IEEE Journal of Quantum Electronics IEEE Journal of Selected Topics in ... IEEE Photonics Technology Letters

International Journal of Primatolog... Journal of Applied Physics Journal of Archeological Science

Journal of Bacteriology Journal of Chemical Physics Journal of Computer Aided Materials...

Journal of Crystal Growth Journal of Dramatic Theory and Crit... Journal of Materials Science

Journal of Microelectromechanical S... Journal of Physical Chemistry C Journal of Physics: Condensed Matte...

Journal of the American Chemical So... Journal of The Electrochemical Soci... Journal of Vacuum Science and Techn...

Journal of Vacuum Science & Techno... Lab on a Chip Materials Research Society Symposia...

Materials Science and Engineering Materials Science and Engineering A Materials Science in Semiconductor ...

Metallurgical and Materials Transac... Microbiology Modern Drama

Molecular and Cellular Biology Molecular Biology and Evolution MRS Bulletin

Nano Letters Nanoscale Research Letters Nanotechnology

Nature Biotechnology Nature Methods Nature Physics

New Journal of Physics Nuclear Instruments and Methods in ... Nuclear Instruments and Methods in ...

Nucleic Acids Research Optics and Photonics News Optics Express

Optics Letters Physica C Physical Review A

Physical Review B Physical Review D Physical Review Letters

Plant Cell and Environment Proceedings of SPIE Progress in Biophysics and Molecula...

Social Text The Open Inorganic Chemistry Journa... Trends in Ecology and Evolution

1



Natural Sciences, Community 2

ACM SIGCSE Bulletin American Journal of Botany American Journal of Science

Annual Review of Earth and Planetar... Annual Review of Ecology, Evolution... Annual Review of Microbiology

Astrobiology Canadian Journal of Earth Sciences Canadian Journal of Forest Research...

Chemical Geology Earth and Planetary Science Letters Elements

Geobiology Geochemistry Geophysics and Geosyst... Geochimica et Cosmochimica Acta

Geological Magazine Geological Society of America Bulle... Geology

Harvard Papers in Botany Icarus International Journal of Plant Scie...

International Workshop on Wearable ... Journal of Geophysical Research - P... Journal of Mathematical Biology

Journal of Paleontology Journal of Petrology Journal of Plant Growth Regulation

Lethaia Nature Reviews Neuroscience New Phytologist

Oceanography Organic Geochemistry Origins of Life

Origins of Life and Evolution of th... Palaios Paleobiology

Philosophical Transactions of the R... Physical Review Physics Today

Phytochemistry Plant Physiology Plos One

Precambrian Research Proceedings of the American Philoso... Review of Scientific Instruments

Sedimentary Geology Taxon The Sciences

Natural Sciences, Community 3

American Journal of Psychiatry Archives of Neurology Biological Psychology

California Law Review Cognitive Brain Research Cognitive Neuropsychology

Current Directions in Psychological... Developmental Biology European Review of Social Psycholog...

IEEE Transactions on Information Te... Journal of Adult Development Journal of Cognitive Neuroscience

Journal of Consulting and Clinical ... Journal of Experimental Psychology:... Journal of Experimental Psychology ...

Journal of General Internal Medicin... Journal of Mathematical Psychology Journal of Neurophysiology

Journal of Neuroscience Journal of Personality and Social P... Journal of Physiology - Paris

Journal of the American Academy of ... Journals of Gerontology Series B Language and Cognitive Processes

Memory & Cognition Mind, Brain, and Education Molecular Psychiatry

New Ideas in Psychology Personality and Individual Differen... Personality and Social Psychology B...

Perspectives on Psychological Scien... Psychiatry Research Psychological Science

Psychology and Aging Psychoneuroendocrinology Psychonomic Bulletin & Review

Public Opinion Quarterly Review of General Psychology Self and Identity

Small Group Research Social Cognitive and Affective Neur... Trends in Cognitive Sciences

Visual Cognition

2



Natural Sciences, Community 4

Aerosol Science and Technology Agricultural and Forest Meteorology Atmospheric Chemistry and Physics

Atmospheric Environment Child Development Cladistics

Climate of the Past Cognition Cognitive Psychology

Computers and Geosciences Cortex Current Biology

Deep Sea Research Part A. Oceanogra... Dynamics of Atmospheres and Oceans Earth Science Reviews

