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Mechanical basis for fibrillar bundle morphology†

Thomas C. T. Michaels, a Edvin Memet b and L. Mahadevan *abc

Understanding the morphology of self-assembled fibrillar bundles and aggregates is relevant to a range

of problems in molecular biology, supramolecular chemistry and materials science. Here, we propose a

coarse-grained approach that averages over specific molecular details and yields an effective

mechanical theory for the spatial complexity of self-assembling fibrillar structures that arises due to the

competing effects of (the bending and twisting) elasticity of individual filaments and the adhesive

interactions between them. We show that our theoretical framework accounting for this allows us to

capture a number of diverse fibril morphologies observed in natural and synthetic systems, ranging from

Filopodia to multi-walled carbon nanotubes, and leads to a phase diagram of possible fibril shapes.

We also show how the extreme sensitivity of these morphologies can lead to spatially chaotic structures.

Together, these results suggest a common mechanical basis for mesoscale fibril morphology as a

function of the nanoscale mechanical properties of its filamentous constituents.

1 Introduction

Fibrillar aggregates are ordered bundles composed of several
filaments wound around each other and held together by
adhesive forces. Such structures represent one of the simplest
geometrical examples of supramolecular self-assembly1 and are
ubiquitous both in living and synthetic systems. In living cells,
fibrillar structures provide structural rigidity, serve as locomo-
tory appendages, and guide cell division;2 examples include
actin filaments, tubulin microtubules, the bacterial flagellum,
aggregates of the protein fibrin,3 or actin microchaetes.4 Fibril-
lar aggregates are found also in the context of disease, such as
in the case of misfolded proteins that form amyloid fibrils
linked to Alzheimer’s and Parkinson’s diseases5,6 or sickle cell
anaemia.7,8 Finally, fibrillar bundles find widespread use in
modern materials science for various technological applications,
either as protein-based materials9,10 or as inorganic nanotubes.11,12

Two central questions arising from the self-assembled nature
of fibrillar bundles are (i) understanding the mechanical basis for
morphology selection in natural living systems and (ii) learning

how to achieve precise control of fibrillar structures at the scale of
the aggregate, a key challenge of current nanotechnology.13–15 The
ability to aggregate into fibrillar structures is common to a large
number of peptides, proteins and synthetic building blocks with
very different chemical composition.16 Notably, fibrillar bundles
are characterised by persistence lengths between 10–100 mm
(e.g. haemoglobin fibrils,8 actin bundle in Limulus sperm17),
which are orders of magnitude larger than the typical sizes of
the bundles themselves. This implies that self-assembled struc-
tures have well-defined shapes that are not affected significantly
by thermal fluctuations. Taken together, these observations raise
the natural question of whether we can go beyond the specific
molecular details that distinguish such systems to provide a
unifying generic mechanical model for the spatial complexity of
the morphology of fibrillar assemblies.

Motivated by this underlying question of morphology selection,
an emerging central theme in this area is geometric frustration,
the idea that locally preferred packing motifs may be incompa-
tible with global order constraints in the assembly. This
mismatch between local and global order yields non trivial
bundle shapes, and was already recognized in the early work by
Makowski and coworkers,18,19 and later extended to account for
inter-filament stretch,8 orientational gradients,20–22 variable
inter-filament spacing,23 inter-filament shearing24–26 etc. More
recently, both continuum approaches using the formalism of
liquid crystals8,20–29 and coarse-grained computer simulations13

have focused on the role of frustration-induced chirality to study
these assemblies, summarized and reviewed in ref. 14 and 15.
Recently these models have been extended also to achiral systems
with spontaneous twist, highlighting that chirality is not necessary
to yield frustration.28 These studies show that under general
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conditions frustration can yield to fibril structures with finite
diameter, but have focussed mainly on straight bundle structures.
Understanding the range of large-scale morphologies of non-
straight fibril bundles that emerge from the small-scale properties
of the constituent monomers remains an open question.

In this paper we take a step forward in this direction by
proposing an effective theory predicated on the hypothesis that
complex spatial fibril configurations can emerge from just two
simple and natural physical ingredients: the competition
between three-dimensional bending and twisting of the filaments
that constitute the fibril (and thus the bending and twisting of the
fibril itself) and the adhesive interactions between the filaments
in the fibrillar bundle. Using a combination of continuum theory
and coarse-grained simulations we explore systematically the
range of fibril bundle shapes that emerge from the mismatch
between local packing due to inter-filament adhesion and global
constraints imposed by collective bundle bending and twist.
We show that our model, which is simple in its assumptions
but broad in its scope, can account for a variety of forms observed
in a number of natural and synthetic systems as diverse as
Filopodia and multi-walled carbon nanotubes.17,30–32 Finally
we exploit a direct analogy between our mechanical model and
the complex motion in time of a rigid body in an external
potential33–35 to predict, that the resulting morphology of three-
dimensional fibrillar bundles can be spatially chaotic.

2 Mesoscopic models for
fibrillar bundles

Our starting point is the idea that the mesoscopic scale
morphology of fibrillar bundles can be captured in terms of a
few important coarse-grained parameters,13,23,36–43 including
long-wavelength elastic deformations and the strength of the
adhesive forces that keep the filaments in the bundle together.
Morphology arises via a dynamical process that involves addi-
tion of monomer material to the ends of fibrils followed by
equilibration of elastic energy. However, there is a separation of
time scales between the slower growth of bundles via addition
of monomers and the relatively rapid equilibration of elastic
energy. An upper bound for the equilibration time of elastic
energy is obtained by considering the bending motion of a long
filamentous object of length L, radius r with aspect ratio L/r C 100
and Young’s modulus E C 10 GPa in a liquid medium with
viscosity Z C 10�3 N s m�2; balancing the bending torque Er4/L
with the viscous torque ZL3/tel gives tel C (Z/E)(L/r)4 C 10 ms.
At low monomer concentrations c, diffusion limits the rate at
which monomers can add to fibrils. For a typical concentration
c C 1 mM, the timescale for diffusion into an effective reaction
volume of linear dimension reff C 1 nm is estimated as tD C
(Dcreff)

�1 C 1 ms, where D C 10�10 m2 s�1 is a typical diffusion
coefficient for monomers.44 Since tel { tD, we can treat the
shaping of the fibrils as an equilibrium problem, where
the total elastic energy of bending/twisting and adhesion is
minimised after each monomer addition event to yield the
equilibrium fibril shape (see Videos S1 and S2, ESI†).

