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Many complex systems experience damage accumulation, which
leads to aging, manifest as an increasing probability of system
collapse with time. This naturally raises the question of how to
maximize health and longevity in an aging system at minimal
cost of maintenance and intervention. Here, we pose this ques-
tion in the context of a simple interdependent network model
of aging in complex systems and show that it exhibits cascading
failures. We then use both optimal control theory and reinforce-
ment learning alongside a combination of analysis and simulation
to determine optimal maintenance protocols. These protocols
may motivate the rational design of strategies for promoting
longevity in aging complex systems with potential applications
in therapeutic schedules and engineered system maintenance.
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Aging is the process of damage accumulation with time that
is responsible for an increasing susceptibility to death or

decay (1). Many complex systems that consist of multiple inter-
acting components (2) (e.g., biological organisms and artificially
engineered systems) experience aging. Indeed, models of the
interdependence between components of a system implemented
in a network (3) show aspects of aging and eventual system-
wide catastrophe and death. This is because when components
are interdependent, the failure of one component may adversely
affect its dependents. The dynamics of these processes have
been the focus of many recent studies (4–7), exhibit temporal
scaling (8, 9) and failure cascades, and reproduce empirical sur-
vivorship curves for many biological organisms and technological
devices (4).

Understanding the onset of aging in network models points
toward a central question in the field (10): how can one con-
trol aging in complex systems through interventions associated
with repair and maintenance, with the eventual goal of designing
strategies for increasing longevity? Available control strategies
in networks are primarily for single nodes (11) and sets of
driver nodes (12, 13), and they largely fall into three classes:
network design (14, 15), edge and node removal at onset of
cascade (16), and time-dependent edge weight distribution (17,
18). Complementing these approaches, in reliability engineering,
there are maintenance policies for deteriorating multiunit sys-
tems (19–22) that include opportunistic repair (23) and group
and block replacement (24) for systems with economic and struc-
tural dependencies between components (20, 21, 25). However,
aging systems are primarily characterized by failure dependen-
cies between components. Only very special repair policies have
been optimized for failure-dependent complex systems (26), and
most are restricted to systems composed of few units (20, 21), or
with strong assumptions about the underlying failure distribution
without consideration for the dynamics of individual network
components from which they emerge (22, 27).

Here, we deploy an optimal control framework to determine
strategies to delay aging in a tractable and realistic model for
the failure of interdependent networks (4). A combination of
numerical simulations and analysis shows how the microscopic
dynamics of individual network components that are capable
of stochastic failure determine how system-level macroscopic
dynamics of decreasing vitality and failure cascades follow. We
then introduce the notion of repair in such a network that can

lead to a delay in aging, but at a cost. This can be couched in
the framework of optimal control theory (28) and allows us to
determine strategies to delay aging in these interdependent net-
works analytically in the linearized regime and computationally
in the nonlinear regime. To understand the implications of our
results, we then deploy a simple reinforcement learning scheme
(29) to determine the parameters associated with explicit tempo-
ral repair protocols that determine the efficacy of drugs on the
longevity of a classic model organism used in aging studies—the
nematode Caenorhabditis elegans.

Network Model of Aging and Repair
Computational Model. Our computational model of aging starts
with the consideration of a network with N nodes represent-
ing the individual components of the complex system and edges
between nodes representing interdependencies between the indi-
vidual components (Fig. 1A). The main network structure used
in this study is the Gilbert G(N , p) random graph (30); in
this network, edges between any two nodes occur with prob-
ability p, where the mean node degree is z = p(N − 1). We
also explore Erdős–Rényi G(N ,m) random networks (31) and
Barabási–Albert scale-free networks (32); these structures pro-
duce qualitatively similar results as compared with the Gilbert
random graph (SI Appendix, Fig. S6). In the model, each node
is assigned an initial state of binary value xi ∈{0, 1} with prob-
abilities P(xi = 0) = d and P(xi = 1) = 1− d , where d denotes
the prenatal damage of the complex system at birth. The state of
a node represents its functionality, where xi = 1 denotes a vital,
functional i th node and xi = 0 denotes a dead, failed i th node.

The network is then allowed to age via a simple iterative algo-
rithm (SI Appendix, Algorithm 1) through the following actions:
1) each node fails with probability f ; 2) nodes are repaired with
probability r ; 3) a node fails if the fraction of vital providers
(i.e., functional neighboring nodes) is less than I ; 4) the network
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Fig. 1. Computational network model of aging and repair. (A) Schematic representation of the network model of aging, represented by a network,
where nodes denote components and edges denote interdependencies between these components. The network aging algorithm is portrayed in a smaller
subsection of the network. At each time step, nodes are failed with probability f , repaired with probability r, and failed if their fraction of vital providers
is less than I. (B) Simulated cascading failures in a Gilbert random model (p = 0.1, N = 1,000, f = 0.025, r = 0, d = 0, I = 0.5). Faint blue lines refer to 50
individual vitality trajectories; the solid blue line is the mean vitality Φ(t); the dashed magenta line is the analytic solution to the linear model, Eq. 5,
where I = 0; and the solid gold line is the numeric solution to the nonlinear model, Eq. 4. (C) Network repair at r = 0.025 from T1 = 10 to T2 = 40 (gray)
delays network failure and improves mean vitality for 1,000 networks as compared with nonrepaired networks (blue). (D–F) Fluctuation of failure times. (D)
Optimal repair results in increased network failure time variance (gray) as compared with no repair (dark blue). Parameters: f = 0.025, r = 0.01, α= 10. Also
shown are the mean failure time µ and the standard deviation σ in the absence and presence of repair. (E) Network failure time distributions for different
values of f are described by the Weibull distribution (solid lines) (see SI Appendix, section S3). (F) Linear regression (dotted line; slope = 0.0975) of mean µ
and SD σ of network failure times for different values of f .
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vitality is calculated using the expression φ(t) = 1
N

∑N
i=1 xi ; and

5) the system fails if φ(t)< 0.1 (Fig. 1A). Here, I is a mea-
sure of the interdependence between the system components and
denotes the threshold fraction of vital providers required for a
node to stay alive. I = 0 corresponds to a collection of N inde-
pendent components, and if the vital fraction is less than I , then
the node automatically fails.

Our model reproduces the characteristic cascading failures
that are present in the computational models of breakdown of
complex systems (4, 14, 16, 33). In a representative simulation,
the vitality φ(t) of the system decreases slowly in the linear
regime before collapsing rapidly after a critical vitality value, φc

(Fig. 1B). The cascading failure is observed in all three graph
structures (SI Appendix, Fig. S6). This sudden decrease in system
vitality is similar to the compression of morbidity that is observed
during late life for humans and many other biological organisms
(34). Movie S1 shows a two-dimensional visualization of network
failure. Our simulations allow us to go beyond the mean-field
theory and look at the probability distribution of failure events,
defined in Fig. 1D in terms of the mean time for failure µ and
the standard deviation in the failure time σ. In Fig. 1E, we show
how these parameters vary with the failure rate f , and in Fig. 1F,
we see that the standard deviation is linearly correlated with the
mean failure time, consistent with a Weibull distribution (see SI
Appendix, section S3).

Nonlinear Theory of Network Aging. To complement our compu-
tational model of aging networks, we also construct an effective
equation for the average network vitality measured over several
realizations, Φ(t) = 〈φ(t)〉. A mean-field model for the average
vitality as a function of time may then be written as

dΦ

dt
=−ftotΦ + rtot(1−Φ), [1]

where ftotΦ is the total rate of node failure and rtot(1−Φ) is
the total rate of repair. It is important to note that ftot and rtot

denote the collective aspects of the network and are thus dif-
ferent from the respective intrinsic failure and repair rates f
and r of nodes. They thus account for interdependence between
nodes. To understand the relation between these variables, we
note that a node fails for one of two reasons: 1) it fails with
intrinsic rate f , or 2) it fails if the fraction of its vital providers
falls below I (i.e., failure cascade). At leading order in failure
rate f , we can neglect the simultaneous failure of two or more
nodes at any time point; hence, induced failure occurs in one
step, when the node is left with the minimum number of vital
providers, and then, one of these vital providers fails. The total
rate of node failure is thus given by the sum of the intrinsic
failure rate f Φ and the rate of failure of the last vital provider
ftotΦ = f Φ + k(1− f ) ftot m(I , Φ)Φ, where k = zI is the mini-
mum number vital providers required for a node to function,
z = p(N − 1) is the average number of edges between nodes (for
a Gilbert random graph), and

m(I , Φ) =

(
z
k

)
Φk (1−Φ)z−k [2]

describes the (mean-field) probability that a node is left with
k vital providers. We thus obtain the total rate of failure as
ftot = f

