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Inspired by the allure of additive fabrication, we pose the problem
of origami design from a different perspective: How can we grow
a folded surface in three dimensions from a seed so that it is guar-
anteed to be isometric to the plane? We solve this problem in two
steps: by first identifying the geometric conditions for the com-
patible completion of two separate folds into a single developable
fourfold vertex, and then showing how this foundation allows us
to grow a geometrically compatible front at the boundary of a
given folded seed. This yields a complete marching, or additive,
algorithm for the inverse design of the complete space of devel-
opable quad origami patterns that can be folded from flat sheets.
We illustrate the flexibility of our approach by growing ordered,
disordered, straight, and curved-folded origami and fitting sur-
faces of given curvature with folded approximants. Overall, our
simple shift in perspective from a global search to a local rule has
the potential to transform origami-based metastructure design.

origami | computational design | metamaterials | additive fabrication

Folding patterns arise in nature in systems including insect
wings, leaves, and guts (1–4) and have a long history in deco-

rative, ceremonial, and pedagogical traditions of origami around
the world. More recently, they have begun to draw the attention
of mathematicians fascinated by the patterns and limits of folding
(5–9) and engineers and scientists inspired by their technological
promise (10–18).

The simplest origami is a single vertex with four folds, a kind
of hydrogen atom of folding with exactly one internal degree
of freedom (DOF). Patterns comprising four-coordinated ver-
tices and quadrilateral faces are called quad origami, which may
have isolated folded configurations isometric to the plane, if
they can be folded at all. The mechanical response of structures
and materials derived from quad origami is governed in large
part by geometric frustration encountered during folding. Using
these patterns to program rigid-foldable and flat-foldable, floppy,
or multistable systems then requires consideration of additional
symmetries (19) and folds (20), making quad origami a promising
platform for metastructures at any scale from the nanoscopic to
the architectural. This has attracted significant scientific interest
to the problem of their design, but the challenge of either finding
quad patterns that actually fold or, inversely, surfaces that unfold
has limited freeform solutions.

Previous quad origami design studies have tended to focus
on tessellations with periodic geometries and specific moun-
tain/valley (MV) assignments assumed a priori, with the well-
known Miura-ori pattern (21) being the canonical example,
and have generally employed either direct geometric methods
to parameterize simple design variations (22–30) or optimiza-
tion algorithms to generalize known folding typologies (31–
34). The former typically provide a comprehensive understand-
ing of a restricted space of designs sharing strong qualitative
similarities—i.e., those exhibiting particular symmetries—and
involve constructions that are inevitably case-specific. The latter
typically require encoding nonlinear developability constraints in
a nonconvex, multidimensional optimization framework and use
a well-known periodic folding pattern as an empirical departure
point. These computational methods are generic, but they suf-
fer from two problems: the difficulty of finding a good guess to

ensure convergence to a desired local solution and the lack of
scalability to large problems. Thus, while many current strategies
have been used to expound on a wide variety of quad origami
patterns, the general problem of quad origami design has admit-
ted only piecemeal solutions, and the science has, for the most
part, followed the art form.

Inspired by the simple edge-extrusion operation from com-
putational design and additive fabrication, one can ask the
following inverse problem: How can we extend the boundary of
a folded quad origami surface outward such that the new surface
remains developable—i.e., isometric to the plane and thus capa-
ble of being fabricated from flat sheets? In the case of origami,
this implies that a folding process can transform the pattern
through intermediate configurations to a second global energy
minimum, the designed, folded surface. Although this typically
implies geometric frustration in intermediate stages, recently,
several marching algorithms have been developed to design
quad origami that, in addition to developing to the plane, can
deploy rigidly—i.e., with no geometric frustration. This allows
for deployment from a flat to folded to flat-folded configurations
with one DOF, a subclass of developable quad origami known
as rigid- and flat-foldable (35–37), such as a “jigsaw” method to
design rigid-foldable quad origami (36), a combinatorial strat-
egy borrowed from artistic modular origami design (38), wherein
geometrically compatible folded units are selected from a prede-
termined set of discrete modules to augment the boundary of a
folded bulk model.