ECS Transactions Europhysics Letters General Psychologist

Geophysical Research Letters Global Biogeochemical Cycles Global Biogeochemical Sciences

Global Change Biology Intercultural Pragmatics Journal de Physique IV

Journal of Climate Journal of Fluid Mechanics Journal of Geophysical Research

Journal of Geophysical Research -Al... Journal of Marine Research Journal of Physical Oceanography

Journal of the Atmospheric Sciences Molecular Phyogenetics and Evolutio... Monthly Weather Review- Usa

Nature Geoscience Paleoceanography Philosophy and Literature

Quarterly Journal of the Royal Mete... Quaternary Science Reviews Statistics in Medicine

Systematic Biology The Mental Lexicon Theoretical and Applied Climatology

Natural Sciences, Community 5

Bioinformatics Biology Letters BMC Biochemistry

BMC Biology BMC Ecology Breviora

Canadian Journal of Zoology Ecological Applications Ecology

Ecology Letters Evolution Frontiers in Ecology and the Enviro...

Global Ecology and Biogeography Herpetologica Journal of Evolutionary Biology

Journal of Experimental Botany Journal of Theoretical Biology Journal of Vertebrate Paleontology

Malaria Journal Methods in Ecology and Evolution Molecular Ecology

Oikos Physical Review Series e Plos Computational Biology

Proceedings of the Royal Society B Theoretical Population Biology

Natural Sciences, Community 6

American Journal of Human Biology American Journal of Physical Anthro... Cancer Causes and Control

Cancer Epidemiology Biomarkers and ... Cancer Research Early Human Development

European Journal of Cancer Preventi... European Journal of Cancer Suppleme... Evolution and Development

Evolutionary Biology Fertility and Sterility Hormones and Behavior

Human Reproduction Integrative and Comparative Biology International Journal of Andrology

Journal of Anatomy Journal of Experimental Biology Journal of Human Evoluion

Journal of Morphology Medicine and Science in Sports and ... PaleoAnthropology

Schizophrenia Research Sports Medicine The Anatomical Record

3



Natural Sciences, Community 7

Applied and Preventive Psychology Behaviour Research and Therapy Biological Psychiatry

Consciousness and Cognition Emotion Journal of Anxiety Disorders

Journal of Consumer Research Journal of Experimental Social Psyc... Journal of Family Psychology

Journal of Personality Disorders Journal of Psychiatric Research Memory

Neuroimage Neuropsychologia Psychological Medicine

Psychopharmacology Psychophysiology Suicide and Life-Threatening Behavi...

The American Journal of Psychiatry

Natural Sciences, Community 8

American Naturalist Auk Bioscience

BMC Evolutionary Biology Genetical Research Genetics

Genome Biology International Journal of Plant Scie... Journal of Experimental Zoology Par...

Philosophy of Science -East Lansing... Plant Cell Plant Methods

Quarterly Review of Biology Trends in Genetics Yeast

Natural Sciences, Community 9

Advances in Theoretical and Mathema... Annals of Physics Annual Review of Nuclear and Partic...

Classical and Quantum Gravity Fortschritte der Physik General Relativity and Gravitation

Journal of High Energy Physics Nuclear Physics B

Natural Sciences, Community 10

ACM Transactions on Sensor Networks Annual Review of Neuroscience Cerebral Cortex -New York- Oxford U...

Experimental Brain Research Neuron PLoS Biology

The Journal of Neuroscience

Natural Sciences, Community 11

ACM SIGPLAN Notices Annual Symposium on Principles of P... International Conference on Functio...

Journal of Functional Programming Proceedings of the 25th ACM SIGPLAN... Proceedings of the 26th ACM SIGPLAN...

Proceedings of the ACM SIGPLAN 1996...

Natural Sciences, Community 12

Antiquity Archaeological Papers of the Americ... Asian Perspectives

Backdirt: Annual Review of the Cots... Current Anthropology Symbols

Natural Sciences, Community 13

IEEE Journal of Selected Areas in C... IEEE Signal Processing Magazine IEEE Transactions on Information Th...

IEEE Transactions on Signal Process... IEEE Transactions on Wireless Commu...

Natural Sciences, Community 14

Cell European Journal of Biochemistry Molecular Biology of the Cell

Nature Structural and Molecular Bio... Structure

4



Mathematical Sciences, Community 1

4th Multidisciplinary Workshop on A... AAAI Fall Symposium on Negotiation ... AAAI Spring Symposium on Empirical ...