1−km(I ,Φ)(1−f )
. Similar arguments can be employed to

determine the total rate of repair. A node can be repaired only
if the following two conditions are met: 1) the node is failed, and
2) the node is connected to at least the minimum fraction I of
vital providers required for it to function after repaired. The total
rate of repair is thus the product of the intrinsic rate of repair,
r(1−Φ), and the probability h(I , Φ) that the node is connected
to at least k = zI vital providers:

h(I , Φ) =

z∑
j=k

(
z
j

)
Φj (1−Φ)z−j . [3]

In summary, we arrive at

dΦ

dt
=− f Φ

1− km(I , Φ)(1− f )
+ r h(I , Φ)(1−Φ), [4]

where f and r are the intrinsic frequencies of failure and repair,
respectively, and interdependence between nodes is captured
in this mean-field equation by the nonlinear functions m(I , Φ)
and h(I , Φ). In SI Appendix, Fig. S1, we compare the mean-field
model Eq. 4 and the network simulations (Fig. 1B). Analytically,
we see that the solution to Eq. 4 describes an average vitality
that decreases slowly at early times. In the limit when the sys-
tem is away from collapse (ft� 1), Eq. 4 can be linearized and
approximated to leading order as

dΦ

dt
=−f Φ + r(1−Φ). [5]

This leads to an exponentially decaying vitality (Fig. 1B). At
later times, the average vitality exhibits failure cascade and rapid
collapse after a critical vitality value Φc is reached (Fig. 1B).
This effect originates when the denominator in the first term
on the right-hand side of Eq. 4 becomes small, which causes the
effective failure rate to blow up; thus, an estimate for the crit-
ical fraction for failure cascade can be obtained by maximizing
m(I , Φ) over Φ, which yields Φc = I (SI Appendix, section S1).

Optimal Control of Network Aging
Having a qualitative understanding of the forward problem of
how aging arises in interdependent networks, we now turn to
the problem of controlling the progressive aging of a network
by varying the repair rate, subject to some constraints.

Optimal Repair Protocols. For an interdependent network that
ages according to Eq. 4, our goal is to design optimal repair pro-
tocols [i.e., replace the constant repair frequency r in Eq. 4 by
a time-dependent unknown repair rate r(t) to regulate network
vitality]. Since high vitality is expected to correspond to a “ben-
efit,” while repair actions come with a “cost,” we introduce the
following cost function to capture this balance between network
vitality and repair:

Cost =

∫ T

0

e−γt C(Φ(t), r(t))dt , [6]

where T is the final time and C is a monotonically decreasing
function of vitality Φ(t) and a monotonically increasing func-
tion of repair r(t). The exponential term describes the situation
when future values of the cost are discounted, where γ≥ 0 is
the discount rate. To balance the cost of repair and the ben-
efit of vitality, we focus here on a simple linear cost function
C=α r(t)−Φ(t), where α is the relative cost of repair. The
first term describes the total cost for repair as the integral of
the repair protocol in time, while the second term is the gain
from vitality; the constant α describes the relative importance
of the two terms in the cost function. The goal of the optimal
control problem defined by Eqs. 4 and 6 is to find the repair pro-
tocol r(t) that minimizes the cost function Eq. 6 while satisfying
the evolution equation for vitality Eq. 4 (SI Appendix, section S8
has a discussion of alternative cost functions and the effect of
nonlinear cost functionals).

We solve this optimal control problem for a network with
initial vitality Φ(t = 0) = 1− d using the framework of optimal
control theory and Pontryagin’s principle (28) (SI Appendix, sec-
tion S2 has details). Since the optimal control problem is linear in
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the repair rate r(t), the optimal repair protocol will correspond
to a bang-bang control that switches between r(t) = 0 (no repair)
and r(t) = r (maximal repair). Repair is turned on when

h(I , Φ)(1−Φ)>
α

|λ| , [7]

where λ is a time-dependent costate variable, which is deter-
mined as the solution to SI Appendix, Eq. S23 (SI Appendix,
section S2.2 has a derivation, and SI Appendix, section S2.4 has a
discussion on singular arcs). Eq. 7 states that the optimal decision
to repair depends on two parameters: 1) the repairable frac-
tion of nodes, h(I , Φ)(1−Φ), and 2) a time-dependent threshold
α/|λ|, which depends on the relative cost of repair α. The
repairable fraction increases with time as nodes in the network
fail and/or become increasingly susceptible to failure cascades;
on the other hand, the threshold for the repairable fraction also
increases with time as the system ages, leading to a smaller
window of repair.

Linear Control Theory. To gain an understanding of how the opti-
mal repair protocol depends on the physical parameters, we
focus first on the linearized limit, Eq. 5, valid away from vital-
ity collapse. In fact, explicit analytical expressions for optimal
protocols can be obtained in this case. Condition Eq. 7 leads to
nonmonotonic optimal repair protocols characterized by a wait-
ing time for repair, followed by an intermediate period where
repair is preferable and a terminal phase where the repair rate is
set again to zero (SI Appendix, Fig. S2):

r(t) =

{
0, t <T1 and t >T2

r , T1 < t <T2
, [8]

where T1 and T2 are switching times, given by (SI Appendix,
section S2 has a derivation)

T1'
1

f
log

[
1− d

1−α(f + r + γ)

]
[9a]

T2'T − 1

f + γ
log

[
1

1−α(f + r)(f + γ)/f

]
. [9b]

The dependence of T1 and T2 on the failure rate f , repair rate
r , and cost of repair α is shown in Fig. 2. The optimal repair
protocol in time consists of an initial phase when system vital-
ity is high and no repair is necessary and a repair period that
is initiated at time T1 and persists until time T2. For γ= 0
and d = 0 (corresponding to a healthy organism), the repair
protocol is symmetric with respect to the end time T since
T1 =T −T2. The protocol is no longer symmetric with respect
to T when d > 0; in particular, while the initial vitality level does
not affect the end time T2, the start time T1 decreases with
increasing d , implying that the optimal repair protocol starts
earlier and lasts for longer as the initial vitality of the system
decreases. There is a critical value for initial vitality, Φ(t = 0)<
1− dc = 1−α(f + r + γ), below which the optimal repair proto-
col starts right away. Robust achievability of optimal protocols
depends on the curvature of the cost function around the opti-
mum Eq. 9, which for γ= 0 is given by' fr [1−α(f + r)]/(f + r)
(SI Appendix, section S2.3.1). We also characterized longevity
gain resulting from optimal protocols as a function of α and γ
(SI Appendix, Fig. S3).

In the infinite horizon limit T→∞ and γ > 0, we enter a
regime where the optimal solution for repair maximizes the dis-
counted health of the system over an indefinite period under
a cost constraint. Biologically, this is equivalent to optimizing
longevity as compared with health span for finite T , while con-
sidering a discount factor resulting from extrinsic mortality (35).

Since T2→∞, the infinite horizon repair protocol is charac-
terized by a single switching time T1, after which the system is
repaired in perpetuity.

Thus far, we have focused on the simple linear cost func-
tion. Exploring nonlinear cost functions leads to optimal repair
protocols that are no longer of bang-bang type but are still non-
monotonic in time (SI Appendix, section S8), with initial and
terminal phases of low repair and an intermediate region of
higher repair (SI Appendix, Fig. S8). Additional extensions may
be motivated by future experiments and might involve consider-
ing a terminal cost for vitality, including nonlinearities in vitality
and/or repair rate (SI Appendix, section S8), or introducing addi-
tional variables, such as node checking and associated cost (SI
Appendix, section S9).

Phase Diagram for Repair. A question of some interest is the
determination of the conditions under which a repair protocol
is advisable. From Eq. 9, it follows that since T1 must, by defi-
nition, be smaller than T2, a repair protocol exists for d = 0 and
γ= 0 only if

fT ≥ 2 log

[
1

1−α(f + r)

]
. [10]

Eq. 10 results in a phase diagram separating a region of “repair”
from a region of “no repair,” where repair is too costly, as a
function of two relevant dimensionless parameters α(f + r) and
fT . As a function of failure frequency f and at constant val-
ues of α, r , and T , Eq. 10 predicts the existence of regions
of low (fT� 1) and high failure rates (fT� 1), respectively,
where the best option is no repair (Fig. 2B). This behavior fol-
lows intuition; when failure rate is low, vitality remains high
over the interval [0,T ], such that the cost of repair would be
unnecessarily large compared with the benefit associated with
increased vitality. Similarly, when the failure rate is large, a
significant improvement of vitality would require an insurmount-
able cost of repair. As the repair rate r increases, Eq. 10 predicts
a rapidly shrinking window of repair due to the combined effect
of increasing the effectiveness of and associated cost (αr) of
repair (Fig. 2C). As the cost of repair α increases, Eq. 10 sim-
ilarly predicts a decreasing window of repair (Fig. 2D) that
results from an increasing cost burden. There exists a critical
value for the repair cost, αc = 1/(f + r), above which there is
no repair.