2.1 Simulations of interacting discrete filaments

As a first attempt to understand the morphology of fibrils,
we devised a computer simulation model of discrete adhering
filaments to provide a baseline against which to compare
our effective coarse-grained theory (Fig. 1 and Appendix A).
Simulations are carried out using Espresso, a coarse-grained
molecular dynamics software.45 In our model it is sufficient to
consider the interaction of two filaments, each composed of
spherical monomers spaced a distance a apart (2r0 r a o 4r0),
where a sets the corrugation length scale. For simplicity we
focus here on monomers with spherical symmetry, but note
that this model could be extended to account for asymmetry
and chirality in monomer interactions. Monomers on distinct
filaments interact through a Lennard-Jones (L-J) potential with
equilibrium distance r0 and well depth g (Fig. 1(a)). Monomers
on the same filament are connected by springs of rest length a
(Fig. 1(a), top) and very large stiffness k (modeling inextensibility),
while triplets of neighbouring monomers determine a bending
interaction (see Methods). We describe the configuration of
the filament by using the Euler angles y, j and c, defined
in Fig. 2(b). In a simplified two-dimensional setting with
constant j and c, the bending interaction takes the form
B1/a[1 � cos(y � y0)] E B1/(2a)(y � y0)2, where B1 is the bending
rigidity of the filament, y is the (smaller) angle determined by
the segment joining the three consecutive monomers (Fig. 1(a),
bottom), y0 is related to the intrinsic curvature k0 of the
monomer/filament (y0 = p � k0a), and _y = (y � y0)/a is the
local curvature. We grow the filament by adding a pair of
monomers at a time, starting from an initial seed region and
allowing the structure to relax to its equilibrium shape at each
step (see Methods and Videos S1 and S2, ESI†), consistent with
our scaling estimates above.

Fig. 1(b) shows some representative simulations of 2D
fibrils. The case _y = 0, with initial conditions y(0) = 0 and
_y(0) = 0 corresponds to the solution y(s) = 0 for the tangent
vector of the filament, where s is the arc-length parameter along
the fibril: the filaments start and remain in register in the
absence of any bending (Fig. 1(b)(i)). If adhesive interactions
are weak, the energy density is from bending alone B1

_y2/2, with
solution y(s) = k0s for initial conditions y(0) = 0 and _y(0) = k0,
where k0 represents the intrinsic curvature of monomers. Thus,
a growing filament composed of monomers with intrinsic
curvature grows into a circular morphology when adhesive
interactions are very weak (Fig. 1(b)(ii)). However, in the
presence of stronger adhesive interactions, the penalty asso-
ciated with monomer mismatch drives the formation of a
number of kinked-defects (Fig. 1(b)(iii)). The frequency of kinks
is determined by the parameter w = 2pd/a E 4pr0/a (e.g. a = 3r0

corresponds to w E 4, which results in 4 kinks, as in Fig. 1(c),
inset (ii)). Varying w through adjusting a changes the number of
kinks appropriately (Fig. 1(c), inset (iii)).

Our simulations suggest that the Lennard-Jones interaction
between monomers on different filaments is periodic and can
be reduced to a simpler effective potential Hadh with two
parameters: w controlling periodicity, and g controlling amplitude.
To show this, we determined the adhesive potential along the
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filament by integrating the L-J potential (see Appendix A) to
determine its form as a function of the Euler angles y and j.
Fig. 1(c) illustrates this dependence on y in a 2D setting with j, c =
const while Fig. 1(d) illustrates the j dependence for y, c = const
in a 3D setting. The coarse-grained interaction parameters g and w
can be controlled through the parameters associated with the
‘‘microscopic’’ Lennard-Jones interaction which control the well
depth and equilibrium distance, and the fibril geometry which
controls the spacing between monomers. The data in Fig. 1(c) and (d)
show that the adhesion potential is a periodic function of
the Euler angles y and j, i.e. Hadh[w(y + 2p)] = Hadh[wy],
respectively, Hadh[w(j + 2p)] = Hadh[wj]. Moreover, the adhe-
sion potential is proportional to the interaction strength
between monomers, V B g. Indeed, increasing the strength of
the interactions between the monomers increases the effective
potential proportionally, while increasing the distance between
monomers a yields an effective adhesion potential with smaller
periodicity w (Fig. 1(c and d)).

2.2 Coarse-grained continuum theory

These results allow us to transition to a continuum rod model
to capture the interplay between bending/twisting elasticity
and inter-filament adhesion that emerges from our discrete
rod simulations (Fig. 2(a)). A natural strategy for constructing a

generalised rod theory for adhering fibrils is to consider the
mechanics of curved and twisted rods in SO(3) coupled with a
periodic potential for filament adhesion.

2.2.1 Bending and twisting elasticity. To capture the long-
wavelength elastic deformations of the fibril, we model the
bundle as an effective elastic rod of homogeneous cross section
that is easy to bend and twist, but hard to stretch or shear.‡ 46,47

The spatial configuration of the fibril is then specified by a local
body coordinate system {d1(s),d2(s),d3(s)} assigned to every
point s A [0,L] along the center line r(s), with s being the arc-
length. The vector d3(s) = dr(s)/ds is tangential to the centre line
of the fibril and perpendicular to the cross-section, while
the vectors d1(s) and d2(s) lie in the cross sectional plane. This
local body coordinate system evolves with s according to
:
di(s)/ds = k(s) � di(s), i = 1, 2, 3 where � = d/ds, and the vector
of strains k(s) has three components: k1(s), k2(s) are the curva-
tures in the principal directions d1(s), d2(s) while k3(s) = t(s) is
the twist density. The components of k(s) are most conveniently

Fig. 1 Computer simulation model of adhering filaments. (a) (top): Two filaments, composed of monomers of size r0 spaced a distance a apart, interact
through a Lennard-Jones potential with equilibrium distance r0 (which sets the monomer size) and well depth g (inset). The interaction takes place only
between monomers on different filaments while momoners on the same filament are kept apart through springs with high stiffness k and equilibrium
length a. (bottom): More generally, monomers may also have an intrinsic curvature k0 (equivalently characterised through an equilibrium angle
y0 = p � k0a formed by triplets of neighbouring particles (inset)). Deregistration will naturally occur in two filaments spaced apart by some distance d that
are trying to maintain the same curvature. (b) Filaments starting in register (y(0) = 0) composed of monomers with no intrinsic curvature (k0 = 0) can
maintain registration indefinitely (i). Filaments composed of monomers with intrinsic curvature k0 tend to attain a circular morphology when the adhesion
energy is sufficiently low (ii). The fibrillar structure develops kinks when adhesive interactions are sufficiently large to penalise monomer mismatch (iii).
(c) Shapes of fibrillar bundles obtained via our computer simulation model and measurement of the associated adhesion potential (red) as a function of
the angle y (see Fig. 2(b)), keeping the other Euler angles constant. The adhesion potential changes as expected when the distance between monomers is
decreased by a factor of 2/3 (black (ii) to red (i)) and when the adhesion strength g1 is decreased six fold (black (ii) to blue (iii)). (d) Adhesion potential as a
function of the angle j (see Fig. 2(b)) while keeping the other Euler angles constant. Increasing the strength of monomer–monomer interaction by a
factor of 4 (blue (iv) to red (v)) yields a change in the strength of adhesion g by the same factor.