American Economic Journal: Microeco... American Economic Review American Journal of Computational L...

American Sociological Review Annual Review of Economics Applied Economics Research Bulletin

Artificial Intelligence Autonomous Agents and Multi-Agent S... Brookings Papers on Economic Activi...

Canadian Journal of Economics Carnegie-Rochester Conference Serie... China Economic Review

Cognitive Systems Research Computational Management Science Computers & Operations Research

Contributions in Macroeconomics Decision Support Systems Econometrica

Economia mexicana Economic Journal Economic Policy

Economics of Transition European Economic Review European Finance Review

Explorations in Economic History Foreign Affairs Games and Economic Behavior

Handbook of Macroeconomics Health Services Research IEEE Infocom

IEEE Intelligent Systems Information Fusion International Journal of Game Theor...

Journal of Artificial Intelligence ... Journal of Business and Economic St... Journal of Business -Chicago-

Journal of Economic Dynamics and Co... Journal of Economic Literature Journal of Economic Perspectives

Journal of Economic Theory Journal of Empirical Finance Journal of Epidemiology and Communi...

Journal of Finance Journal of Financial Economics Journal of Health Economics

Journal of International Economics Journal of Law and Economics -Chica... Journal of Mathematical Economics

Journal of Monetary Economics Journal of Money, Credit and Bankin... Journal of Policy Modeling

Journal of Political Economy Journal of Public Economics Journal of Public Policy and Market...

Journal of the European Economic As... Journal of Urban Economics Management Science

National tax journal National Tax Journal NBER Macroeconomics Annual

Nber Working Paper Series NBER Working Paper Series New York Review of Books

Operating Systems Review Proceedings 35th International Conf... Proceedings of Autonomous Agents an...

Proceedings of the 2006 AAAI Spring... Proceedings of the 21st Annual Mee... Proceedings of the Conference on Ap...

Proceedings of the DARPA Workshop o... Proceedings of the Eighteenth Inter... Proceedings of the Eighth National ...

Proceedings of the First Internatio... Proceedings of the First Joint Conf... Proceedings of the Multi-Agent Sequ...

Proceedings of the Nineteenth Annua... Proceedings of the Sixth Internatio... Proceedings of the Workshop on Theo...

Public Choice Quarterly Journal of Economics Rand Journal of Economics

Rationality and Society Review of Economic Dynamics Review of Economics and Statistics

Review of Economic Studies Review of Financial Studies Tax Policy and the Economy

The B.E. Journal of Macroeconomics The Economic Journal The Lancet

Theoretical Economics University of Chicago Law Review WIDER Research Paper

5



Mathematical Sciences, Community 2

ACM Transactions on Graphics Cartographica Communications of the Association f...

Computational Intelligence Computational Linguistics Computing Surveys

Electronic Commerce Research and Ap... Formal Grammar Conferences Future Generation Computer Systems

IEEE Computer Graphics and Applicat... IEEE Transactions on Visualization ... Information Technology

Journal of Biomedical Informatics Journal of Heuristics Journal of Linguistics

Journal of Logic Programming Journal of Optimization Theory and ... Journal of Psycholinguistic Researc...

Library Quarterly Linguistics and Philosophy Natural Language Engineering

Nos Proceedings of ACL-08: HLT Proceedings of Algorithms and Exper...

Proceedings of Graph Drawing Proceedings of SIGGRAPH Proceedings of the 10th Annual Symp...

Proceedings of the 10th Internation... Proceedings of the 11th Conference ... Proceedings of the 19th Internation...

Proceedings of the 2003 Internation... Proceedings of the 2005 ACL Worksho... Proceedings of the 7th Conference o...

Proceedings of the Eighteenth Inter... Proceedings of the Eighth Internati... Proceedings of the Eighth Internati...

Proceedings of the Fifth SIGdial Wo... Proceedings of the First Workshop o... Proceedings of the Human Language T...

Proceedings of the ICAPS-05 Worksho... Proceedings of the Intelligent User... Proceedings of the Ninth Internatio...

Proceedings of the Second TAG Works... Proceedings of the Seventh Internat... Proceedings of the Seventh Internat...

Proceedings of the Sixth Internatio... Proceedings of the Thirteenth Annua... Proceedings of the Twenty-First Nat...