Interdependent Networks. For networks with interdependent
components, the optimal protocols are still bang bang, and the
switching times can be calculated using Eq. 7. Notably, increas-
ing the interdependence (I ≥ 0) between components provided
qualitatively similar strategies for maintaining optimal health
span (finite T ) as the linear theory. Our theory predicts that
the window of repair increases with interdependence in order to
compensate for the accelerated aging and reduced response to
repair in interdependent networks. Increasing I has little effect
on the switching time T1 since at high vitality, the interdependent
system is close to the linear theory. However, as I increases, the
repairable fraction h(Φ, I ) and the effective repair rate decrease
monotonically with I for fixed Φ, which results in an increas-
ing repair stop time T2. We ran computational simulations of
the network model to validate the predicted optimal repair poli-
cies as interdependence is increased (SI Appendix, section S4).
The results shown in Fig. 2E agree with the optimal policies
calculated using Eq. 7 (solid lines).

Fluctuations in Failure Times. Using our framework, we have
measured the extent of fluctuations in failure times with and
without repair (Fig. 1D). The resulting distribution of failure
times is described by the Weibull distribution (SI Appendix, sec-
tion S3). Interestingly, we find that, in addition to increasing
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Fig. 2. Optimal repair protocols to maximize health span at minimum
intervention cost. (A) Schematic representation of optimal bang-bang repair
protocol r(t) with repair start time T1 and repair stop time T2 as showcased
in Eq. 8 for the linear regime. (B) The repair duration (shaded blue) is depen-
dent on the failure rate f and disappears for small f and large f as calculated
from Eq. 9. (C) The repair duration monotonically decreases with increased
maximum repair rate r. (D) The repair duration decreases with increased cost
of repair α and disappears for large α. The default parameters used for A–D
were N = 1000, p = 0.1, f = 0.025, r = 0.01, α= 10, γ= 0, T = 100, d = 0,
I = 0. (E) Optimal repair protocol for an interdependent network. Solid lines

the average failure time, application of the finite horizon opti-
mal repair protocol results in a broader distribution of network
failure times (Fig. 1 C–E). This effect emerges naturally from
the Weibull distribution, in which the mean failure time is lin-
early correlated with the SD in failure times for different values
of f (Fig. 1F).

Role of Network Topology. We have also studied optimal proto-
cols numerically for Erdős–Rényi G(N ,m) random networks
(31) and Barabási–Albert scale-free networks (32). The aging
dynamics are highly similar between the three network models
investigated (SI Appendix, Fig. S6 A–C). For all random and
scale-free networks, we observe no significant qualitative dif-
ferences in the optimal repair protocols (SI Appendix, Fig. S6
D and E), indicating that our protocols are robust and may be
applicable to a diverse range of complex systems.

A Generalization and an Application
Our computational and theoretical model of aging and its control
in a complex network naturally raises the question of whether
the optimal control policy that we determined can be iteratively
learned and applied to a real system.

Reinforcement Learning Approach to Interdependent Network Aging
Control. Optimal control strategies rely on knowledge of the
model and a cost function, both of which are hard to crystallize
into quantitative form in many biological systems. An alternative
strategy is to ask whether the system is able to learn the opti-
mal repair protocol for aging via an iterative procedure. This
is tantamount to direct adaptive optimal control (36), embod-
ied in reinforcement learning, a process by which a system
is able to optimize its actions by interacting with its environ-
ment. Optimization occurs iteratively on a trial and error basis
by reinforcing actions that maximize reward and/or minimize
punishment. We use a relatively simple version of this algo-
rithm known as Q learning (Fig. 3A and SI Appendix, Fig. S5)
(29), which is a model-free alternative to dynamic programming
models of the Bellman equation (37). This method consists of
creating a Q matrix, Q = {φ, r(φ)}, which serves as a look-up
table of vitality states φ and values associated with each pos-
sible action, r(φ) = 0 or r(φ) = r . In each training episode, a
healthy (d = 0) network is initialized. At each time step, the
network is subjected to the aging algorithm, and the agent
exploits network repair for the greatest-valued choice of repair
at the given vitality of the system with probability 1− e−λexpq

where q is the number of episodes elapsed. The agent explores
with probability e−λexpq . A reward R is calculated and used to
update the state-action value in the Q matrix according to the
rule (29)

Q(φt , rt)←Q(φt , rt) +β

[
Rt + γQ max

ρ
{Q(φt+1, ρ)}

−Q(φt , rt)

]
,

Rt =φt −αrt ,
where α is the cost of repair, β is the learning rate, and γQ is the
Q-learning discount factor that is related to the optimal control
through γ=− log γQ . The learning rate exponentially decays as
β= e−λβq . An episode ends when the network fails (i.e., φ<
0.1). The Q-learning model iterates through learning episodes

correspond to the numerical solution to the optimal control problem. Scat-
ter points correspond to the optimal switching times obtained from a grid
search on the computational model. The default parameters used were
N = 1000, p = 0.1, f = 0.025, r = 0.01, γ= 0, T = 100, d = 0.
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Fig. 3. Optimal repair protocols using reinforcement learning. (A) High-level schematic of reinforcement learning algorithm for optimal control of network
aging. SI Appendix, section S5 has further Q-learning model details. (B) Optimal T1 as a function of the cost of repair α for the reinforcement learning (gray
circles; error bars span 75% CI, N = 50 realizations) and the theoretical solution (dotted magenta line) (Eq. 9). Models used N = 1000, p = 0.1, f = 0.025,
r = 0.01, γ= 0.975, I = 0. (Inset) The learned repair protocol (represented as points) is bang bang, matches closely with the theoretically optimal repair
protocol (line) (Eq. 8), and is characterized by a single repair switching time T1. Parameters used were f = 0.0367, r = 0.01, α= 10, γ= 0.975, I = 0, d = 0.
(C) Switching time (in days) determined for α-ketoglutarate treatment of C. elegans (38) using estimated f = 0.004, r = 0.043, I = 0.8, and different choices
of α. Q learning was used on network models (N = 200, p = 0.1). Error bars span 75% CI.

until qualitative convergence of the Q matrix is achieved. The
optimal protocol is defined as the maximal Q-valued trajectory
traveled by a network through (φ, r) space.

Using this method, the Q-learned repair policy converges to
optimal repair protocols that are bang bang (Fig. 3B, Inset) and
closely match the predicted switching time T1 from the analytic
theory for different values of α (Fig. 3B). These results suggest
that the optimal protocols for repair can be obtained through
simple iterative learning and highlight the potential of Q learning
as a method to approximate optimal repair protocols for com-
plicated systems in which no analytic description of the aging
dynamics is available.

Quantifying the Protocols for Extending Longevity of C. elegans.
We now deploy this approach using data from a model organ-

ism in aging research, the nematode C. elegans. We used
C. elegans life span data (38–41) in the presence of a metabo-
lite α-ketoglutarate that significantly extend C. elegans life span
from which we estimate the parameters in our minimal model
corresponding to the failure rate f , interdependency I , and α-
ketoglutarate repair rate r (SI Appendix, section S7). Using Q
learning with these fitted parameters, we predict optimal pro-
tocols for this system as a function of the cost of repair α
(Fig. 3C). Consistent with our model, the switching time for
α-ketoglutarate treatment increases with the cost of repair α.
These results suggest that life-extending treatments that work
through repair or replacement may be determined through mea-
surable parameters. However, understanding the dependence of
these strategies on the choice of the cost remains an outstanding
question.

Sun et al. PNAS | August 25, 2020 | vol. 117 | no. 34 | 20409
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Discussion
Although aging in real biological and technological systems is a
consequence of complex biochemical and mechanical processes,
here we have abstracted a minimal model designed to capture
the essential ingredients that give rise to aging in a complex
system—modular units (nodes) that are linked to each other via
a set of edges modeled as an interdependent network subject
to nodal failure and repair. Our model shows the emergence
of failure cascades, a hallmark of such systems, which we can
understand using an analytic approach that accounts for both the
observed mean and extreme value statistics of failure. We then
deployed a simple scheme for repair in such interdependent sys-
tems, couched as an optimal control problem to slow down aging.
We first used a model-dependent strategy to determine explicit
optimal repair protocols for aging interdependent systems char-
acterized by a failure rate f , repair rate r , and interdependency
I . We also demonstrated that a model-free approach using rein-
forcement learning converges to these optimal repair protocols
and can therefore be leveraged to approximate optimal repair
strategies in an iterative manner. This allowed us to estimate
model parameters for the efficacy of a drug used to increase the
longevity of a model organism in aging studies—the nematode
C. elegans.

