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Inspired by the jamming in leaky systems that arises in many physiological and industrial settings, we
study the propagation of clogs in a leaky microfluidic channel. By driving a colloidal suspension through
such a channel with a fluid-permeable wall adjoining a gutter, we follow the formation and propagation of
jams and show that they move at a steady speed, in contrast with jams in channels that have impermeable
walls. Furthermore, by varying the ratio of the resistance from the leaky wall and that of the gutter, we show
that it is possible to control the shape of the propagating jam, which is typically wedge shaped. We
complement our experiments with numerical simulations, where we implement an Euler-Lagrangian
framework for the simultaneous evolution of both immersed colloidal particles and the carrier fluid. Finally,
we show that the particle ordering in the clog can be tuned by adjusting the geometry of the leaky wall.
Altogether, the leaky channel serves both as a filter and a shunt with the potential for a range of uses.
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When large numbers of particles move in confined
geometries, they have a propensity to clog or jam with
consequences for a range of fields including physiology
[1-4], material science and industry [5-14], and cellular,
organismal, and pedestrian traffic [15,16]. Most studies of
the dynamics of formation and propagation of clogs focus
on channel-like geometries with impermeable walls, where
jamming can occur under a wide range of conditions, e.g.,
[17,18]. In these devices, clog growth slows down in time,
clog front shape remains on average flat and perpendicular
to the channel, and clog nucleation is stochastic with
catastrophic consequences for flow control. This raises a
natural question: can one control the speed and the shape of
a clog by varying the geometry of the channel?

One might imagine that the introduction of a leaky wall
that separates a microfluidic channel from an adjoining
gutter would allow for control of the clog speed and shape
reproducibly. The leaky wall then serves to filter large
objects but allows fluid and small objects to leak through it
and flow into the gutter. If a clog forms in such a system,
the combination of the leaky wall and gutter would shunt
fluid and divert it from the clog even as the latter grows via
the accumulation of particles. A related channel geometry,
that of a pipe with porous walls, has been rigorously studied
experimentally and theoretically as a fluid dynamics
problem, but here we focus on clog propagation in these
devices [19-21].

To instantiate this idea, we consider an experimental
system that uses monodispersed density-matched colloidal
suspensions with variable packing fractions driven through
microfluidic devices by a gravity-driven constant pressure
head (AP ~ 400 Pa) as shown in Fig. 1(a). All devices are
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prepared using standard soft lithographic techniques [22].
In all experiments, we fix the depth and the length of
the channels at 50 ym and 2 cm, respectively, the particle
radius at r = 20 ym, and the distance between the top
and bottom edges of the leaky walls at w = 450 ym. The
channel itself consists of an inner leaky membrane with
feature spacing d separating the channel from a gutter of
width ;. To nucleate a clog, we introduce a leaky backwall
that captures all colloidal particles.

The clog growth dynamics are controlled by the far-field
concentration of colloids, ¢, and the far-field average
velocity of colloids, u,. These quantities are measured
far from the clog front using standard techniques [23,24].
As particles flow down the channel, they pile against the
porous inner walls to form a clog that propagates back-
wards with speed u, and position s(f) measured from the
tip of the clog wedge. We track the clog using digital video
microscopy (100 frames per second) as shown in Fig. 1(b).
The clog forms a wedge that propagates at constant speed,
in sharp contrast with an unsteady blunt clog [see the
Supplemental Material [25], Figs. S1(a) and S1(b), and [8] ].

To understand this shape, we refer to the schematic in
Fig. 1(c) depicting particles moving from left to right
forming a clog at s(¢) moving from right to left. As the fluid
nears the clog, the leakiness of the wall and the presence of
a gutter cause fluid and particles to develop a transverse
flow velocity; the fluid moves through the leaky wall, while
the particles are blocked by it. To get a quantitative sense of
the fluid shunting, we fix a clog in space by first flowing
colloids down the channel before switching to a suspension
of 500 nm fluorescent particles (see the Supplemental
Material [25], Video 2). In Fig. 1(d), a particle image
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(a) Top: schematic of experimental setup. A particle suspension driven by constant pressure head flows through a microfluidic