‡ Inextensibility and unshearability of fibrils is justified here because the ratio of
bending (and twisting) stiffness to stretching (and shearing) stiffness scales with
fibril’s aspect ratio as (r/L)2, where r is the cross-sectional radius and L c r is the
fibril length.
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parameterised in terms of the Euler angles y, c, j, which are
defined in Fig. 2(b), as46

k1 = _j sin y sinc + _y cosc, (1a)

k2 = _j sin y cosc � _y sinc, (1b)

t = _c + _j cos y. (1c)

Then the total elastic energy per unit length is written in terms of

the strain vector as Hel ¼
B1

2
k1ðsÞ � k01
� �2 þ B2

2
k2ðsÞ � k02
� �2 þ

B3

2
tðsÞ � t0
� �2, where B1(s), B2(s) are the locally averaged bending

rigidities in the directions d1 and d2, and B3 is the locally averaged
twisting rigidity. Here k0

1, k0
2 and t0 are spontaneous curvatures

and twist that give rise to naturally curved or twisted bundles
(Fig. 4(a)). We will initially focus on the case when k0

1 = k0
2 = t0 = 0

but will come back to naturally curved or twisted bundles in
Section 4. Substituting the Euler angle expressions for the curva-
ture and twist, eqn (1), allows us to write the energy density as:46,47

Hel ¼
B1

2
_y2 þ _j2 sin2 y
� �

þ B3

2
ð _cþ _j cos yÞ2: (2)

We note that the potential energy density of the rod (2) is identical
to the kinetic energy of a rigid body once we identify arc-length s
with time, the angular velocity with the vector of curvatures and
twist, and the bending and twisting stiffnesses with the moments
of inertia. This is termed the Kirchhoff kinetic analogy,46,47 which
we will see a use for later on.

2.2.2 Adhesion. To the elastic energy of bending and
twisting of the fibril, (2), we add the adhesion energy between
individual filaments in the bundle. As seen in our discrete rod
simulations, this energy contribution originates in the fact
that bending and twisting a bundle of inextensible filaments
necessarily couples to sliding and deregistration of inter-
filament adhesive bonds. The adhesive potential measured in
our simulations is a periodic function of the Euler angles y and j.
The periodicity of the potential is set by the parameter w = 2pd/a,
where a is the separation between monomers and d is the
distance between adhering filaments.48 The amplitude of the
potential is determined by the strength of adhesion g.48

To construct a simple mean-field energy term to capture this
behaviour, consider the interaction between adjacent filaments
in the bundle. These filaments are inextensible and unshear-
able chains of discrete monomers that can be described as thin
rods with periodic corrugations along their length (Fig. 2(c)).
In the absence of bending or twisting, all corrugations are
perfectly in register (Fig. 2(c)(i)). However, since filaments are
inextensibile, bending (or twisting) the bundle will cause these
corrugations to deregister due to the different path lengths
traversed by the neighbouring filaments (Fig. 2(c)(ii)). In the
continuum limit, the adhesion energy per unit length in its
simplest form can be written as:

Hadh ¼
g1
2
cos w1yð Þ þ g2

2
sin w1yð Þ cos w2jð Þ

þ g3
2
sin w1yð Þ sin w2jð Þ þ g4

2
sin w3cð Þ;

(3)

where the parameters gi measure the strength of adhesive
interactions and we have decomposed (3) into its principal
components associated with the different ways in which the
filaments in the bundle can be sheared relative to each other at a
cross section, assigning different strengths for each component.
The adhesive bonds may possess intrinsic asymmetry due to
corrugations having different spatial dimensions along and
perpendicular to the filament cross section. We allow for this
possibility by introducing different periodicities wi for each
angle. Moreover, we could account for local packings favouring
non-straight configurations by introducing in (3) rest angles y0,
j0, c0 with respect to which all angles in the adhesion energy
are measured.

We note that the coarse-grained adhesion energy functional
given by (3) was not explicitly implemented in the discrete rod
simulations. Instead, our discrete simulations consider only
Lennard-Jones interactions between the monomers in the
filaments and the periodic nature of the adhesion energy
potential emerges naturally from these ingredients, giving
credence to our simple choice for the adhesion energy above.
Intuitively, deregistration between filaments causes monomers

Fig. 2 Mechanical model for the morphology of fibrillar bundles. (a) A fibril is
an ordered bundle of a number of filaments linked together by adhesive
interactions (inset). To describe bending and twisting modes, we model the
fibril as a thin elastic rod with centre line r(s) and homogeneous cross-section.
Bending and twisting are then described by a local body reference system
attached to each point s A [0,L] along the fibril length: d3(s) points tangentially
along the fibril’s centre line, while d1(s), d2(s) point along the principal axes of
the fibril. (b) At each point s, the Euler angles y, j, c describe the rotation of
the vectors di relative to the fixed reference frame ei, i = 1, 2, 3. (c) Schematic
representation of the bending of two adhering inextensible corrugated
filaments to illustrate the nature of the adhesive energy term: (i) when the
two filaments are straight, the corrugations are in register; (ii) inextensibility of
the filaments causes corrugations of bent adhering filaments to be out of
registry. Adhesion energy penalises corrugation mismatch between adhering
filaments accumulated along the fibril’s length and it is minimal when all
corrugations are fully in register.
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to be further apart, which leads to weaker adhesive interactions
locally. Crucially, while a particular functional dependence
of the adhesion potential is assumed for concreteness in (3),
it is the periodicity, not the specific form that is important in
general.

2.2.3 Effective continuum model. The equilibrium shape
of fibrils is determined by searching for the configuration with

minimal total energy, Etot ¼
Ð L
0 Hel þHadhð Þds, as a solution

to the Euler–Lagrange equations. Once the Euler–Lagrange
equations associated with Etot have been solved, the centre line
of the filament, r(s), is constructed from the tangent vector
d3(s) = (sinj(s)sin y(s), cosj(s)sin y(s), cos y(s)) using the
relationship d3(s) = dr(s)/ds. Within the kinetic analogy, the
Euler–Lagrange equations associated with eqn (2) and (3) (see
Appendix B) give rise to an ‘‘initial-value’’ problem, whereby
initial conditions, corresponding roughly to the nucleation
solution, and mechanical parameters determine the fibril
shape. Non-trivial fibril shapes emerge in our model from the
competition between ‘kinetic energy’ (2), associated with bend-
ing and twisting, and adhesion energy (3), which favours
straight configurations to maintain corrugations in registry.
A natural length scale, termed ‘adhesion length39 emerges from
this competition as cadh = (B/g)1/2 and thus sets the charac-
teristic size of fibril shape deformations.