We conclude with some implications of our work to the biolog-
ical problem of determining optimal protocols for life-extending
treatments such as the clearance of senescent cells. Senescent

cells enter a permanent, nondividing state and adopt an altered
secretory profile, which has been implicated in inflammation,
tumorigenesis, and aging (10, 42). The presence of these cells has
been shown to promote senescence in surrounding tissue (43),
similar to how node failure in a network can spread due to inter-
dependence. In contrast, the selective clearance of senescent
cells (i.e., via the use of senolytic cocktails) improves physical
function and survival (43, 44), without reducing either the total
cell count (in human tissue) or body weight (in mouse mod-
els) (43). This suggests a rapid replacement of cleared senescent
cells by healthy dividing cells, so that the application of senolytic
treatments becomes analogous to node repair in an aging net-
work. Like many life-extending compounds, senolytic cocktails
may include toxicity (45, 46), which can be modeled in the cost
function. The relative cost of repair α can be determined by
separately measuring the loss of viability caused by senescence
and the toxicity that results from treatment on an ensemble of
healthy cells. This would allow for the deployment of our optimal
repair protocols and design treatment schedules for senescent
cell inhibitors and other therapeutics that target general aging
processes.

Materials and Methods
There are no data associated with this paper.
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Supporting Information Text

S1. Analytic framework

S1.1. Aging dynamics in interdependent networks. The dynamical equation that describes the evolution of the mean network
vitality Φ with time can be formulated as function of three relevant physical parameters:

• the failure rate f ,

• repair rate r, and

• interdependency I.

The total rate of change of vitality is the sum of the rates of node failure and repair; we now derive these two terms by
accounting for interdependence between the components.
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S1.1.1. Network failure. For network failure, a node can either fail with probability f or when its vital fraction falls below I. Thus,
the total rate of failure ftot is set by two contributions. To capture the role of interdependence between the components at the
network level, it is useful to consider the fraction of nodes that have one remaining vital provider over the threshold I, which
we denote as m(I,Φ). We can estimate m(I,Φ) in the mean-field limit. Assume that each node is connected to z nodes on
average; then m(I,Φ) is equal to the probability that k = zI of these nodes is alive, while the remaining z − k nodes are failed.
The probability that a node is alive is Φ, hence (Fig. S1(b))

m(I,Φ) =
(
z
k

)
Φk(1− Φ)z−k [S1]

Vural et. al. (1) proposed the following recurrence relation to describe the effective failure rate ftot:

ftot = f +m(I = 0.5,Φ)ftot(1− f) [S2]

This relation must be modified to reproduce the vitality collapse in the network. First, the susceptible fraction m(I,Φ)
should be calculated with respect to the population of live nodes rather than the entire network resulting in m(I,Φ)/Φ. This
modification is needed because the possibility of node failure is conditioned on a node being alive. Secondly, Eq. (S2) considers
a single target vital provider. However, when I > 1/N (where N is the number of nodes in the network) then susceptible nodes
will have more than one vital provider. Therefore, the probability of a final vital provider failing is the probability of at least
one of k = zI vital providers failing (rather than a target provider failing as in Eq. (S2)). This probability is 1− (1− ftot)k.
Thus, the recurrence relation is modified to

ftot = f +m(I,Φ)(1− (1− ftot)k)(1− f) [S3]

For small failure rate f , a first-order binomial expansion results in (1− ftot)k ' 1− kftot and therefore

ftot ' f +m(I,Φ)kftot(1− f). [S4]

Solving the recurrence relation results in the effective failure rate

ftot = f

1− k(1− f)m(I,Φ) , [S5]

and this gives the failure term for the average network vitality Φ

dΦ
dt

∣∣∣
f

= − f

1− k(1− f)m(I,Φ)Φ, [S6]

S1.1.2. Network repair. For network repair, a failed node can be successfully repaired with probability r but would be conditioned
for immediate failure if the vital fraction of its neighbors is less than the threshold I. As a result, the effective repair experienced
by the network is less than or equal to r. In the mean field, this implies that the effective repair rate is rtot = r h(I,Φ), where
h(I,Φ) is the average fraction of nodes that have a vital fraction greater than I (Fig. S1(a))

h(I,Φ) =
z∑
j=k

(
z
j

)
Φj(1− Φ)z−j , [S7]

where k = zI. Therefore, the repair term for the average network vitality Φ is

dΦ
dt

∣∣∣
r

= r h(I,Φ)(1− Φ), [S8]

where 1− Φ is the fraction of failed nodes.

S1.1.3. Full dynamic equation. Combining Eq. (S6) and Eq. (S8) leads to the full dynamical description of network aging:

dΦ
dt

= dΦ
dt

∣∣∣
f

+ dΦ
dt

∣∣∣
r

= − fΦ
1− k(1− f)m(I,Φ) + r h(I,Φ)(1− Φ). [S9]

Representative examples for the time evolution of vitality described by Eq. (S9) are shown in Fig. S1(c). The system vitality
decreases exponentially with time initially; as the vitality approaches a threshold Φc, the total failure rate becomes large,
leading to failure cascade and a rapid decrease of vitality. This critical vitality can be estimated by maximising m(I,Φ) over Φ,
leading to

Φc ' I. [S10]
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Fig. S1. Computational validation of the analytic theory. (a) h(I,Φ) for different values of I . (b) m(I,Φ) for different values of I . Solid curves correspond
to simulated results from the computational model and dotted curves correspond to the analytic approximation. Simulated results were averaged for 100 Gilbert random
networks with N = 1000. (c) Numerical solutions to the nonlinear interdependent model of aging for different values of I. (d) Simulated times for collapse (defined as
Φ(tc) = Φc) are compared to theoretical prediction from Eq. (S10) (solid line). Calculation parameters: f = 0.025, r = 0.01, α = 10, d = 0, γ = 0.
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S2. Optimal control theory of aging in an interdependent network

S2.1. Definition of optimal control problem. We can start by considering the aging dynamics of the mean-field network vitality
Φ, Eq. (6) of the main text, and make the repair rate time dependent, i.e. set r = r(t). Then, the system dynamics is given by

dΦ
dt

= −ftotΦ + rtot(1− Φ), [S11]

where ftot and rtot are the total rates of failure and repair, given by

ftot = f

1− km(I,Φ)(1− f) , [S12]

rtot = rh(I,Φ). [S13]

Here f and r are the intrinsic rates of failure and repair and

m(I,Φ) =
(
z
k

)
Φk(1− Φ)z−k [S14]

h(I,Φ) =
z∑
j=k

(
z
j

)
Φj(1− Φ)z−j [S15]

are the probabilities that a node has k, respectively, more than k vital providers, where k = zI. Note that in the limit of no
interdependence, corresponding to I = 0, we have h(I = 0,Φ) = 1 and ftot = f . In this case, we obtain a linear equation for
vitality

dΦ
dt

= −fΦ + r(1− Φ). [S16]

As discussed in the main text, the control variable in the problem is r(t) (the repair protocol) and the goal of the optimal
control problem is to determine r(t) such that the cost is minimized

Cost =
∫ T

0
e−γt

[
αr(t)− Φ(t)

]
dt, [S17]

where γ is the discount rate and α is the relative cost of repair.

S2.2. Solution to optimal control problem. We solve the optimal control problem given by Eq. (S11) and Eq. (S17) with the
framework of optimal control theory (Pontryagin’s minimum principle) (2). Due to the presence of the discount factor e−γt in
Eq. (S17), we can solve the optimal control problem by introducing the so-called current Hamiltonian∗

H = αr − Φ + λ
[
rtot(1− Φ)− ftotΦ

]
, [S18]

where λ(t) is a co-state variable. The optimal protocol is determined by minimizing H with respect to the control r, yielding

∂H
∂r

= 0 ⇒ α+ λh (1− Φ) = 0 [S19]

∗An alternative approach to the current Hamiltonian formalism is to introduce the following Hamiltonian (obtained directly by considering the full integrand of the cost, while the current Hamiltonian has no
e−γt term):

H0 = e
−γt
[
αr − Φ

]
+ λ0
[
rtot(1− Φ)− ftotΦ

]
,

where λ0 is the co-state variable associated with the HamiltonianH0 (note that λ0 is not the same as λ). Pontryagin’s minimum principle applied toH0 implies

0 =
∂H0

∂r
= e

−γt
α + λ0 h (1− Φ)

dΦ
dt

=
∂H0

∂λ0
= −ftotΦ + rtot(1− Φ)

dλ0

dt
= −

∂H0

∂Φ
= e

−γt + λ0 (ftot + rtot) + λ0 Φ
∂ftot

∂Φ
− λ0(1− Φ)

∂rtot

∂Φ
,

with λ0(T ) = 0. This calculation withH0 is equivalent to that using the current Hamiltonian, Eq. (S18). This can be seen by writing λ = eγtλ0 yielding:

0 = e
−γt
[
α + λh (1− Φ)