Here, we deviate fundamentally from these previous
approaches by providing a unified framework that identifies
the complete continuous family of compatible, folded strips
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that can be extruded directly from the boundary of a folded
model. This lays the foundation for an algorithm that allows us
to explore the entire space of developable quad origami designs,
not limited to just rigid- and/or flat-foldable designs. We begin
by exploring the flexibility in angles and lengths associated with
fusing two pairs of folded faces at a common boundary, which
yields the geometric compatibility conditions for designing a
four-coordinated, single-vertex origami. We then apply the
single-vertex construction to determine the space of compatible
quad origami strips at the boundary of an existing folded model.
Critically, we establish that the new interior edge directions and
design angles along the growth front form a one-dimensional
family parameterized by the choice of a single face orientation in
space along the growth front. The result is an additive geometric
algorithm for the evolution of folded fronts around a prescribed
seed into a folded surface, establishing the means to characterize

the entire design space of generic quad origami surfaces. This
constructive algorithm (39) is enabled by the following:

Theorem. The space of new interior edge directions along the
entire growth front in a quad origami is one-dimensional—i.e.,
uniquely determined by a single angle.

Proof: Our proof primarily consists of three parts: single-vertex
construction, construction of adjacent vertices, and the growth of
the full growth, with details given in SI Appendix, section S1.

1. Single-vertex construction: Suppose we are given a vertex
along the growth front with position vector xi (Fig. 1A), with
the two adjacent growth-front vertices denoted by xi−1, xi+1.
We denote the two boundary-design angles incident to xi in
the existing surface by θi,3 and θi,4 and the angle in space
at xi along the growth front denoted by βi =∠{−ei , ei+1}∈
(0,π) (Fig. 1B), where ei = xi − xi−1 and ei+1 = xi+1− xi . To
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Fig. 1. Construction of quad origami. (A) A quad origami surface, the Miura-ori pattern, with boundary vertex xi along a growth front (green). (B) Focusing
on xi , shown from a different vantage point than that of A, its adjacent growth-front vertices xi−1 and xi+1. The two design angles along the boundary θi,3

and θi,4 are shown in blue, and the angle in space βi between the two growth-front edges ei and ei+1 is in green. (C) The plane of action for new design
angle θi,1 is determined by a flap angle αi (red), which sweeps from the βi face clockwise about ei . (D) As θi,1 (yellow) sweeps through its plane of action, it
determines possible growth directions ri and θi,2 (dashed), the angle between ri and ei+1. These must satisfy θi,1 + θi,2 = ki (D, Inset) to create a developable
vertex xi . (E) This constraint gives an ellipse γi of spherical arcs θi,1 and θi,2, which forms a closed loop around the line containing ei . The value of θi,1 that
satisfies the constraint is given by the unique intersection of its plane of action and γi , so αi parameterizes γi . (F) The secondary flap angle α′i at xi sweeps
from the βi face clockwise about ei+1 and is determined by αi . The flap angle αi+1 at xi+1 sweeps from the βi+1 face clockwise about ei+1 to the same
plane as measured by α′i . (G) Two adjacent growth directions ri and ri+1 must be coplanar, so ri+1 is determined by the intersection of this plane and γi+1;
thus, αi+1 parameterizes γi+1.
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obtain a new edge-direction vector ri that gives the direction
of an interior edge [xi , x′i ] in the augmented quad origami
surface, let αi ∈ [0, 2π) be the left-hand-oriented flap angle
about ei from the βi plane to the plane of the new quad
containing ri and ei (Fig. 1C). We note that the single-
vertex origami at xi satisfies the local-angle sum developability
condition

4∑
j=1

θi,j =2π, [1]

where θi,1 =∠{−ei , ri}∈ (0,π) and θi,2 =∠{ei+1, ri}∈ (0,π)
are two new design angles implied by ri (Fig. 1D). Furthermore,
θi,1, θi,2, and βi form a spherical triangle with αi an interior
spherical angle opposite θi,2, so that the spherical law of cosines
gives

cos θi,2 =cos θi,1 cosβi +sin θi,1 sinβi cosαi . [2]