Proceedings of the Workshop on Synt... Proceedings of UIST Transactions on Graphics

Transactions on Systems, Man and Cy...

Mathematical Sciences, Community 3

Agricultural History American Journal of Political Scien... American Political Science Review

Annals of the American Academy of P... Annual Review of Psychology BioSocieties

British Journal of Political Scienc... Dissent D-Lib Magazine

Economic Development and Cultural C... Economics & Politics (Oxford, Engl... Educational Policy

Genewatch IMF Staff Papers Indiana Journal of Global Legal Stu...

International Organization International Studies Perspectives Journal of Conflict Resolution

Journal of Economic History Journal of Labor Economics Journal of Legal Studies

Journal of Policy History Journal of Politics Journal of Social Issues

Journal of Statistical Software Medical Anthropology Negotiation Journal

Perspectives on Politics PLoS Medicine Political Analysis

Population Health Metrics PS: Political Science and Politics Research in Higher Education

Social Justice Research Social Research Social Science and Medicine

Social Science History Social Science Research Sociological Methods and Research

Statistical Science Studies in American Political Devel... The American Sociologist

The Annals of the American Academy ... The Good Society The Political Quarterly

World Politics Yale Journal of International Law
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Mathematical Sciences, Community 4

Acta Mathematica -Stockholm- Advances in Mathematics American Journal of Mathematics

Annales Academiae Scientiarum Fenni... Annales Scientifiques- Ecole Normal... Annals of Mathematics

Applied and Computational Harmonic ... Biological Cybernetics Bulletin- American Mathematical Soc...

Commentarii Mathematici Helvetici Communications on Pure and Applied ... Discrete and Computational Geometry

Documenta Mathematica Duke Mathematical Journal Electronic Journal of Combinatorics

Experimental mathematics Foundations and Trends in Computer ... Geometric and Functional Analysis

Harvard College Mathematics Review IEEE Transactions on Biomedical Eng... IEEE Transactions on Pattern Analys...

International Journal of Computer V... Inventiones mathematicae Journal- American Mathematical Soci...

Journal fur die Reine und Angewandt... Journal of Algebra Journal of Number Theory

Journal of the European Mathematica... Journal of the Optical Society of A... Journal of Topology

Manuscripta Mathematica Mathematical Research Letters Mathematische Annalen

Nagoya Mathematical Journal New York Journal of Mathematics Pacific Journal of Mathematics

Periodica Mathematica Hungarica Proceedings- American Mathematical ... Proceedings of the Thirty-Fifth Ann...

Publications Mathematiques de l’Ins... The Harvard College Mathematics Rev... Topology

Transactions- American Mathematical... Vision Research -Oxford-

Mathematical Sciences, Community 5

ACM International Conference Procee... Annual Symposium on Foundations of ... Computational Complexity

Computer Aided Geometric Design Computer Graphics and Applications Computer Graphics Forum

Computers and Graphics Eurographics/SIGGRAPH symposium on ... Information and Computation

International Journal of Image and ... International Mathematics Research ... Journal of Computer & System Scien...

Lecture Notes in Computer Science MM: Proceedings of the seventh ACM ... Proceedings of the 15th Internation...

Proceedings of the Annual ACM Sympo... Proceedings of the Canadian Confere... SIAM Journal on Computing

The Visual Computer: International ...

Mathematical Sciences, Community 6

Argumentation ARL: A Bimonthly Report BMJ: British Medical Journal

College & Research Libraries News Earlhamite Infection Control and Hospital Epid...

Journal of Biology Journal of Law and Education Journal of Speculative Philosophy

Legal Writing: The Journal of the L... New England Journal of Medicine Newsletter on Teaching Philosophy

Philosophy and Rhetoric SPARC Open Access Newsletter St. John’s Review

Mathematical Sciences, Community 7

Administrative Science Quarterly American Journal of Sociology American Psychologist

Crime and Justice Du Bois Review Journal of Organizational Behavior

Research Evaluation Science, Technology and Human Value... Social Service Review

Mathematical Sciences, Community 8

American Statistician Biometrika Journal – American Statistical Ass...

Journal of Econometrics Journal of Educational Psychology NBER Technical Working Paper

Psychological Methods Working paper series (National Bure...

7



Mathematical Sciences, Community 9

Computer Architecture News Proceedings of the 2005 INFOCOM 24t... Systems Administration Conference

www.eecs.harvard.edu/ margo/papers/...