]
⇒ 0 = α + λh (1− Φ) =

∂H
∂r

dΦ
dt

= −ftotΦ + rtot(1− Φ)

dλ

dt
= γλ + e

γt dλ0

dt
= γλ + 1 + λ (ftot + rtot) + λΦ

∂ftot

∂Φ
− λ(1− Φ)

∂rtot

∂Φ
= γλ−

∂H
∂Φ

,

with λ(T ) = eγT λ0(T ) = 0. This is equivalent to Eq. (S19), Eq. (S22), and Eq. (S23). ThusH0 and the current HamiltonianH yield the same results.
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The optimal control is thus a bang-bang control that switches between r(t) = 0 and r(t) = r depending on the sign of the
function α+ λh (1− Φ) (this is known as switching function). In particular, if α+ λh (1− Φ) > 0, we have r(t) = 0, while if
α+ λh (1− Φ) < 0, we have r(t) = r. Noticing that λ(t) is negative,† the optimal repair protocol reads

r(t) =
{
r, h (1− Φ) > α/|λ|
0, h (1− Φ) < α/|λ|

[S20]

which is Eq. (7) of the main text. The number of switches in the optimal protocol is determined by the number of zeros of the
switching function

α+ λh (1− Φ). [S21]

The solution to the optimal control problem, Eq. (S20), states that the repair rate is switched on when the repairable
fraction of nodes, h(I,Φ)(1− Φ), exceeds a time-dependent threshold given by α/λ. The repairable fraction increases with
time as nodes in the network fail and/or become increasingly susceptible to failure cascades; on the other hand, the threshold
for the repairable fraction also increases with time as the system ages, leading to a smaller window of repair.

To find the times when r(t) equals 0 or r, we thus need to solve for the functions λ and Φ. The dynamic equations for these
two variables are obtained directly from the Hamiltonian Eq. (S18). The equation for Φ is

dΦ
dt

= ∂H
∂λ

= −ftotΦ + rtot(1− Φ), [S22]

with initial condition Φ(0) = 1− d. The equation for λ is

dλ

dt
= γλ− ∂H

∂Φ = 1 + (γ + ftot + rtot)λ+ λΦ ∂ftot

∂Φ − λ(1− Φ) ∂rtot

∂Φ , [S23]

with the boundary condition λ(T ) = 0 (this condition is referred to as the terminal condition).

S2.3. Linearized control problem. We now discuss the linearized limit of Eq. (S11), when explicit analytical expressions for the
optimal protocol can be obtained. In this case, condition Eq. (S20) yield non-monotonic optimal repair protocols characterized
by a waiting time for repair, followed by an intermediate period where repair is preferred and a terminal phase where the
repair rate is set again to zero. This optimal protocol can be written as

r(t) =


0, t < T1

r, T1 < t < T2

0, t > T2

[S24]

where T1 and T2 are the switching times, which we determine here below using the switching function Eq. (S21). In the
linearized limit, the dynamic equation for Φ, Eq. (S22), reduces to

dΦ
dt

= r − (f + r)Φ, [S25]

while the equation for λ, Eq. (S23), becomes
dλ

dt
= 1 + (γ + f + r)λ. [S26]

For t < T1 and t ≥ T2, we have r(t) = 0, while for T1 ≤ t < T2 we have r(t) = r; thus, the solution to Eq. (S25) for Φ is given

Φ(t) =


(1− d)e−ft, t < T1

Φ(T1)e−(r+f)(t−T1) + r(1−e−(r+f)(t−T1))
r+f , T1 < t < T2

Φ(T2)e−f(t−T2) T2 < t

[S27]

†Note that the function λ is always≤ 0 on t ∈ [0, T ]. This can be shown by solving Eq. (S23). This equation can be written in the form

dλ

dt
= 1 + g(t)λ(t),

where g = γ + ftot + rtot + Φ ∂ftot
∂Φ − (1− Φ) ∂rtot

∂Φ . The solution subject to λ(T ) = 0 is

λ(t) =

∫ t

T

e
G(t)−G(s)

ds, where G(t) =

∫ t

T

g(s)ds.

Since the integrand eG(t)−G(s) > 0, it follows that

λ(t) = −

∫ T

t

e
G(t)−G(s)

ds ≤ 0.
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Similarly, the solution to Eq. (S26) for λ can be constructed piecewise from the transversality condition λ(T ) = 0 as

λ(t) =


λ(T1)e(f+γ)(t−T1) + e(f+γ)(t−T1)−1

f+γ , t < T1

λ(T2)e(r+f+γ)(t−T2) + e(r+f+γ)(t−T2)−1
f+r+γ , T1 < t < T2

e(f+γ)(t−T )−1
f+γ T2 < t

[S28]

Having determined the time evolution of the functions Φ and λ (see Fig. S2), we are now in position to determine the switching
times T1 and T2 for the optimal bang-bang control. Note that |λ| decreases with time (λ is negative), while 1− Φ increases
with time. Hence, the product (Φ− 1)λ is a positive, non-monotonic function of time. The crossing points with the line α
correspond to the switching times T1 and T2 (Fig. S2(d)). These are determined as solutions to the following equation[

Φ(Ti)− 1
]
λ(Ti) = α, i = 1, 2. [S29]

Thus [
(1− d)e−fT1 − 1

]
·
[
e(f+γ)(T2−T ) − 1

f + γ
e(r+f+γ)(T1−T2) + e(r+f+γ)(T1−T2) − 1

f + r + γ

]
= α [S30a][

(1− d)e−fT1e−(r+f)(T2−T1) + r(1− e−(r+f)(T2−T1))
r + f

− 1
]
·
[
e(f+γ)(T2−T ) − 1

f + γ

]
= α [S30b]

We can solve these equations using the following approximations: for calculating T1, we use λ ' −1/(γ + r + f); when
calculating T2, we use Φ− 1 ' −f/(r + f). Thus, we arrive at[

1− (1− d)e−fT1
]

= α(r + f + γ) [S31][
1− e(f+γ)(T2−T )] = α(r + f)(f + γ)

f
. [S32]

The solution is

T1 '
1
f

log
[

1− d
1− α(f + r + γ)

]
[S33]

T2 ' T −
1

f + γ
log
[

1
1− α(f + r)(f + γ)/f

]
, [S34]

which is Eq. (9) of the main text.

S2.3.1. Curvature around optimum. We now compute the cost as the repair protocol deviates from the optimum:

r(t) =


0, t < T1

r, T1 < t < T2

0, t > T2

[S35]

where T1 and T2 now denote arbitrary switching times, not necessarily the optimal values. The cost for repair is

Costr =
∫ T

0
e−γtαr(t)dt = αr

∫ T2

T1

e−γtdt = αr

γ

(
e−γT1 − e−γT2

)
. [S36]

The cost associated with vitality is estimated using the analytical solution Eq. (S27) as

Costφ = −
∫ T

0
e−γtΦ(t)dt = −

∫ T1

0
e−γtΦ(t)dt−

∫ T2

T1

e−γtΦ(t)dt−
∫ T

T2

e−γtΦ(t)dt, [S37a]

where ∫ T1

0
e−γtΦ(t)dt = 1

γ + f

(
Φ(0)− Φ(T1)e−γT1

)
, [S37b]∫ T2

T1

e−γtΦ(t)dt = e−γT1

[
r

γ(r + f)
(
1− e−γ(T2−T1))+

(
Φ(T1)− r

r + f

)
1− e−(r+f+γ)(T2−T1)

r + f + γ

]
, [S37c]∫ T

T2

e−γtΦ(t)dt = Φ(T2)e−γT2

γ + f

(
1− e−(f+γ)(T−T2)) . [S37d]
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The total cost

Cost =
∫ T

0
e−γt

[
αr(t)− Φ(t)

]
dt [S38]

is then obtained by combining Eq. (S36) and Eq. (S37) yielding:

Cost = r

γ(r + f) (α(r + f)− 1)
(
e−γT1 − e−γT2

)
− 1− d
f + γ

(
1− e−(f+γ)T1

)
[S39]

+ r − (r + f)Φ(T1)
(r + f + γ)(r + f)e

−γT1
(
1− e−(f+r+γ)(T2−T1))− Φ(T2)

f + γ
e−γT2

(
1− e−(f+γ)(T−T2)) .