channel with leaky walls and an adjoining gutter. Bottom: optical micrograph of the channel interior. The leaky inner wall is comprised
of pillars spaced d = 15 um apart. The channel has width, w = 450 um, and the distance between the leaky membrane and the outer
wallis £, = 220 um. (b) Time series of a clog propagating against the incident particles taken in 10-second intervals. The red dotted line
indicates the clog front position. (c) Schematic of incident particles (red) with flux u ¢, forming a clog (blue) with flux u,¢,. The
position of the clog, s(¢), is measured from the tip of the clog wedge. Near the clogging front, incident particles can develop a
component of velocity transverse to the channel. (d) PIV plot of the fluid velocity field (v) in the vicinity of a clog. The color bar is a

linear scale normalized to the maximum fluid velocity (vax)-

velocimetry (PIV) generated fluid velocity field [26],
overlaid on a bright field image of a stationary clog, shows
that while the fluid velocity to the left of the clog is largely
uniform, as fluid approaches the clog, it is shunted to the
gutters. Furthermore, in the interior of the clog, the fluid
velocity decays towards zero rapidly.

To quantify the propagation dynamics of the clog, we
measured s(¢) for devices with d =15 um and 7, =
220 um. In Fig. 2(a) we show s(¢) for ¢, € [3.7 x 1073,
4.8 x 1072] over 40 second windows. The slope of s(t) is
the measured clog propagation speed, u; ,,, which ranges
between 102 pum/s at the highest incident packing fraction
to 13.5 yum/s at the lowest incident packing fraction.
Since s(¢) varies linearly with time for the duration of
the experiment, the clog propagation speed is constant.
We note that over longer timescales (hundreds of seconds),
for this device geometry, we found that s(¢) ~ #, where
y = 0.84, due to increased hydraulic resistance in the
channel [see the Supplemental Material [25], Fig. S1(c)].
Modeling the exponent y, which depends on the ratio of w
to Z,, is an interesting problem in its own right. The shape
of the clog is characterized by the angle 8¢ (in radians)

between the advancing edge of the clogging front with the
leaky membrane indicated in the top panel of Fig. 2(b). In
the bottom panel of Fig. 2(b), 6°(¢) is plotted for different
¢ as a function of time. Though the angles fluctuate, the
average angle remains fairly stable for the duration of the
experiments indicating that the shape of the clog is fixed.

We can predict the clog propagation speed, u ,, using
mass balance by balancing the flux of the incident particles,
Ugps With the flux due to the moving clogging front,

us‘,pq&s - u‘\"p¢oo, so that

where the subscript p stands for predicted. To test this, we
plot the normalized measured clog speeds, i, = U /e,
against the normalized predicted clog speeds, i, =
U p/Us in Fig. 3(a) and see that i, ~0.5i, ,. This
discrepancy arises because we measure u,, far upstream
of the clogging front instead of just to the left its advancing
edge. Since particles slow down as they approach the clog,
us , is overestimated.
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FIG. 2. (a) s(7) taken at constant pressure for different incident
volume fractions, ¢,. The clog speed, u,,, is the derivative of
s(t). Inset: nondimensionalized clog position 3(7) = s(7)/w
plotted against nondimensionalized time 7 = tu.,/w. (b) Top:
micrograph of a clog with angle 8¢ used to characterize shape
indicated. Bottom: angle fluctuations (in radians) of the clog
in time.

Once the clog shape reaches steady state, we can
estimate the clog shape and angle using mass balance,
noting that it is determined by fluid shunting through the
leaky wall and along the gutter over a scale comparable to
the width of the channel. The leaky wall and the gutter
together form a pair of flow resistors in series; the larger of
the two resistances controls the angle of the clog within
which the fluid velocity is very small; see Fig. 3(b) for a
schematic. To understand this qualitatively, we let X be the
projected length of the clog along the x axis and f € [0, 1]
the leakiness of the wall and the porosity of the bulk of the
clog with f ~ 0 corresponding to the impermeable limit.
Then the fluid flux through the wall over a scale compa-
rable to half the width of the channel and along the length X
must be equal to the added flux in the gutter through its
width 7. Thus, u, wXf/2 ~u,/ X, ie., u,/u, ~wf/2¢,.
A simple geometric interpolant for the clog angle with the
right limits is 6° ~tan™" (u,/u,,) ~ tan™"' (wf/2¢,); we
leave a calculation for its exact form once the clog reaches
steady state as an interesting follow-up.
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FIG. 3. (a) The ratio of the normalized measured clog speed,