3 Naturally straight and untwisted fibril
bundles

Before moving towards a phase diagram of the morphologies
and transitions therein, we first show some representative
shapes that arise from the minimisation procedure outlined
above (see ESI† for details). In Fig. 3(a) we show an image
of a zig-zag shaped Limulus polyphemus (horseshoe crab)
acrosome,17 a 60 mm long bundle of crosslinked actin filaments
characterised by a series of almost straight ‘‘arms’’ separated by
kink-defects, where bending is concentrated, a feature that
our mechanical model can reproduce. As another example of
natural fibrils, we consider the shape of Filopodia fibrils, which
are slender protrusive structures that are made of bundles
of actin filaments, cross-linked by proteins such as fascin
or plastin.49,50 Fig. 3(b) shows the image of a reconstituted
Filopodia fibril with complex helical shape reproduced using
our mechanical model.31 Different kinds of helical fibril
morphologies are observed also for inorganic and synthetic
structures. An important example are multi-walled carbon
nanotubes, fibrils composed of several concentric graphene
nanotubes. Fig. 3(c and d) show images of two such multi-
walled carbon nanotubes with supercoiled helical and zig-zag
shape simulated using our mechanical model.32

We note that the values for the elastic parameters used to
reproduce the fibrillar shapes in Fig. 3 were not determined by
using experimentally measured parameters. In fact, while esti-
mates for bending rigidities B are readily available for different
fibril systems from the values of persistence lengths (cp = B/kBT)
[e.g. actin bundles have cp C 1 m, i.e. B C 10�21 N m2 at room

temperature; single-walled carbon nanotubes have cp C 10 mm,
i.e. B C 10�25 N m2 at room temperature, etc.], explicit
measurements of the strength of adhesion (parameters g) are
not available for these structures. However, we can use the fibril
images together with the associated parameters from our
simulations to indirectly estimate the strength of adhesive
interactions g. Indeed, a direct prediction from our model is
that fibril deformations occur over a characteristic length scale
given by cadh = (B/g)1/2, the adhesion length, which measures
the competition between bending and adhesion energies.
Together with values of bending rigidities estimated from
persistence lengths, a comparison between the elastocapillary
lengths for simulated fibril shapes and the actual size of
deformations for real fibril images would thus allow us to
estimate the strength of adhesive interactions. We illustrate
this idea on the actin bundle in Fig. 3(a). The simulation
parameters allow us to express the simulated fibril shape in
units of adhesion length (see scale bars in Fig. 3(a), bottom).
Comparing the adhesion length of the simulated shape with
the actual scale bars in fibril image, yields the estimate cadh =
(B/g)1/2 C 10 mm. Using B C 10�21 N m2, the estimated
adhesion length yields an adhesion strength of about g =
10kBT nm�1. This value is broadly consistent with estimates
of adhesion energies from explicit calculations of van der Waals

Fig. 3 Examples of natural and synthetic fibrillar morphologies (top) and
simulations (bottom) from numerical solution of the Euler–Lagrange
equations associated with eqn (2) and (3) (see Appendix B). (a) Image of
a zig-zag shaped actin bundle released from the Limulus polyphemus
sperm.17,30 (b) Image of a curved Filopodia-like structure reconstituted on
supported lipid bilayers.31 (c and d) Tunnel electron microscopy images
of multi-walled carbon nanotubes with super-helical and zig-zag
morphologies.32 Scale bars for the simulated shapes correspond to half
of the adhesion length cadh = (B1/g1)

1/2; comparing this length scale with
the size of observed fibril deformations yields, using bending rigidities
determined from persistence lengths, an estimate for the strength of
adhesive interactions. For parameters see Appendix B.
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attraction between two protein rods obtained using an Hamaker
constant for proteins interacting through water are in the order
HA = 1–10kBT and distances of closest approach between rods in
the nm range.39

4 Naturally curved and twisted fibril
bundles

Our theory so far has focussed on naturally straight structures.
However, fibril bundles can possess spontaneous curvature
and/or twist and many biological8,18,19,29,51–53 and synthetic11,54–56

filament assemblies are chiral. To account for this fact, we now
investigate how the predictions from our model are modified when
natural curvatures k0

1, k0
2 and spontaneous twist t0 are introduced in

the system (Fig. 4(b), and see Appendix C for the full Hamiltonian
and associated Euler–Lagrange equations). We see that t0 a 0
introduces additional twist to the structure, but does not affect the
overall shape of the fibril. This result follows intuition since t0

does not break the symmetries associated with the unperturbed
Hamiltonian (see Section 5), hence making the predictions of our
model applicable to systems with t0 a 0. By contrast, introducing
k0

1 a 0 or k0
2 a 0 breaks the symmetries of the unperturbed

Hamiltonian. This results in helical structures with varying pitch,
as expected from a competition between the deformations due to
cadh = (B/g)1/2 and the new natural curvature forced by k0

1, k0
2. We

also observe chiral structures (Fig. 4(c)); fibril bundles of a

particular handedness are determined in our model by the sign
of the angular momentum cc and can therefore be selected by
means of the initial conditions _j(0) and _c(0). Indeed reversing the
sign of _j(0) and _c(0) (and therefore cc) switches the handedness of
the fibril structure from Fig. 3(d).

5 Phase diagram for fibrillar bundle
morphologies

Moving beyond specific morphologies, we now explore system-
atically the type of fibril shapes that emerge as energy mini-
mizing solutions in our mechanical model as a function of the
relevant mechanical parameters. To do so, it is useful to consider
the case g2 = g3 = 0 first and to introduce the terms proportional to
g2 and g3 in eqn (3) as perturbations in a next step, focusing on the
case where we have a natural twist t0 a 0. When g2 = g3 = 0, the
resulting unperturbed Hamiltonian H0 is independent of j and c.
Thus, the associated angular momenta cj = qH0/q _j and

cc = qH0/q _c are conserved, and these symmetries allow us to
express H0 in terms of two variables only:

H0 ¼
‘y

2

2B1
þ

‘j � ‘c cos y
� �2

2B1 sin
2 y

þ ‘c
2

2B3
þ g1

2
cosðwyÞ; (4)

where cy = B1
_y and for convenience we have introduced the

notation w1 = w. For w = 1, eqn (4) may be conveniently recognized
as the Hamiltonian describing the configurations of a thin rod with
applied load, whose kinetic analogue is the motion of a symmetric
rigid body (or a pendulum in two dimensions, cj = cc = 0) in a
gravitational field.46 Using the kinetic analogy with rigid body
dynamics,§ the different fibril morphologies emerging from
eqn (4) can be classified into two main classes: (i) precession and
nutation modes, where the motion of the polar angle y remains
bounded between some values ymin and ymax, and (ii) libration
modes, where the system has sufficient total energy to reach the
vertical point y = 0 and undergo a ‘‘tumbling’’ motion (see Fig. S2,
ESI†). Note that, due to the centrifugal term in (4), libration modes
are accessible only when cj = cc, such that we shall assume cj = cc
throughout. Libration requires the system to have sufficient
‘‘kinetic energy’’, due to bending and twisting, to overcome the
potential energy, due to adhesion, a competition that in eqn (4) is
described by two natural dimensionless parameters: ‘yð0Þ=

ffiffiffiffiffiffiffiffiffiffi
B1g1
p

and ‘j
� ffiffiffiffiffiffiffiffiffiffi

B1g1
p

. In a phase diagram with these parameters (Fig. 5),
moving upwards diagonally corresponds to increasing the ratio of
bending and twisting energy (‘‘kinetic energy’’) to adhesion energy
(‘‘potential energy’’). Moreover, the homoclinic orbit separates
precession and nutation from libration modes. This orbit connects
the fixed point cy = 0 and y = 0 to itself and, hence, it is the orbit of

Fig. 4 Naturally curved and twisted fibrillar bundles. (a) Definition of
natural curvatures k0

1 , k0
2 and natural twist t0. The shapes illustrate a

naturally straight fibril (left) and naturally curved or twisted fibrils with
t0 a 0, k0

1 a 0 or k0
2 a 0. The red line on the fibril shapes indicates the

rotation of the tangent d3(s) along the bundle, hence describing the twist
of the fibril. (b) Effect of spontaneous curvatures and twist on the fibril
shape of Fig. 3(d). The parameters are the same as for Fig. 3(d) with t0 = 3,
k0

1 = 0.06 and k0
2 = 0.07, respectively. (c) Emergence of chirality in our

model.