The total cost is shown in Fig. S2(e) as a function of T1 and T2. It has a distinct minimum in correspondence of the optimal
switching times T1 and T2. We can determine this optimal protocol explicitly by minimizing the cost with respect to T1 and T2.
Using the approximation e−(r+f+γ)(T2−T1), e−(r+f)(T2−T1) � 1, we obtain

Cost ' r

γ(r + f) (α(r + f)− 1)
(
e−γT1 − e−γT2

)
− 1− d
f + γ

(
1− e−(f+γ)T1

)
[S40]

+ r − (r + f)(1− d)e−fT1

(r + f + γ)(r + f) e−γT1 − r

(r + f)(f + γ)e
−γT2

(
1− e−(f+γ)(T−T2)) ,

and therefore
∂Cost
∂T1

= 0 ⇒ T1 '
1
f

log
[

1− d
1− α(f + r + γ)

]
, [S41a]

∂Cost
∂T2

= 0 ⇒ T2 ' T −
1

f + γ
log
[

1
1− α(f + r)(f + γ)/f

]
, [S41b]

which is the same as Eq. (S33) and Eq. (S34). The cost function Eq. (S40) thus has one single minimum point. We now verify
that this is indeed a minimum of the cost. To this end we evaluate the Hessian matrix at the optimum. In the limit γ = 0 we
find

Hess(T ?1 , T ?2 ) =

(
∂2Cost
∂T2

1

∂2Cost
∂T1∂T2

∂2Cost
∂T1∂T2

∂2Cost
∂T2

2

)∣∣∣∣∣
T1=T?1 ,T2=T?2

= fr [1− α(f + r)]
f + r

(
1 0
0 1

)
. [S42]

Since α(f + r) < 1, the Hessian Eq. (S42) is positive definite and Eq. (S41) is a global minimum of the cost Eq. (S40). The
curvature around the optimum is thus given by

κ = fr [1− α(f + r)]
f + r

. [S43]

S2.3.2. Life time increase. We now investigate how life time increases when an optimal repair protocol is applied in the linear
regime and in the infinite horizon limit. Life time is defined through the condition Φ(Tlife) = Φc, where Φc is a critical vitality
value. In the absence of repair, the life time is given by:

Tlife = 1
f

log
( 1

Φc

)
. [S44]

If an optimal repair protocol is applied, the expected life time becomes (see Fig. S3):

Tlife =

{
1
f

log
(

1
Φc

)
α(r + f + γ) < 1− Φc

T1 + 1
f+r log

(
f−α(f+r)(f+r+γ)

(f+r)Φc−r

)
α(r + f + γ) > 1− Φc

[S45]

S2.3.3. Connection to Hamilton-Jacobi-Bellman equation. We now derive optimal repair protocols using the Hamilton-Jacobi-Bellman
(HJB) equation. We are looking for a function V : [0, T ]× [0, 1]→ R (Bellman value function) which satisfies the HJB equation

∂V

∂t
+ min

r

(
α r − Φ + [r − (f + r)Φ]∂V

∂Φ

)
= 0. [S46]

We can rewrite the HJB equation as
∂V

∂t
− Φ− f Φ ∂V

∂Φ + min
r
r
(
α+ (1− Φ)∂V

∂Φ

)
= 0. [S47]

The minimum depends clearly on the sign of the function α+ (1− Φ)∂V/∂Φ. In particular,

r(t) =
{

0, α+ (1− Φ) ∂V
∂Φ > 0

r, α+ (1− Φ) ∂V
∂Φ < 0

[S48]

We consider both cases separately.
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Fig. S2. Optimal control for linear theory. (a) Optimal repair protocol r(t) with switching times T1 and T2. (b) Vitality Φ as a function of time. (c) Costate variable
λ as a function of time. (d) The function (Φ− 1)λ is non-monotonic with time. The crossing points with α correspond to the switching times. (e) Total cost is plotted as a
function of T1 and T2 shows a distinct minimum in correspondence of optimal switching times. Calculation parameters: f = 0.025, r = 0.01, α = 12, T = 100, d = 0,
γ = 0.
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Fig. S3. Life time increase. Life time Tlife under optimal repair conditions as a function of α (a) and γ (b). Calculation parameters: f = 0.025, r = 0.01, α = 12,
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• When r(t) = 0, the HJB equation becomes
∂V

∂t
− Φ− f Φ ∂V

∂Φ = 0. [S49]

The solution subject to V (T,Φ) = 0 (⇒ ∂V (T,Φ)/∂Φ = 0) is

V (t,Φ) = Φ ef(t−T ) − 1
f

. [S50]

• When r(t) = r, the HJB equation becomes

∂V

∂t
− Φ− f Φ ∂V

∂Φ + r
(
α+ (1− Φ)∂V

∂Φ

)
= 0. [S51]

The solution is

V (t,Φ) = − Φ
r + f

+ rt[1− α(r + f)]
r + f

+ d

(
Φ− r

r + f

)
e(f+r)t. [S52]

By matching Eq. (S50) and Eq. (S52) at t = T2, we find:

V (t,Φ) = − Φ
r + f

+ rt[1− α(r + f)]
r + f

+ e−(f+r)T2

(
ef(T2−T ) − 1

f
+ 1
f + r

)(
Φ− r

r + f

)
e(f+r)t. [S53]

In summary the Bellman value function is:

V (t,Φ) =

{
Φ ef(t−T )−1

f
T2 < t < T

− Φ
r+f + rt[1−α(r+f)]

r+f + e−(f+r)T2
(
ef(T2−T )−1

f
+ 1

f+r

)(
Φ− r

r+f

)
e(f+r)t T1 < t < T2

[S54]

To obtain the switching times, we impose the condition α+ (1− Φ)∂V/∂Φ = 0 at t = T1, T2:

t = T1 : α+
[
1− Φ(T1)

] [ef(T2−T ) − 1
f

e(r+f)(T1−T2) + e(r+f)(T1−T2) − 1
f + r

]
= 0 [S55a]

t = T2 : α+
[
1− Φ(T2)

] [ef(T2−T ) − 1
f

]
= 0. [S55b]

This is equivalent to Eq. (S30).

S2.4. Singular arcs. According to Pontryagin’s minimum principle, the optimal repair protocol is determined by the condition
∂H/∂r = 0 (see Eq. (S19)) yielding

r(t) =
{
r, h (1− Φ) > α/|λ|
0, h (1− Φ) < α/|λ|

[S56]

It is however not clear what happens when h (1− Φ) = α/|λ|, where Pontryagin’s minimum principle fails to give the optimal
protocol and, in certain cases, the optimization problem may give rise to a so-called singular arc. In order to characterize the
optimal solution completely, we thus need to investigate in greater detail the special case h (1− Φ) = α/|λ|.

A singular arc is defined by the requirement that the coefficient in front of the linear control term in the Hamiltonian H is
zero for a finite time interval. In our problem this translates to the condition that α+ λh (1− Φ) = 0 on the singular arc. A
necessary condition for this to happen is that all time derivatives of α+ λh (1− Φ) = ∂H/∂r vanish on the singular arc, i.e.

dk

dtk

(
∂H
∂r

)
= 0, k = 0, 1, 2, · · · [S57]

Using Eq. (S19) with Eq. (S25) and Eq. (S26), we can rewrite condition Eq. (S57) for k = 0, 1 as:

k = 0 : ∂H
∂r

= α+ λh (1− Φ) = 0 [S58]

k = 1 : d

dt

(
∂H
∂r

)
= d

dt

(
α+ λh (1− Φ)

)
= h

dλ

dt
(1− Φ)− hλdΦ

dt
= h (1− Φ− αγ + fλ) = 0 [S59]

We see that the condition for k = 1 is independent of the control r. As such, it can never be satisfied for all realizations of λ
and Φ. Thus, no singular arc exists in our problem.
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S3. Fluctuations of network failure times

We describe the distribution of failure times measured in our computer simulations (Fig. 1d,e of main text) using the Weibull
distribution. The probability density function of the Weibull distribution is

p(x) = k

λ

(
x

λ

)k−1
e−(x/λ)k . [S60]

The average failure time is
µ = 〈x〉 = λ

k
Γ
( 1
k

)
. [S61]

The variance in failure times is
σ = 〈x2〉 − 〈x〉2 = λ2

k2

[
2k Γ

( 2
k

)
− Γ

( 1
k

)2
]
. [S62]

Hence the coefficient of variation is
Cv = σ

µ
= 1√

2k Γ
(

2
k

)
/Γ
(

1
k

)2 − 1
. [S63]

In other words, the average and the standard deviation of the Weibull distribution are linearly correlated. The failure time
distribution of aging networks is closely fitted by the Weibull distribution (Fig. 1e of main text) and a linear relationship
between the mean and standard deviation of network failure times is also observed (Fig. 1f of main text).