flgm = U,/ U, plotted against the normalized predicted clog
speed, i, , = U, ,/us. The red dashed line is a fit to data,
iy, = 0.524 ,. Inset: simulated nondimensionalized clog speed,
flgm = U/ Uy, plotted against ¢, (b) Schematic of the half plane
of a clog with stationary shape with labeled velocity and length
scales. (c) Plot of ¢ (radians) versus & = w/¢,. Red circular
points correspond to devices with d = 5 ym and blue triangular
points to d = 25 ym. The red and blue dashed lines are fits to
the data given, respectively, by 6¢ = 0.14tan"!(0.43¢) and
0° = 0.16 tan~' (0.28¢). Inset: simulated clog angle plotted as
a function of & with a = 0.4 and 0.6.

To test this, we performed experiments where we held
the pore spacing fixed at 5 and 25 ym and vary the gutter
width between 50 ym < ¢, <300 ym in increments of
50 pym. In Fig. 3(c), 6° is plotted as a function of the
dimensionless ratio &= w/#,. The red circular trace
corresponds to devices with d =5 ym and the blue
triangular trace corresponds to devices with d = 25 um.
For both sets of devices, 8¢ increases with £. When £~9
(at Z, = 50 pm), it becomes more difficult to distinguish
devices with different pore spacings; the average angles are
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(a) Top: optical micrograph of the particle packing near the top leaky membrane of a device with d = 15 ym. Bottom:

schematic of the leaky membrane feature spacing and particle dimensions. (b) Snapshot of a particle clog in a device with d = 15 um.
(c) Two-dimensional fast Fourier transform of the area in the bottom rectangular box in (b). (d)—(f) Same as (a)—(c) but with d = 20 ym

so that shunted particles close pack along the leaky wall.

fixed around 8¢ ~ 0.2 rads. As & decreases the traces split,
monotonically decrease, and begin to saturate to a final
angle set by the pore spacing. The dashed lines in Fig. 3(c)
are fits to 0° = atan™'(b€), where a and b are fitting
parameters. As & — 0, the dominant resistance in the
system is from the leaky wall, so we expect the clog angle
to saturate, leading to deviations from the simple predic-
tion, observed in our experiments.

To understand these results in the asymptotic limits, we
note that local pressure drop across the leaky wall, AP,,/d,
determines the fluid velocity through the wall via Darcy’s
law, AP,,/d ~ uu,,/d*, where u is the fluid viscosity and
u,, is the fluid velocity through the leaky wall. Here we
have assumed that the width of the leaky wall is of order d.
Similarly, fluid moving through the gutter is described by
the relation AP, /L ~ pu, /¢ where AP,/L is the pressure
drop across the length of the gutter and u, is the fluid
velocity in the gutter so that the ratio of fluid resistances
of the gutter to the leaky wall is given by R = (AP,/L)/
(AP, /d) ~wfd?*/¢;. We note that the limit as £, — 0,
R — oo corresponds to shrinking the gutter to zero width,
while the limit as f — 0, R — 0 corresponds to decoupling
the channel from the gutter; in either limit, the clog is
vertical as expected, since the larger of the two resistances
dominates.

To complement our experimental study and scaling
analysis, we also perform numerical simulations of the
leaky system within an Euler-Lagrangian (EL) framework.
The EL framework models the carrier fluid as a continuum
and evolves the particles in a Lagrangian manner based
on spatiotemporally varying local hydrodynamic forces.
For more detail on the numerical methods, see [27-29] and
references therein. The carrier fluid motion is governed by
the incompressible Navier-Stokes equations, and we use
the immersed boundary method to impose the influence
of the leaky wall on the carrier fluid governing equations.
The colloidal particles first experience hydrodynamic drag
from the carrier fluid and are then evolved according to a

local Maxey-Riley dynamical equation, [30]. Forces from
local shear in the fluid and rotation of the particles are
negligible due to the low shear-rate and small particle size
and are thus ignored in the particle evolution equation (see
the Supplemental Material [25] for details). Varying the
dimensionless ratio £ and the permeability of the leaky wall
allows us to compare the simulations with experiments. In the
simulations, the leakiness of the wall is represented by the
physical parameter a € [0, 1] with @ = 1 corresponding to an
impermeable wall with no-slip boundary conditions. The
inset in Fig. 3(a) shows the scaled clog speed it,;,, = i/,
versus ¢, obtained from simulations, and captures the
experimentally observed linear trend with the right prefactor.
In the inset in Fig. 3(c), we plot 6, versus & = w/¢, for
a = 0.4 and 0.6 as computed from the numerical simulations.
We observe good qualitative agreement with the experiments
but note that there are some quantitative differences between
the experimental measurements and numerical simulations
due to coarse graining of the clogging front.