§ Note the difference between our model of adhering fibrils and Euler buckling
under longitudinal compression: while both models lead to a cos y term in the
Hamiltonian, the origin of this term is fundamentally different in the two models.
In our model, this term comes from considering the mismatch between adhesion
points along the fibril, whereas, in Euler buckling, it is a force density coming
from distributing the boundary load among each fibril’s cross-section. This
analogy therefore does not imply that boundary loading is imposed to the fibril’s
end in our model.
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minimal total energy that is able to librate. In Appendix D we show

that a homoclinic orbit exists only if ‘j
� ffiffiffiffiffiffiffiffiffiffiffiffi

2B1g1
p

o w and that this
orbit is described by the following equation:

‘y
2

B1g1
¼ 1� cosðwyÞ � ‘j

2

B1g1

ð1� cos yÞ
ð1þ cos yÞ: (5)

Thus, when ‘j
� ffiffiffiffiffiffiffiffiffiffiffiffi

2B1g1
p

4 w, only librational solutions exist, while

for ‘j
� ffiffiffiffiffiffiffiffiffiffiffiffi

2B1g1
p

o w, precession and nutation modes are possible,
as shown in Fig. 5. The origin corresponds to having zero ‘‘kinetic
energy’’ in the Kirchhoff analogy (e.g. because initial fibril nucleus
starts out straight) or infinite adhesion energy; fibrils will thus
remain straight. Precession and nutation modes are characterized
by low ‘‘kinetic energy’’ but relatively strong adhesion; the resulting
shapes are slightly bent fibrils. Libration modes correspond to
structures that have large bending energy (e.g. because the fibril
nucleus enforces a strong curvature) but relatively low adhesion;
the resulting shapes are largely bent fibrils. Interestingly, librating
solutions close to the homoclinic orbit are kinked helices that
concentrate bending at kinks but are otherwise relatively straight.
These solutions maximize the length that is in registry without
having to straighten the fibril completely; the cost to pay is the large
curvature at the kinks. In the kinetic analogy, kinked helices
emerge because these solutions are characterized by points of
almost vanishing angular momentum cy; thus, if we think of s as
a time variable, the system will spend a lot of time in the proximity
of these points, but the angle y in turn changes only very little.

As we move away from the homoclinic orbit, solution orbits are
characterized by large ‘‘kinetic energy’’ due to bending and twisting
and low adhesion energy, such that the kinked character disap-
pears and the cross-section of the helix adopts an increasingly
circular shape.

6 Morphological chaos in 3-d fibrillar
bundles

We now turn on the terms proportional to g2 and g3 in eqn (3)
and show that this can lead to spatially chaotic solutions,
i.e. complex spatial configurations for the shape of fibrillar
bundles with a very sensitive dependence on the mechanical
parameters and initial conditions. The hallmark of chaotic
behavior is that small changes in the initial conditions can
generate trajectories that deviate from each other significantly
(i.e. exponentially) over time, which in the context of fibril
bundles means that very disparate fibril shapes emerge for very
similar initial conditions. The occurrence of spatially chaotic
fibril shapes can be thought as a direct implication of Kirch-
hoff’s kinetic analogy. Indeed, it is a well known fact that
chaotic dynamics is possible for a spinning top with distinct
moments of inertia or for rigid bodies subject to small external
torques.33,34,58 However, it must be stressed that, in the context
of the morphology of three dimensional fibrillar bundles,
chaotic deformations have a different origin: the components

Fig. 5 Phase diagram of fibrillar bundle morphologies. Fibrillar bundle shapes are obtained as energy minimizing solutions from the Hamiltonian eqn (4)
as a function of the dimensionless parameters ‘j

� ffiffiffiffiffiffiffiffiffiffi
B1g1
p

and ‘yð0Þ=
ffiffiffiffiffiffiffiffiffiffi
B1g1
p

for w = 8, y(0) = 0.5 and t0 = 2. Fibril shapes are classified as precession and
nutation modes (red shaded area) or libration modes (blue shaded area). The boundary line (solid red) is the homoclinic orbit, given in eqn (5). Fibrils near
the homoclinic orbit in the libration region are kinked helices (purple); cj = 0 corresponds to 2D shapes (orange). The images show comparisons to real
fibril systems, including (i and ii) circular and supercoiled carbon nanotubes from,57 (iii) a kinked carbon nanotube from,32 and (iv) Filopodia structures
from.31 The parameters are listed in Appendix D.
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of the adhesion energy perpendicular to the long fibril axis that
break the integrability of the full Hamiltonian.¶ The existence
of chaotic solutions can be proved in a rigorous manner using
the Melnikov integral approach34,35,58,59 (see Appendix E). The
underlying idea of the Melnikov function method is to inves-
tigate whether the introduction of terms proportional to g2 and
g3 as perturbations to the fully integrable Hamiltonian system,
eqn (4), leads to transverse homoclinic orbits. Transverse
homoclinic orbits are distinctive signs of chaotic behavior,
which in practice can be tested by establishing whether the
Melnikov function has simple zeros. In Appendix E we deter-
mine explicitly the Melnikov function for our Hamiltonian and
show that this function has simple zeros, therefore indicating
the existence of chaotic solutions. This finding may have
important implications in the way we think about control in
these systems. In particular, tools developed to study complex
temporal dynamical systems, such as finite-time and finite-size
Lyapunov exponents (FTLE and FSLE),60 might be deployed
to detect spatially chaotic fibril morphologies experimentally.
Moreover, different approaches, that have been devised for control-
ling chaotic systems, including OGY method,61 may be employed as
strategies for achieving morphology control of fibril shapes.