S4. Computational model

S4.1. Network aging algorithm. The computational model constructs a network of N nodes according to the established
programs for each corresponding network architecture (e.g. Gilbert random). The network has an initial vitality of φ0 = 1− d
and is then subjected to an aging algorithm:

Algorithm 1 Aging
1: procedure Age network(f, r, I)
2: φ← 1− d
3: while φ > 0 do
4: for node xi in the network do
5: xi ← 0 with probability f
6: xi ← 1 with probability r
7: while ∃ node xi with fraction of live neighbors < I do
8: for node xi in the network do
9: if fraction of live neighbors < I then xi ← 0

10: φ← 1
N

∑N

i=1 xi

S4.2. Running the model. The network model of aging is implemented in Python 3. All of the code associated with the model,
optimal repair protocol simulations and numerical solutions, and generation of figures is available at the corresponding Github
repository for this paper. The repository provides example pipelines for generating all of the key figures in the main text
and supplementary materials along with Python scripts containing the functions and methods for constructing, aging, and
controlling complex networks. More information on the computational model is available in the repository.

S4.3. Summary of key model parameters. Here we outline some of the main parameters in the computational model. These
parameters are arguments in the simIndividual() and simPopulation() methods in the model.py Python script, which
simulate aging in a single complex network and a population of networks respectively. Information on other parameters can be
found on the Github repository.

• filename [str]: root name for saving results and figures
• pop_size [int]: number of individuals to average results over in simPopulation()
• N [int]: number of nodes per individual network; default is 1000
• p [float]: probability of edges for random network; mean degree is (N − 1)p
• d [float]: probability of initial failed state for each node; φ(t = 0) ≈ 1− d
• f [float]: independent probability of node failure; default set at f = 0.025
• r [float]: independent probability of node repair during repair period; default set at r = 0.01
• f_thresh [float]: threshold fraction of live nodes below which system failure occurs; default set at 0.1
• graph_type [str]: prefix of string input can be scale_free (for Barabasi-Albert scale free), Grandom (for Gilbert random),

or ERrandom (for Erdos-Renyi random) with the suffix specifying directed (_d) versus symmetric/undirected (_s) graphs;
default is Grandom_s (symmetric Gilbert random graph)
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• check_type [str]: none (default) for uniform repair at rate r with no checking; uniform for checking each node at
probability P_check before repair; biased for checking each node with probability as a function of degree

• P_check [float]: probability of checking a node; equivalent to c in the analytical model
• repair_start [int]: time T1 at which repair or checking begins (used for bang-bang controls)
• repair_end [int]: time T2 at which repair or checking ends (used for bang-bang controls)
• time_end [int]: time T at which simulation ends (convenient for calculating comparable costs during a time period);
• dependency [float]: critical fraction of vital provider nodes required to avoid automatic failure (e.g. if dependency is 0,

then the network consists of independent nodes); this is equivalent to I in the analytical model

S4.4. Visualization of 2D aging network. A video file showcasing the aging process in a two-dimensional triangular lattice
network (N = 120) is included in the supplementary materials. The final frame is shown in Fig. S4.

S5. Q-learning

Here we elaborate on the Q-learning algorithm that was used to approximate the optimal repair protocols from the analytic
theory. The Q-learning model consists of a Q matrix containing values associated with each state-action pair where states
correspond to the network vitality φ and actions correspond to repair options (e.g. r(φ) = r or r(φ) = 0). A choice of action
is made at each time step. With probability Pexp, the agent will explore an action by randomly choosing any of the actions
available for that state with equal probability. With probability 1− Pexp, the agent will exploit the highest-valued action for
the current state. The exploration probability decays with the number of training episodes as Pexp = e−λexpq. The learning
rate exponentially decays as β = e−λβq. We used values of λexp = 0.0005 and λβ = 0.0005, which were determined heuristically
for runs of 15000 episodes. The corresponding state-action value in the table is updated according to the rule outlined in the
main text:

Q(φt, rt)← Q(φt, rt) + β[Rt + γQ max
ρ
{Q(φt+1, ρ)} −Q(φt, rt)],

Rt = φt − αrt.
We observed that 15000 episodes of Q-learning was sufficient for qualitative convergence to the optimal protocols as evidenced
by the close matching to the analytic results. A detailed schematic representation of the Q-learning algorithm is shown in
Fig. S5

S6. Alternative network structures

The results displayed in the main text correspond to the Gilbert random graph (3). The Gilbert random graph is also referred
to as a G(N, p) random graph since the probability of an edge between any two nodes of the network is p and there are N total
nodes in the network. We construct the Gilbert network by initializing an unconnected set of N nodes and then drawing edges
between each pair of nodes with probability p.

The results for the linearized model (i.e. where there are no interdependencies between the components of a network and
I = 0) hold true regardless of network structure. However, in the nonlinear model where I > 0, different network structures
may present different aging dynamics. Here we explore two common network structures, the Erdos-Renyi random graph (4)
and the Barabasi-Albert scale-free graph (5), and show that they produce highly similar cascading failure behavior and observe
comparable optimal repair protocols relative to the Gilbert model results outlined in the main text.

S6.1. Erdos-Renyi. The Erdos-Renyi (ER) random graph is constructed by building a network from the first node onward.
Each subsequent node forms an edge with a pre-existing node with probability that decreases with node degree (kj). ER
graphs are also referred to as G(N,m) random graphs where a network is randomly chosen from the set of all networks with N
nodes and m edges. We construct the ER random network using the NetworkX implementation (6).

ER random networks exhibit a characteristic failure cascade (see Fig. S6a) that was also observed in Gilbert random
networks. The dependence of the critical failure time tc on the interdependence I is very similar to that of the Gilbert random
model (see Fig. S6c). Further, the optimal repair protocols match the numerical solutions for different values of I and are
similar to the optimal protocols in the Gilbert network (see Fig. S6d).

S6.2. Barabasi-Albert. The Barabasi-Albert (BA) scale-free graph can be constructed in two ways (with highly similar end
results). The first method is through the NetworkX implementation of a BA graph, which is the default option in model.py.
The second method is to manually build the network one node at a time. For the first pN nodes, a fully-connected network is
formed meaning that each node is connected to every other node. After that, each subsequent node added forms an edge with
an existing node with probability proportional to node degree k:

P (Eij) = kj∑
n
kn

The BA model results in a scale-free distribution of degrees where P (k) ∼ 1
k3 is the probability of a given module having k

interdependencies. We construct the BA scale-free network using the NetworkX package (6).
BA scale-free networks produce highly similar cascading failure behavior and critical failure time tc distributions as compared

to either of the two random networks (see Fig. S6bc). The optimal repair protocols for scale-free networks are also similar to
those of random networks (see Fig. S6e).
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Fig. S4. 2D network failure visualization. Final state of node failure and cascade in a two-dimensional triangular lattice network of size N = 120. Full video
visualization is in additional materials. The upper left panel displays a live visualization of the network where nodes are colored cyan (functional) and magenta (failed). The
upper right panel displays the corresponding vitality φ as a function of time. The bottom left panel displays the average size of the connected subgraphs of failed components,
and the bottom right panel displays the number of these connected subgraphs of failed components. The aging parameters are f = 0.025, r = 0, I = 0.6.
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Fig. S5. Schematic representation of the Q-learning algorithm used in developing adaptive optimal controls for aging in the network model.
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Fig. S6. Aging and optimal control in Erdos-Renyi and Barabasi-Albert networks. (a) Vitalities φ(t) of Erdos-Renyi random graphs and (b) of
Barabasi-Albert scale-free graphs follow similar cascading failure trajectories with time as observed in the Gilbert model. Parameter values in (a) and (b) are identical to those
used in Fig. 1b. (c) Distribution of critical failure times tc as a function of interdependence I for Gilbert, Erdos-Renyi, and Barabasi-Albert networks are nearly identical. The
shaded regions correspond to one standard deviation from the mean tc obtained from averaging over 200 networks. Parameters used were the same as in (a) and (b). (d)
Nonlinear (I ≥ 0) optimal repair protocols for the γ = 0 cost function in Erdos-Renyi networks and (e) Barabasi-Albert networks as compared to the numerical solutions. We
solved for the numeric optimal policies in Figure using the ezsolve function in the TOMLAB/POPT Matlab package, which was also used for the numeric solutions in Figure 2E
of the main text.
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S7. Model fitting to C. elegans data

Values for f , r, I, and α are required to fit the network model to empirical data and determine a unique optimal repair protocol.
Here we fit our network model to two different cohorts of C. elegans (treated versus vehicle) (7) to obtain estimates of f , r,
and I. The cost of repair α was left as a free parameter because real-world interpretation of the cost is subjective and requires
data that is not readily available (e.g. toxicity of α-ketoglutarate treatment). We bootstrap-fitted (100 bootstraps) the failure
time distributions of 105 networks (N = 200, p = 0.1) to C. elegans lifespans by minimizing the Kolmogorov–Smirnov distance
between the two distributions. Estimates of f = 0.004 and I = 0.8 were obtained from fitting the model to 306 vehicle C.
elegans lifespans using a numerical grid search (Fig. S7a). These values were then used to fit the model to 297 treated C.
elegans lifespans to estimate r = 0.043 from a numerical line search (Fig. S7b).