Solving Eqs. 1 and 2 for θi,1, θi,2 yields

θi,1 =tan−1 cos ki − cosβi
sinβi cosαi − sin ki

, θi,1 6=π/2, [3]

θi,2 = ki − θi,1, [4]

where ki =2π− θi,3− θi,4, the amount of angular mate-
rial required to satisfy developability. If θi,1 =π/2, we have
cos θi,2 =sinβi cosαi , which yields a unique solution if βi 6
=0,π and βi < ki < 2π−βi (see SI Appendix, section S1 for
details). We thus see that the solutions θi,1, θi,2 to Eqs. 1
and 2 exist and are unique for any given θi,3, θi,4 and βi
(angles intrinsic to the existing origami) and αi (the flap
angle), modulo a finite number of singular configurations.
The new transverse edge direction ri can then be obtained
by using θi,1 and θi,2 (Fig. 1E). The key geometric intu-
ition and an alternative proof of existence and uniqueness
of single-vertex solutions is to observe that ki defines an
ellipse γi of spherical arcs θi,1, θi,2 that satisfies Eq. 1 with
foci given by −ei and ei+1. For any flap angle αi , the sum
θi,1 + θi,2 =βi when θi,1 =0 and θi,1 + θi,2 =2π−βi when
θi,1 =π and the sum θi,1 + θi,2 is positive monotonic on the
interval θi,1 ∈ [0,π], generically. Moreover, the spherical tri-
angle inequality bounds βi <θi,3 + θi,4< 2π−βi generically,
so no matter what flap angle is chosen or inherited from a
neighboring vertex, a unique solution to Eqs. 1 and 2 must
exist, and the flap angle αi parameterizes the ellipse γi . See
SI Appendix, section S1 and Movie S1 for further details and
discussion.

2. Construction of adjacent vertices: We now show that the new
edge directions ri+1, ri−1 at xi+1, xi−1 are also uniquely
determined by the single flap angle αi . Without loss of gener-
ality, consider obtaining ri+1 given ri (Fig. 1F). Denote α′i as
the left-hand-oriented angle about ei+1 from the βi plane to
the plane of the new quad containing θi,2. Referring again to
the spherical triangle formed by θi,1, θi,2 and βi , the spherical
laws of sines and cosines give

sinα′i =
sin θi,1(αi)

sin θi,2(αi)
sinαi , [5]

cosα′i =
cos θi,1(αi)− cos θi,2(αi) cosβi

sin θi,2(αi) sinβi
, [6]

yielding a unique solution α′i ∈ [0, 2π). As θi,1 and θi,2 are func-
tions of αi , α′i is also a function of αi . Observe that α′i and
αi+1 are measured about a common axis and are thus related
by a shift of the left-hand-oriented angle τi from the βi face
to the βi+1 face. This gives the flap-angle transfer function
gi : [0, 2π)→ [0, 2π):

αi+1 = gi(αi)=mod(α′i(αi)− τi , 2π), [7]

as measured left-hand-oriented about ei+1 starting at the βi
plane. It is easy to see that g is bijective; hence, ri+1 is
uniquely determined by αi , and both γi and γi+1 are param-
eterized by αi (Fig. 1G). A similar argument applies for
ri−1. For geometric intuition, observe that there are bijections
between points on γi and the half-planes about ei and ei+1.

3. Growth of the entire front: Finally, to establish bijection
between the flap angles αi and αj at arbitrary i , j , where i < j ,
we consider the following composition fi,j of the transfer
functions g :

αj = fi,j (αi)= gj (gj−1(gj−2(· · · gi(αi)))). [8]

Since each transfer function is bijective, their composition is
also bijective. Therefore, all new interior edge directions along
the entire growth front are parameterized by a single flap angle
αi . �

Corollary. Given a generic curve C discretized by m +1 vertices
xi ∈R3, i =0, . . . ,m and m edges ei = xi − xi−1, i =1, . . . ,m ,
with angles βi =∠{−ei , ei+1}∈ (0,π), i =1, . . . ,m − 1, the space
of planar patterns that fold to C is m-dimensional.