Mathematical Sciences, Community 10

Addictive Behaviors American Journal of Drug and Alcoho... Behavior Research Methods

Learning and Motivation

Mathematical Sciences, Community 11

Acta Crystallographica Section C: C... Chemistry & Biology Tetrahedron Letters

History / Philosophy, Community 1

American Historical Review American Scientist Annals of Science

Annual Review of Sociology Architectural History British Journal for the History of ...

Bulletin of the History of Medicine Central European History Common Knowledge

Configurations Contemporary European History Historical Journal

History of Science International Migration Review Isis

Journal of British Studies Journal of the History of Biology Journal of the History of Ideas

Journal of Visual Culture Modern Language Notes Oxford Review of Education

Past and Present Perspectives on Science Public Understanding of Science

Science in Context Science Studies Shakespeare Survey

Social Forces Social Studies of Science The British Journal for the History...

The British Medical Journal The International Migration Review Transactions of the Institute of Br...

Transactions of the Royal Historica...

History / Philosophy, Community 2

Australasian Journal of Philosophy Biological Theory Bulletin of Symbolic Logic

European Journal of Philosophy Journal of Aesthetics and Art Criti... Journal of Symbolic Logic

Nous Philosophers’ Imprint Philosophical Quarterly

Philosophical Review Philosophical Studies Philosophical Topics

Philosophy and Phenomenological Res... Proceedings of the Aristotelian Soc... Southern Journal of Philosophy

The Cambridge Companion to the Phil... Theoria : Revista de Teoria, Histor...

History / Philosophy, Community 3

Contemporary Readings in Law and So... Economics and Philosophy Ethics

Harvard Divinity Bulletin Journal of Philosophy Pacific Philosophical Quarterly

Philosophical Perspectives Philosophy and Public Affairs Proceedings and Addresses of the Am...

Ratio Social Philosophy and Policy The Constitution of Agency

The Monist The Quality of Life The Tanner Lectures on Human Values

Women, Culture, and Development: A ...
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History / Philosophy, Community 4

American Literary History American Literary Scholarship American literature

Critical Inquiry Prospects

Linguistics, Community 1

riu Acta Poetica Amsterdam Studies in the Theory and...

Annual of Armenian Linguistics Baltistica Brain Research

Die Sprache Euskalingua Harvard Ukrainian Studies

Harvard Working Papers in Linguisti... Heritage Language Journal Historische Sprachforschung

Indo-European Studies Innsbrucker Beitrge zur Spr... Journal of Cuneiform Studies

Journal of Indo-European Studies Journal of the American Oriental So... Journal of the Cork Historical and ...

Language Language and Linguistics Compass Language Research

Lingua Linguistic Variation Yearbook Mnchener Studien zur Sprach...

MIT Working Papers in Linguistics Natural Language and Linguistic The... Oceanic Linguistics

Proceedings of the North East Lingu... Syntax The Crane Bag

Tocharian and Indo-European Studies Transactions of the Philological So...

Linguistics, Community 2

Brain and Language Journal of East Asian Linguistics Journal of Memory and Language

Linguistic Inquiry Synthese

Miscellaneous, Community 1

Book History Contributions to the History of Con... European Review

French Historical Studies Journal of Modern History Modern Intellectual History

Pmla Princeton University Library Chroni... Proceedings of the British Academy

Representations

Miscellaneous, Community 2

American Journal of Public Health Annals of Internal Medicine Daedalus

International Anesthesiology Clinic... Journal of Social Work and Human Se... Journal of the American Medical Ass...

Journal of the American Medical Wom... Milbank Quarterly The Hastings Center Report

Miscellaneous, Community 3

American Music Black Music Research Journal Early Music History

Journal of Musicology Journal of the Society for American... Musical Quarterly

Tempo

Law, Community 1

Emory Law Journal Georgetown Law Journal Harvard Civil Rights-Civil Libertie...

Journal of Legal Analysis Loyola of Los Angeles Law Review Maryland Law Review

Michigan Law Review New York University Law Review Roger Williams University Law Revie...

Southern California Law Review
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Law, Community 2

Arizona Law Review Global Policy Harvard BlackLetter Journal

Harvard International Law Journal Harvard Journal on Legislation Harvard Law Review

Harvard Women’s Law Journal Lewis and Clark Law Review Minnesota Law Review
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