S8. Alternative cost functions

S8.1. Cost function with Φ-dependent repair rate. In systems that undergo self-repair (e.g. cellular turnover, wound healing,
auto-maintenance), the efficacy of the repair mechanism is often linked to the quality of the system such that a decrease in the
vitality is likely to result in less efficacious self-repair. To model the cost function in these self-repairing systems, we make the
repair rate dependent on the vitality Φ. We can repeat our optimal control calculation using the alternative cost function

Cost =
∫ T

0
e−γt

[
αr(t)(1− Φ(t))− Φ(t)

]
dt, [S64]

where γ is the discount rate and α is the relative cost of repair. This cost function reflects the fact that the repair rate depends
on the current fraction of failed nodes.

S8.1.1. Solution to optimal control problem. To solve the optimal control problem, we introduce the current Hamiltonian

H = αr(1− Φ)− Φ + λ
[
rtot(1− Φ)− ftotΦ

]
, [S65]

where λ(t) is a co-state variable. The optimal protocol is determined by minimizing H with respect to the control r, yielding

∂H
∂r

= 0 ⇒ α+ λh = 0. [S66]

The optimal control is thus a bang-bang control that switches between r(t) = 0 and r(t) = r

r(t) =
{
r, h > α/|λ|
0, h < α/|λ|

[S67]

The equation for the co-state variable λ is

dλ

dt
= γλ− ∂H

∂Φ = 1 + αr + (γ + ftot + rtot)λ+ λΦ ∂ftot

∂Φ − λ(1− Φ) ∂rtot

∂Φ , [S68]

with λ(T ) = 0.

S8.1.2. Linearized control problem. We can obtain an explicit expression for the switching time by considering the linearized limit.
In this case, the equation for for λ, Eq. (S68), becomes

dλ

dt
= 1 + αr + (γ + f + r)λ. [S69]

For t > T2, we have r(t) = 0, and the solution for λ is

λ(t) = e(f+γ)(t−T ) − 1
f + γ

, T2 < t. [S70]

The switching time T2 is then determined as to the following equation

λ(T2) = α ⇒ e(f+γ)(T2−T ) − 1
f + γ

= α. [S71]

The solution for the switching time is:

T2 ' T −
1

f + γ
log [1 + α(f + γ)] . [S72]
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Fig. S7. Failure time distributions of fitted models and C. elegans treatment groups. (a) Model with closest failure time distribution to that of the
vehicle control group. Bootstrap-fitted parameters were f = 0.004 and I = 0.8. (b) Model with closest failure time distribution to that of the α-ketoglutarate treatment group
given fitted f and I. Bootstrap-fitted repair rate was r = 0.043.
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S8.2. Quadratic cost of repair. The optimal control problem discussed in the main article yields a bang-bang control as solution.
This is due to the fact that the cost function Eq. (S17) is linear in the repair frequency. The resulting optimal control selects
the maximal possible value of r out of an interval of possible repair frequencies [0, r]. In this section, we illustrate how optimal
protocols can be determined for nonlinear cost functions. We illustrate this idea for the example of a cost function that is
quadratic in the repair rate r(t):

Cost =
∫ T

0

[
αr(t)2 − Φ(t)

]
dt. [S73]

We solve the resulting optimal control problem by considering the following Hamiltonian function

H = αr2 − Φ + λ
[
r − (f + r)Φ

]
, [S74]

where λ(t) is a co-state variable. The optimal protocol is determined by minimizing H with respect to the control r

∂H
∂r

= 0 ⇒ r = λ(Φ− 1)
2α . [S75]

Note that, in this case, the optimal control is no longer bang-bang, but is set by the time evolution of the functions Φ(t) and
λ(t). From this equation it is clear that the repair rate must be zero at the start and at the end of the protocol. This follows
from the fact that Φ = 1 at the start and λ = 0 at the end. The functions Φ and λ obey the following differential equations

dΦ
dt

= ∂H
∂λ

= r − (f + r)Φ = −λ(1− Φ)2

2α − fΦ, [S76]

with initial condition Φ(0) = 1− d, respectively,

dλ

dt
= −∂H

∂Φ = 1 + (f + r)λ = 1 + fλ+ λ2(Φ− 1)
2α , [S77]

with the boundary condition λ(T ) = 0 (transversality condition). We solved Eq. (S76) and Eq. (S77) numerically and used
Eq. (S75) to determine the optimal repair protocol; the result is shown in Fig. S8. Even though the optimal protocol is no
longer bang-bang, it still features regions of low repair near t = 0 and t = T and a region of large repair in the middle.

S9. Optimal control problem with checking

Here we discuss a potential extension of the optimal control problem discussed in the main text by adding a checking step
before repair is performed. In this case, each node is checked with rate c; checked nodes are then repaired with probability β.
There is a time delay between checking and repair. The net repair rate r is then described in the simplest scenario as:

dr

dt
= − (r − βc)

τ
, [S78]

where τ is the delay between repair and checking. This equation has the fixed point r = βc. Thus, for a non-vanishing checking
rate c 6= 0 repair will increase over time and reach the plateau βc. When c = 0, the fixed point becomes 0. Note that when the
delay τ is very small, the exponential decay/increase of r in response to c will be very sharp; the repair rate then approaches a
step function where r = 0 for c = 0 and r = βc for c 6= 0.

S9.1. Definition of optimal control problem with checking. The optimal control problem with a checking step included reads

dΦ
dt

= −fΦ + r(1− Φ), [S79]

dr

dt
= − (r − βc)

τ
. [S80]

The control variable in the problem is now c(t) (the control protocol) and no longer r (since r is “slaved” to c through the new
differential equation). The goal of the optimal control problem is to determine this checking control c(t) such that the cost for
checking and repair is minimized and the integrated vitality is maximized:

Cost =
∫ T

0

[
α1c(t) + α2r(t)− Φ(t)

]
dt, [S81]

where α1 and α2 are the relative costs for checking and repair.
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Fig. S8. Optimal repair r(t) protocols for the quadratic cost functional. Protocols are shown for different costs of repairα. The protocols are characterized
by a middle region of highest repair and flanked by regions of lower repair at early and late times. Parameters are N = 1000, f = 0.025, I = 0, d = 0, p = 0.1, and
T = 100.
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S9.2. Solution to optimal control problem with checking. To solve the optimal control problem given by Eq. (S79) and Eq. (S81)
we consider the following Hamiltonian function

H = α1c+ α2r − Φ + λ1

[
βc

τ
− r

τ

]
+ λ2

[
r − (f + r)Φ

]
, [S82]

where λ1(t) and λ2(t) are co-state variables. The optimal protocol is determined by minimizing H with respect to the control c

∂H
∂c

= 0 ⇒ α1 + λ1
β

τ
= 0. [S83]

The optimal control is thus a bang bang control that switches between c(t) = 0 and c(t) = c depending on the sign of α1 + λ1
β
τ
.

If α1 + λ1
β
τ
> 0, we have c(t) = 0, while if α1 + λ1

β
τ
< 0, we have c(t) = c. Thus

c(t) =

{
c, λ1 < −α1τ

β

0, λ1 > −α1τ
β

[S84]

The optimal control protocol will thus be of the form

c(t) =


0, t < T1

c, T1 < t < T2

0, T2 < t

[S85]

To find the switching times, we solve for the functions λ1, λ2, r and Φ. The equations for Φ and r are

dr

dt
= ∂H
∂λ1

= − (r − βc)
τ

[S86]

dΦ
dt

= ∂H
∂λ2

= r − (f + r)Φ [S87]

with initial conditions r(0) = 0 and Φ(0) = 1. The equations for λ1 and λ2 are

dλ1

dt
= −∂H

∂r
= λ1

τ
+ λ2(Φ− 1)− α2 [S88]

dλ2

dt
= −∂H

∂Φ = 1 + (f + r)λ2 [S89]

with the boundary conditions λ1(T ) = λ2(T ) = 0 (transversality condition). The solution for the repair protocol is

r(t) =


0, t < T1

βc
(
1− e−(t−T1)/τ), T1 < t < T2

r(T2)e−(t−T2)/τ , t > T2

[S90]

Note that for τ → 0, we recover

r(t) =


0, t < T1

βc = r, T1 < t < T2

0, t > T2

[S91]

which is Eq. (S24). Using Eq. (S90) and applying a perturbation expansion in τ , we obtain the following expressions for the
switching times:

T1 '
1
f

log
[

1− τ(f + r)
1− τr − α(f + r)

]
[S92]

and

T2 ' T −
1
f

log
[

1 + (r + f)τ
1 + τr − α(r + f)

]
, [S93]

where r = βc and α = α2 + α1
β
. For τ = 0, Eq. (S92) and Eq. (S93) recover Eq. (S33) and Eq. (S34).
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