7 Summary and outlook

We have proposed a coarse-grained model to understand the
mechanical basis for the shape of three-dimensional fibrillar
bundles. Our simulations of adherent filaments in the plane
and in space suggest that two basic ingredients naturally define
the form of ordered bundles of filaments: intra-filament
bending and twisting, and inter-filament adhesion. In terms
of these, we derive a Hamiltonian that is analogous to that for a
rigid body in an external field and use the Euler–Lagrange
equations derived from minimizing it to explain the complex
morphologies observed for different natural and synthetic
fibrillar bundles. Our phase diagram for the morphologies
has a simple interpretation in terms of an analogy to different
types of solutions for a spinning rigid body. We also derive a
condition for the existence of spatially chaotic morphologies in
terms of its nucleation solution. This suggests that regulating
the micron-scale shape of three-dimensional self-assembling
fibrillar structures is a fundamentally difficult problem, whose
solution would require controlling spatial chaos in these systems.
With sufficient experimental control on initial conditions
(nucleation), a number of self-assembly reactions could be started
with slightly different initial conditions to establish how these
differences give rise to changes in overall fibril shape. Quantifying
the statistics of fibril curvature and torsion from images of fibril
shapes, and using this to determine strategies for controlling the
shape of three-dimensional fibrillar bundles in space remains an
open problem. Although we have demonstrated the existence of

chaotic fibril shapes for a specific free energy (eqn (2) and (3)),
we note that the flexibility of the Melnikov formalism allows one
to include in the future other forms for the energy penalty of
geometric frustration in self-assembled fibril bundles.

Conflicts of interest

There are no conflicts to declare.

A Computer simulations

Simulations begin with an initial seed region consisting of two
particles on each filament, enough to establish the initial condition
y(0). Meanwhile, _y(0) = k0 is prescribed through the intrinsic
monomer curvature k0 (Fig. 1(a), bottom). To grow the filament,
one pair of particles is added at a time, except when a single
monomer needs to be added to prevent runaway of one of the
filaments relative to the other (see Videos S1 and S2, ESI†). Once
added, the pair of monomers is allowed to equilibrate, by trading
off between elastic stress and adhesion penalty due to mismatch.
During equilibration, only the most recently added pair of mono-
mers and the pair prior to it are mobile, while the rest of the
filament is fixed (as – according to the rigid body dynamics
analogy – it constitutes the past). The reason the last two pairs
of monomers need to be mobile, rather than only the last pair,
is to properly model the adhesive interaction, which requires a
neighbor on either side.

Each monomer interacts with monomers of the opposite
type (i.e. on the other fibril) via a Lennard-Jones potential with
equilibrium distance r0, and cutoff 2r0. The cutoff prevents
longer-range interactions, ensuring that the adhesive interaction
potential depends only on the local geometry; effectively each
monomer only interacts with one or two neighbors on the opposite
filament.

Triplets of particles determine a bending interaction, which
is mentioned in the main text in the context of a simplified 2d
model with j = const., c = const. The bending interaction is
simply a discretized bending energy and its general form is
analogous to that in the main text, with the 2d angle y replaced
by a 3D angle b: B/a[1 � cos(b � b0)] E B/(2a)(b � b0)2, where B
is the bending rigidity of the fibril, b is the (smaller) angle
determined by the segment joining the three consecutive
monomers and b0 is related to the intrinsic curvature k0 of
the monomers, b0 = p � k0a.

B Euler–Lagrange equations

The Euler–Lagrange equations for eqn (2) and (3) read

B1
€yþ B3 � B1ð Þ _j2 sin y cos yþ B3 sin y _j _cþ g1w1

2
sin w1yð Þ

� g2w1
2

cos w1yð Þ cos w2jð Þ þ g3w1
2

cos w1yð Þ sin w2jð Þ ¼ 0;

(B1)

¶ Note that the adhesion energy (3) breaks the symmetry associated with the
conservation of cj. The non-integrability of the perturbed Hamiltonian is a
necessary condition to give rise to complicated fibril shapes, although this
condition is not sufficient for the existence of chaotic behavior, see e.g. ref. 62.
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€j B1 sin
2 yþ B3 cos

2 y
� �

þ B1 _j _y sinð2yÞ þ B3
€c� _j _y sin y
� �

cos y

� B3ð _cþ _j cos yÞ sin y _yþ g2w2
2

sin w1yð Þ sin w2jð Þ

� g3w2
2

sin w1yð Þ cos w2jð Þ ¼ 0;

(B2)

B3ð€cþ €j cos y� _j _y sin yÞ � g4w3
2

cos w3cð Þ ¼ 0: (B3)

These equations are integrated for given initial conditions y(0),
j(0), c(0), _y(0) = 0, cj(0) and cc(0), where cj and cc are the
angular momenta with respect to j and c and are given by

cj = B1 sin2 y _j + B3( _c + cos y _j)cos y, (B4)

cc = B3( _c + cos y _j). (B5)

The centre line of the fibril r(s) is obtained by integrating the
tangent vector

d3ðsÞ ¼

sinjðsÞ sin yðsÞ

cosjðsÞ sin yðsÞ

cos yðsÞ

0
BBB@

1
CCCA (B6)

as d3(s) = dr(s)/ds. The twist along the centre line can be
followed by means of the vectors

d1ðsÞ ¼

cosjðsÞ cos yðsÞ coscðsÞ � sinjðsÞ sincðsÞ

sinjðsÞ cos yðsÞ coscðsÞ þ cosjðsÞ sincðsÞ

� sin yðsÞ coscðsÞ

0
BBB@

1
CCCA (B7)

and

d2ðsÞ ¼

� cosjðsÞ cos yðsÞ sincðsÞ � sinjðsÞ coscðsÞ

� sinjðsÞ cos yðsÞ sincðsÞ þ cosjðsÞ coscðsÞ

sin yðsÞ sincðsÞ

0
BBB@

1
CCCA:
(B8)

The parameter used in Fig. 3 are listed here below. In all
cases y(0) = c(0) = 1, and j(0) = �1. For (a) the parameters were:

y(0) = 0.96, a = 0.9, b = 0.9, w1 = 4, and g2 = g3 = 0, i.e. ‘adh ¼ffiffiffiffiffiffiffiffiffiffiffiffi
B1=g1

p
¼ 1:05 (see eqn (D11)). For (b): _y(0) = 1.3, _j(0) = 1.8,

B3cc = 2.9, B1 = 1, B3 = 1, g1 = 1.3, g2 = g3 = 1.3, w1 = 2, w2 = 3,

‘adh ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
B1=g1

p
¼ 0:88. For (c): _y(0) = 3.2, _j(0) = 1.9, B3cc = 2, B1 =

1, B3 = 1, g1 = 1, g2 = g3 = 0, w1 = 1, ‘adh ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
B1=g1

p
¼ 1. For (d):

_y(0) = 0, _j(0) = 2, B3cc = 1, B1 = 1, B3 = 1, g1 = 1, g2 = g3 = 0, w1 = 1,

‘adh ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
B1=g1

p
¼ 1.