Proof: Consider assigning ki ∈ (βi , 2π−βi), i =1, . . . ,m − 1
to the interior vertices of C. In the above origami proof, C is
a growth front, and ki is given by the existing origami surface.
For a discrete curve, ki can be chosen freely to determine a one-
dimensional set of fold directions ri ∈R3, i =1, . . . ,m − 1 that
give a development of C to the plane. �

This proof suggests immediately an efficient geometric algo-
rithm for designing generic quad origami surfaces. For an exist-
ing regular quad origami (seed) with a growth front designated
by a strip of m boundary quads (Fig. 2A), we note that a new
strip of m quads has 3(m +1) DOFs in R3 subject to m pla-
narity and m − 1 design angle constraints. If we add a new
strip to a boundary with m quads, we have a total of m +4
DOFs to determine the geometry of the new strip: one flap
angle to determine the interior design angles and edge direc-
tions, two boundary-design angles at the endpoints of the strip,
and m +1 edge lengths. So while our main theorem establishes
the design space of generic quad origami, the following geo-
metric algorithm allows us to explore this landscape additively,
satisfying developability constraints by construction along the
way. A new compatible strip of m quads is designed by the
following steps.

1. Start from any i ∈{1, 2, . . . ,m − 1} and choose the flap angle
αi associated with the growth-front edge ei (one DOF) (Fig.
2B).

2. Propagate the αi choice along the growth front from xi to x1
and xm−1 by iteratively solving for θi,1, θi,2, rotating ri , cal-
culating αi−1,αi+1, and moving on to the next vertex (Fig.
2C).

3. Choose boundary-design angles θ0,2, θm,1 ∈ (0,π) and rotate
r0 and rm into position (two DOFs) (Fig. 2D).

4. Calculate the new edge-length bounds and choose lj for all j
(m +1 DOFs). Bounds are given by the observation that the
new outward-facing edges in each new quad cannot intersect
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Fig. 2. Additive algorithm. (A) To grow an existing folded quad origami model at a boundary having m quads, m + 1 new vertices must be placed in
space, subject to m planarity constraints (dashed squares) and m− 1 angle sum constraints (dashed circles), for a total of 3(m+ 1)− (2m− 1) = m + 4 DOFs,
generically. (B) The additive strip construction begins by choosing the plane associated with any one of the quad faces in the new strip (one DOF). (C)
Consecutive single-vertex systems propagate this flap-angle choice down the remainder of the strip, determining uniquely the orientations in space of all
quad faces in the new strip. (D) Edge directions at the endpoints of the strip can be chosen freely in their respective planes (two DOFs), and all transverse
edges in the new strip can be assigned lengths (m + 1 DOFs) for a total m + 4 DOFs.

each other, which occurs when the two interior angles of a new
quad sum to less than π (SI Appendix, section S3).

5. Calculate the new vertex positions given rj and lj for all j .
6. Repeat the above steps at any boundary front to grow more

new strips.

The algorithm also applies to discrete curves not associated
with an existing folded surface via the corollary. In this case, we
can design the shape of the development of the curve by choosing
k values in step 2, rather than calculating them from an existing
surface.