Finally, we turn to examine how the spatial order of
particles in the bulk and on the boundary of the clog
changes when we alter the geometry of the leaky wall. In
Fig. 4(a), an optical micrograph of the top edge of a clog
against a porous membrane with d =15 ym is shown
above a cartoon depiction. In these devices, the particles
along the clog’s perimeter are heterogeneously spaced,
inducing disorder in the bulk of the clog as well. The 2D
fast Fourier transform of the demarcated region of the
bottom of the clog in Fig. 4(b), shown in Fig. 4(c), shows
no discernable structure. When adjusting the wall geometry
so that particles on the boundary of the clog form an
ordered close-packed monolayer as seen in Fig. 4(d),
incident particles stack layer-by-layer from the boundary
into the bulk as the clog propagates backwards (see
Supplemental Material [25], Video 4). Down the middle
of the clog, where fluid is not shunted, there is a seam of
disorder. The fast Fourier transform in Fig. 4(f) of the
portion bound in Fig. 4(e) shows a structure corresponding
to square packed particles.
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Our variation of a microfluidic channel to include leaky
walls and an adjoining gutter allows us to control the speed
and shape of a jam when a suspension flows through it.
Shunting of fluid through the leaky wall permits clogs to
propagate backwards indefinitely with a constant speed
and shape. Additionally, by structuring the leaky wall, we
can control the ordering of particles in the clog. Together,
our results might have implications for how physiology
might already take advantage of leaky channels, and how
one might engineer channels to achieve different types of
nonequilibrium packings—but these are problems for the
future.
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EXPERIMENTS ON CLOGGING IN DEVICES WITH IMPERMEABLE VERSUS LEAKY WALLS

In devices with impermeable walls, clogs growth rapidly slows down. In Fig. S1(a), we show optical micrographs
of clog nucleation and propagation, and in Fig. S1(b), we plot and fit the clog position as a function of time. Our
data suggests that s(t) ~ t'/2 which agrees with [1]. Note the blunt shape of the clogging front. In devices with leaky
walls, while clog growth slows down, its scaling depends on the ratio of w/¢,. For leaky walled devices with ¢, = 220
pm and w = 450 pm scales like s(t) ~ t984 as plotted in Fig. S1(c).
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FIG. S1. (a) Clog nucleation and propagation in time over 17 minutes in a channel with impermeable walls. The clog propagates
with a flat front shape perpendicular to the channel length. (b) Clog position, s(t), taken from (a) as a function of time. (c)
Clog position in time for leaky devices with gutter width, £, = 220 pm and w = 450 pm.

DESCRIPTION OF EXPERIMENTAL VIDEOS
We have attached four videos that show:
1. Clog propagation in device with channel dimensions ¢, = 220 ym and d = 15 pym. Video is sped up by 10x.

2. Fluid shunting with a fixed clog with 500 nm fluorescent particles flowing down the channel. The video includes
some bright field illumination so that the clog is visible. Video slowed down by 2x. Note that the PIV data in
Fig. 1(d) in the main text is from video without any bright field illumination with a lower global pressure.

3. Clog propagation in device with £; = 50 yum and d = 5 um. Video is sped up by 10x
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4. Clog propagation in a device with d = 20 um to match the particle radius showing ordering of particles in the
clog. Video is real time.

SIMULATIONS OF CLOG FORMATION AND PROPAGATION

To simplify the numerical simulations, we consider only the top half-plane of the device by symmetry and regard
the device as two dimensional. It consists of a leaky wall that separates a channel of width w from an adjoining gutter
of width £,. The width of the device, W, is much smaller than its length, L, so that W/L < 1. A schematic is shown
in Fig. S2.

FIG. S2. Simulation set-up. The particle suspension (particle and solvent), confined by the upper and lower leaky walls, flows
in the —Z direction. Particles collect at the leaky back-wall, then form a clog which propagates in the +& direction. The solvent
in the suspension exits through the leaky walls and out the exit on the right.