C Euler–Lagrange equations for chiral
fibrils

For chiral fibrils, we consider the following Hamiltonian with
natural curvatures k0

1, k0
2 and natural twist t0

H ¼ B1

2
_j sin y sincþ _y cosc� k01

� �2

þ B2

2
_j sin y cosc� _y sinc� k02

� �2

þ B3

2
_cþ _j cos y� t0

� �2
þg1
2
cos w1 y� y0

� �� �
þ g2

2
sin w1 y� y0

� �� �
cos w2 j� j0

� �� �
þ g3

2
sin w1 y� y0

� �� �
sin w2 j� j0

� �� �
þ g4

2
sin w3 c� c0

� �� �
;

(C1)

The Euler–Lagrange equations associated with (C1) are

� _j B1 cos y k01 sincþ k02 cosc
� �

� B3t0 sin yþ B3 sin y _c
� �

þ B1 � B3ð Þ sin y cos y _j2 � B1
_c k01 sincþ k02 cosc
� �

þ €y
� �

þ w1g1
2

sin w1 y� y0
� �� �

� w1g2
2

cos w1 y� y0
� �� �

cos w2 j� j0
� �� �

þ w1g3
2

sin w1 y� y0
� �� �

sin w2 j� j0
� �� �

¼ 0

(C2)

for y(s)

_y � B1 � B3ð Þ sinð2yÞ _jþ B1k01 cos y sincþ B1k02 cos y cosc
�
� B3t0 sin yþ B3 sin y _c

�
þ 1

2
€j B1 � B3ð Þ cosð2yÞ � B1 � B3ð Þ

þ B1 sin y _c k01 cosc� k02 sinc
� �

� B3 cos y€c

þ w2g2
2

sin w1 y� y0
� �� �

cos w2 j� j0
� �� �

� w2g3
2

sin w1 y� y0
� �� �

sin w2 j� j0
� �� �

¼ 0

(C3)

for j(s), and

_y B1k01 sincþ B1k02 coscþ B3 sin y _j
� �
� B1 sin y _j k01 cosc� k02 sinc

� �
� B3 cos y€jþ €c

� �

� g4w3
2

cos w3 c� c0
� �� �

¼ 0

(C4)

for c(s).
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D Analysis of unperturbed equations

In this appendix we study the solutions that emerge from the
unperturbed Hamiltonian:

H0 ¼
B1

2
_y2 þ sin2 y _j2
� �

þ B3

2
_cþ cos y _j� t0

� �2
þ g

2
cosðwyÞ;

(D1)

where for convenience we have introduced the notation g1 = g
and w1 = w.

D.1 Special limits

The Hamiltonian (D1) has two important limits. When w = 1,
the Hamiltonian (D1) becomes the Hamiltonian of the heavy
symmetric top, i.e. the motion of a symmetric rigid body
around a fixed point under the influence of gravity:

H ¼ B1

2
_y2 þ sin2 y _j2
� �

þ B3

2
ð _cþ cos y _jÞ2 þ g

2
cos y: (D2)

In this analogy, the adhesion potential term corresponds to the
gravitational potential, with g/2 = mg, where m is the rigid body
mass and g is the acceleration due to gravity. Moreover, when
w = 1 and _c = _j = 0, eqn (D1) simplifies to the Hamiltonian
describing the motion of a pendulum in the plane with
ŷ = p � y:

H ¼ B1

2

_̂y2 � g
2
cos ŷ; (D3)

where, in this case, g/B1 corresponds to g/L, where L is the
length of the pendulum.

D.2 Integration of unperturbed equations

We note that H0 is independent of j and c, i.e. j and c are
cyclic variables. Therefore, the angular momenta associated
with the angles j and c must be conserved so that

@H0

@ _c
¼ B3

_cþ cos y _j� t0
� �

¼ const � ‘c (D4)

and

@H0

@ _j
¼ B1 sin

2 y _jþ B3
_cþ cos y _j� t0

� �
cos y ¼ const � ‘j:

(D5)

By combining eqn (D4) and (D5), we find

_j ¼ ‘j � ‘c cos y
B1 sin

2 y
: (D6)

Using these relationships, we can reduce the Hamiltonian (1) to

H0 ¼
‘y

2

2B1
þ

‘j � ‘c cos y
� �2

2B1 sin
2 y

þ ‘c
2

2B3
þ g
2
cosðwyÞ: (D7)

where cy = B1
_y is the angular momentum in the y direction.

Note that cy is not conserved since y is not a cyclic variable
of (D1).

The problem can be simplified further by noticing that the
Hamiltonian (D1) does not depend on s explicitly, i.e. qH0/qs = 0.

Hence, H0 must be equal to a constant for all s:

E ¼ ‘y
2

2B1
þ

‘j � ‘c cos y
� �2

2B1 sin
2 y

þ ‘c
2

2B3
þ g
2
cosðwyÞ: (D8)

Finally, it is useful to introduce the following new variable u = cosy
such that eqn (D8) becomes:

E ¼ B1

2

_u2

1� u2
þ

‘j � ‘cu
� �2
2B1 1� u2ð Þ þ

‘c
2

2B3
þ g
2
TwðuÞ; (D9)

where Tw(u) = cos(wy) denotes the Chebyshev polynomial of degree
w. Solving the above equation for :u yields

:
u2 = [a � bTw(u)](1 � u2) � (a � bu)2 � f (u), (D10)

where

a ¼ 2E

B1
� ‘c

2

B1B3
(D11a)

b ¼ g
B1

(D11b)

a ¼ ‘j
B1

(D11c)

b ¼ ‘c
B1
: (D11d)

Note that, by definition, u is defined only for �1 r u r 1.
Moreover, since the left-hand side of eqn (D10) is non-negative,
:
u2

Z 0, eqn (D10) has a solution only when f (u) Z 0. Under
these circumstances, the solution reads

sðuÞ � s u0ð Þ ¼
ðu
u0

du0ffiffiffiffiffiffiffiffiffiffi
f ðu0Þ

p : (D12)

From (D12), we can determine, using u(s) = cos y(s), the evolu-
tion of the angles j(s) and c(s) by means of the following
relationships:

_j ¼ a� bu

1� u2
; _c ¼ ‘c þ t0

B3
� uða� buÞ

1� u2
: (D13)

The parameters used to generate the fibril structures in Fig. 5 are
‘yð0Þ=

ffiffiffiffiffiffiffiffiffiffi
B1g1
p

¼ 0; 0:07; 0:7; 0:93; 1:35; 2:55; 2:55; 2:55; 2:55,
respectively, ‘j

� ffiffiffiffiffiffiffiffiffiffi
B1g1
p ¼ 0; 0:8; 3; 3:5; 0:15; 0; 0:56; 1; 2.