Having established generic connections from single vertices
to quad strips to origami surfaces, we now analyze the flap-
angle parameterization at each scale of this hierarchy in more
detail. The design space of the growth front of a pair of folded
faces, a proto-single-vertex origami, is described fully by the pair
of scalars β, the angle in space formed by the growth front,
and k , the shape parameter of γ—i.e., the amount of angular
material required to satisfy developability (Fig. 3A). A generic
single-vertex origami can be constructed in the interior of the
triangular region 0≤β≤π and β≤ k ≤ 2π−β, with singular

configurations at the boundaries given by equality (Fig. 3B).
Sweeping α from zero to 2π parameterizes the ellipse such that
θ1(α=0)= (k +β)/2 and θ1(α=π)= (k −β)/2, and new edge
directions r(α) tend to cluster in space around growth-front
directions, where dθ1/dα has smaller magnitude. Special single-
vertex origami (40) are recovered by identifying their flap angles
(Fig. 3A; see SI Appendix for formulae). Three of these vertex
types are given by rearranging Eq. 3 and plugging in a desired
value for the new design angle: the continuation solution αcon,
where the new pair of quads can be attached without creating
a new fold; the flat-foldable solution αff, where the vertex can
be fully folded such that all faces are coplanar; and αeq, which
creates equal new design angles. These each admit two solu-
tions related by reflection over the plane of the growth front,
recovering a duality noted in ref. 5. Two more special vertices
are identified by αll and αlr, which produce locked configura-
tions with the left pair of faces (θ1, θ4) and the right pair (θ2, θ3)
folded to coplanarity, respectively. A vertex is trivially locked
with coplanar (θ1, θ2) faces when α=0,π. The continuation flap
angle that does not create a new fold along the growth front and

4 of 7 | PNAS
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Fig. 3. Vertex and strip design. (A) A pair of folded quads and their single-vertex growth front with β=π/2 and the spherical ellipse given by k = 5π/4 are
shown, along with two other faint ellipses given by k =π, 3π/4 that would be given by different existing design angles than those shown. Special vertex
growth directions and self-intersection intervals are recovered by identifying their flap angles, three of which (αcon,αeq,αff) have two solutions given by
reflection over the β plane. (B, Upper) Valid region for β and k at a single vertex. Typical generic growth-front vertices (red, green, and blue points) fall in
the interior of this region. The first design angle θ1 is bounded above by (k + β)/2 at α= 0 and below by (k− β)/2 at α=π, and surfaces of constant α
are shown in the interstice. Sweeping α∈ [0, 2π) produces possible values for θ1 (B, Lower) symmetric about α=π for the three colored points identified
above. (C) A folded quad strip with two compatible growth directions (continuation, where no new fold is created, and a folded configuration) selected
from the one-dimensional space of compatible strip designs parameterized by the orientation in space of the first new face. (D) Half of the new interior
design angles θi,1 in the new strip (Top), fold angles transverse to the growth front φi,t (Middle), and parallel to the growth front φi,p (Bottom) are shown
as functions of flap angle α1. Characteristic single-vertex curves associated with x1 are bolded, while curves associated with other vertices (light black) differ
from characteristic single-vertex curve shapes by nonlocality.

the locked-left flap angle are related by αcon =mod(αll +π, 2π).
We also note that self-intersection will occur for flap angles
in the intervals between the β plane and the nearest nontriv-
ial locked flap angle. Notably absent from our construction are
fold angles, which can be recovered at growth-front edge ei by
φi,p =αi,ll−αi −π.

Moving up in scale, we explore the relationship between flap
angle and strip design. The special single-vertex solutions can-
not necessarily be enforced at all locations along a generic
surface growth front, as the space of growth directions is one-
dimensional. To design a set of flat-foldable growth-front folds,
for example, requires additional symmetries. The exception to
this is αi,con, the single flap-angle value that gives the trivial
growth direction for the entire front. In Fig. 3C, we illus-
trate a generic folded quad strip and two of its compatible
strips, the trivial continuation solution and a nontrivial folded
solution. New design angles θi,1, fold angles transverse to the
growth front φi,t and parallel to the growth front φi,p in the
new strip, are shown as functions of flap angle α1 in Fig. 3D.
Fold angles parallel to the growth front φi,p are simultane-
ously zero at α1,con and nonzero otherwise, while fold angles
transverse to the growth front φi,t are generically never zero.

See SI Appendix, section S2 and Movies S2 and S3 for more
details.