The suspension consists of a solvent with viscosity v and particles of diameter a. To find the solvent velocity, we
solve the Navier-Stokes equations,

1
g‘:+u.vu:_WVp+yV2u+F (1)

V-u=0. (2)

in a two-dimensional channel. Here, u is the fluid velocity, p; is the density of the fluid, p is the hydrodynamic
pressure, and F is a source term imposed in the momentum equation arising from the immersed boundary method
and its formulation is detailed below.

The boundary conditions for the simulated domain are as follows: No-slip is implemented on the top and bottom
walls, while inflow-outflow is imposed on the left and right walls. Additionally, the porous wall boundary condition
is implemented through an immersed boundary method. In the immersed boundary method, the boundary condition
of any immersed surface is represented by imposing an appropriate spatio-temporally varying source term in the
momentum equation. In order to impose a no-slip boundary condition on a stationary and rigid immersed surface this
source term is given as F = —u; /AT, where u; is the locally interpolated fluid velocity and AT is discrete time step.
This interpolation is performed across several computational elements distributed across the immersed surface. In
order to represent a porous surface, we multiply this force by a factor « € [0, 1] that allows us to interpolate between an
invisible (o = 0) and an impermeable (o = 1) no-slip immersed surface. The bulk of the particles is also represented
through a dense porous material with o = 0.8. This is chosen in an ad-hoc manner and in practice allows near-zero
fluid flux through the particles trapped in the bulk of the clog. This is similar to what is observed in experimental
visualizations of the fluid flow through the bulk of the clog. Additional details on the numerical techniques and
the validation procedures for the immersed boundary method and the finite-difference schemes are given in previous
works [2-4]. Representing individual elements of the obstruction generated by the porous membrane in simulations
is computationally prohibitive; however, our approach is sufficient to capture the overall clogging dynamics as the
porous membrane only allows fluid and not the immersed freely flowing particles. The equations are solved using an



S3

energy-conserving second-order centered finite difference scheme in a Cartesian domain with fractional time-stepping.
An explicit Adams-Bashforth scheme is used to discretize the non-linear terms while an implicit Crank-Nicholson
scheme is used for the viscous terms. Time integration is performed via a self starting fractional step third-order
Runge-Kutta (RK3) scheme.

The particle evolution is solved using the reduced form of the Maxey-Riley equation where the driving force is
hydrodynamic drag and is given as

Oup

o = Ly~ ug) 3)

This assumption holds when the particle length scale is much smaller than the characteristic flow length scale.
The difference between the particle velocity and the solvent velocity, (u, — uy), dictates the particle acceleration.
7 = a?/12v is the particle relaxation time scale. The particle volume fraction at the inlet is low enough (< 5%) to
assume that particles do not interact with each other. Since we do not observe any preferential particle migration
near the inlet, we also assume one-way coupling, i.e., the fluid affects the particles, but the particle do not affect the
fluid.

To simulate the evolution of the clogging front, particles are released at the inlet with zero velocity, and are then
driven by the hydrodynamic forces on them, as quantified by the Maxey-Riley equation above. They slow down as
they approach the porous membrane which is quantified via the immersed boundary method [2-4]. When the distance
between the particle center of mass and the porous membrane is less than the diameter of the particle, we assume
the particle has reached the front and stop it. However, updating the clogging front in such a manner leads to a
highly jagged front, because we do not simulate the rolling and sticking dynamics of the particles explicitly, as it is
computationally prohibitively expensive. Instead, we use a coarse-grained approach by computing the curvature of
the front locally and then smooth it using a diffusive process, i.e., by making high curvature regions diffuse towards
low curvature regions with an effective ad-hoc numerical diffusivity 8. This numerical smoothing process requires only
one free parameter which is the effective diffusivity of the front curvature and this is chosen by tuning the simulation
for a single experimental data point. This process is implemented at every time step in the simulation without an
inherent relaxation time scale, as an approximation to the experimental observations that show that the curvature of
the clog front is smoothed out on much time scales much shorter than time scales associated with the clog growth.
The clogging front is updated continuously based on the particles approaching it, and fluid is gradually blocked by
the concomitant increase in flow resistance.

DESCRIPTION OF SIMULATION VIDEOS

We have attached the following videos that show simulations of the front evolution:
5. Of clog propagation with ¢oo = 0.01, « = 0.4, 3 =102, and £ =6
6. Of clog propagation with ¢oo = 0.01, « = 0.4, 3 =102, and £ =2
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