D.3 Existence of homoclinic orbits

A homoclinic orbit is an orbit that connects the saddle point

(y, _y) = (0,0) to itself (starting at s - �N and ending at s -N).
Because the total energy is conserved, the energy of a homo-

clinic orbit can be calculated by evaluating (D8) at (y, _y) = (0,0),
leading to:

E ¼ ‘c
2

2B3
þ g
2
: (D14)
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Thus, when cj = cc, the differential equation describing homo-
clinic orbits reads:

B1
_y2

2
þ ‘j

2ð1� cos yÞ
2B1ð1þ cos yÞ þ

g
2
cosðwyÞ ¼ g

2
; (D15)

or, equivalently,

_u2 ¼ ð1� uÞ2 b
1� TwðuÞ
� �

ð1þ uÞ
1� u

� b2
� 	

: (D16)

Note that, since the left-hand side of eqn (D16) is non-negative
( :u2

Z 0), a homoclinic orbit can exist only if also the right-hand
side of eqn (D16) is non-negative, i.e. if

b
1� TwðuÞ
� �

ð1þ uÞ
1� u

� b2 (D17)

for some subset of u A [�1,1]. Since the maximum of the left-
hand side of (D17) on u A [�1,1] is attained at u = 1, it is useful
to consider the following identify for Chebyshev polynomials
Tw(u):

lim
u!1

1� TwðuÞ
1� u

¼ w2: (D18)

eqn (D18) can be proved by using the following explicit formula
for Tw(u)

TwðuÞ ¼
X½w=2�
k¼0
ð�1Þk w

2k


 �
uw�2k 1� u2

� �k
; (D19)

where [w/2] denotes the integer part of w/2, and find

1� TwðuÞ
1� u

¼ 1� uw

1� u
�
X½w=2�
k¼1
ð�1Þk

w

2k

 !
uw�2kð1� uÞk�1ð1þ uÞk

¼
Xw�1
i¼0

ui �
X½w=2�
k¼1
ð�1Þk

w

2k

 !
uw�2kð1� uÞk�1ð1þ uÞk;

(D20)

where in the last step with have used the formula for geometric

sums
Pn�1
i¼0

ui ¼ 1� unð Þ=ð1� uÞ. Finally, evaluating the above

expression at u = 1, we find

lim
u!1

1� TwðuÞ
1� u

¼ wþ 2
w
2


 �
¼ wþ wðw� 1Þ ¼ w2: (D21)

In summary, by using eqn (D18) in eqn (D17) we find that
there is an homoclinic orbit only when 2bw2

Z b2, i.e. when

0 � ‘j � w
ffiffiffiffiffiffiffiffiffiffi
2B1g

p
: (D22)

E Melnikov function analysis of
perturbed equation and emergence
of spatial chaos

In this appendix we investigate the existence of spatial chaos,
i.e. complex spatial configurations, in the full Hamiltonian.

To do so, we will employ the Melnikov function method59 by
treating the terms of the adhesion potential depending on g2

and g3 as a perturbation of H0, i.e. wee write H = H0 +
eH1 where

H0 ¼
‘y

2

2B1
þ

‘j � ‘c cos y
� �2

2B1 sin
2 y

þ ‘c
2

2B3
þ g1

2
cos w1yð Þ (E1)

and

H1 ¼
1

2
sin w1yð Þ cos w2jð Þ þ d sin w1yð Þ sin w2jð Þ½ � (E2)

with d = g3/g2 = O(1).
We have shown that for 0o ‘c o w1

ffiffiffiffiffiffiffiffiffiffiffiffi
2g1B1

p
the unperturbed

Hamiltonian has a hyperbolic saddle point at (y,cy) = (0,0) and a
homoclinic orbit of energy cc

2/(2B3) + g/2 connecting it to itself.
Note that the homoclinic orbit has the following important
properties:
	 
yh(t) are even functions of time, i.e. 
yh(�t) = 
yh(t);
	 
cyh(t) are odd functions of time, i.e. 
cyh(�t) = 8cy

h(t).
We now use an extended Melnikov method developed by

Holmes and Marsden (formalism in terms of action-angle
variables) to investigate the effect of the perturbation around
the homoclinic orbit.34 In this approach, the Melnikov function
is defined as:

M ¼
ð1
�1

H0;
H1

O

� 

y;‘yð Þ

dt; (E3)

where the integral is evaluated along the homoclinic orbit
(
yh,
ch

y),

f f ; ggðq;‘Þ ¼
@f

@q

@g

@‘
� @f
@‘

@g

@q
: (E4)

denotes the Poisson Bracket and

O ¼ @H0

@‘j
(E5)

is the unperturbed angular frequency along the homoclinic
orbit. For cj = cc and using eqn (E1), the angular frequency
O reads:

O ¼ @H0

@‘j
¼ ‘c

B1ð1þ cos yÞa0: (E6)

Hence, along the homoclinic orbit we have:

jðtÞ ¼
ðt
0

Odtþ j0 ¼ �jðtÞ þ j0; (E7)

where

�jðtÞ ¼
ðt
0

Odt ¼
ðt
0

‘c
B1 1þ cos yhðtÞ½ �dt: (E8)

Note that, since cos yh(t) is an even function of time, it follows
from eqn (E8) that �j(t) is an odd function of time.8 We will
make use of this property later in the calculation.

8 If f (t) is some even function of time, then the time integral gðtÞ ¼
Ð t
0
f ðsÞds is an

odd function of time. In fact, we can write gð�tÞ ¼
Ð�t
0 f ðsÞds ¼

Ð t
0 f ð�sÞð�dsÞ ¼

�
Ð t
0
f ðsÞds ¼ �gðtÞ.
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The Poisson Bracket in eqn (E3) is evaluated as:

H0;
H1

O

� 

y;‘yð Þ
¼ @H0

@py

@ H1=Oð Þ
@y

¼ py

2pc
w1ð1þ cos yÞ cos w1yð Þ � sin y sin w1yð Þ½ �

� cos w2jð Þ þ d sin w2jð Þ½ �:
(E9)

The Melnikov function, eqn (E3), is thus given by

M ¼ 1

2pc

ð1
�1

phyW yh
� �

cos w2jð Þ þ d sin w2jð Þ½ �dt; (E10)

where

W(yh) = w1(1 + cos yh)cos(w1y
h) � sin yh sin(w1y

h).
(E11)

where j is given by eqn (E7). To make progress with the integral
(E10), we use the following trigonometric identities

cos(w2j) = cos(w2 �j)cos(w2j0) � sin(w2 �j)sin(w2j0)
(E12)

sin(w2j) = sin(w2 �j)cos(w2j0) + cos(w2 �j)sin(w2j0)
(E13)

such that (E10) can be rewritten as:

M ¼ 1

2pc

ð1
�1

phyW yh
� �

cos w2�jð Þdt

 �

sin w2j0ð Þ þ d cos w2j0ð Þ½ �

þ 1

2pc

ð1
�1

phyW yh
� �

sin w2�jð Þdt

 �

cos w2j0ð Þ � d sin w2j0ð Þ½ �:

(E14)

We note that W(yh) is an even function of time (recall that yh is
even); thus the term ph

yG(yh) is an odd function of time. For this
reason, the first term in eqn (E14) vanishes, since the integrand
is an odd function of time, and, hence, we can write the
Melnikov function in the following form:

M ¼ 1

pc

ð1
0

phyW yh
� �

sinðw2�jÞdt

 �

cos w2j0ð Þ � d sin w2j0ð Þ½ �;

(E15)

i.e. we find that the Melnikov function is of the form

M(j0) = C[cos(w2j0) � d sin(w2j0)]. (E16)

From this expression it follows that the Melnikov function has
infinitely many simple zeros, which is a sign of the fact that
the flow associated with the perturbed Hamiltonian displays
chaotic behavior.
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