To show the capability of our additive approach, we now
deploy it in inverse design frameworks to construct ordered and
disordered quad origami typologies with straight and curved
folds. In contrast with previous work (32), our additive approach
does not require the solution of a large multidimensional opti-
mization problem for the entire structure. Instead, it only
requires choosing from the available DOFs for each strip, which
map the full space of compatible designs, and hence is more com-
putationally feasible and geometrically complete. These choices
are application-specific and can be random, interactive, or based
on some optimization criteria.

As our first example, we consider the approximation of a dou-
bly curved target surface using a generalized Miura-ori tessella-
tion. Given a smooth target surface that we want to approximate,
we consider two bounding surfaces displaced in the normal direc-
tion from the target surface (an upper and a lower bound) and
construct a simple, singly corrugated strip in their interstice with
one side of the strip lying on the upper surface and one side
on the lower surface (see SI Appendix, section S4A for more
details). Then, applying our additive algorithm, we add strips to
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either side of the seed (and continuing on the growing patch) that
approximately reflect the origami surface back and forth between
the upper and lower target bounds, inducing an additional cor-
rugation in a transverse direction to that of the corrugation in
the seed. Fig. 4A shows a high-resolution generalized Miura-
ori sandwich structure of constant thickness obtained by our
approach that approximates a mixed-curvature landscape, which
would be very difficult to obtain using current techniques. As our
second example, using a different DOF selection setup with no
reference target surface, we grow a conical seed with a series of
straight ridges with fourfold symmetry via facets that are created
by reflections back and forth between a pair of rotating planes,
shown in Fig. 4B. As our third example, we turn to designing
surfaces that have curve folds, folds that approximate a smooth
spatial curve with nonzero curvature and torsion (5). Fig. 4C
shows a twisted version of David Huffman’s Concentric Circular
Tower (41) obtained by our method, which uses a similar DOF
selection setup as Fig. 4B, but begins with a high-resolution cone
segment as the inner-ring seed and follows with progressively
thicker tilted cone rings added transversely (see SI Appendix, sec-
tion S4B for more details on both of these models). Fig. 4D shows
another curved-fold model that uses the corollary to create a
seed from a corrugated discrete planar parabola and proceeds
to add new strips with constant flap angles and edge lengths,
growing in a direction along the folds (see SI Appendix, section
S4C for more details). As our last surface example, we use our
approach to create a disordered, crumpled surface that is isomet-
ric to the plane, again a structure that would be very difficult to
obtain using current techniques. For each step of strip construc-

tion in the additive algorithm, the flap angle and edge lengths can
be chosen randomly, thereby leading to a crumpled sheet that
does not follow a prescribed MV pattern (Fig. 4E). To model
the physically realizable crumpled geometry, we have chosen flap
angles according to the self-intersection bounds given by special
vertex solutions along the entire front, so that the growth of the
sheet is a locally self-avoiding walk (see SI Appendix, section S4D
for more details).

Finally, to emphasize the flexibility of the corollary, we con-
struct a quad strip that forms a folding connection between a
canonically rough structure, a random walk in three dimensions
(3D), and a canonically smooth structure, a circle in two dimen-
sions (2D). Fig. 4F shows a single folded strip generated by
sampling a discrete Brownian path in 3D to form one bound-
ary of a folded strip, choosing k values such that its development
falls on a circle and forms a single closed loop for any choice of
flap-angle value and choosing edge lengths such that the other
boundary of the strip develops to another, smaller concentric
circle (SI Appendix, section S4E). Indeed, the corollary allows
for the freeform design of both folded ribbons and their pattern
counterparts independently. See Movies S4–S9 for 3D anima-
tions of the models in Figs. 4 and SI Appendix, Figs. S11, S12,
S14, S16, and S17 for a gallery of other surface-fitting, curved-
fold, disordered, and Brownian ribbon results obtained by our
additive approach.

Since the developability condition in Eq. 1 is always satis-
fied in our marching algorithm, all physical models created by
it that do not self-intersect can transform from a 2D flat state
to the isometric 3D folded state, typically through an energy

Fig. 4. Additive design of straight, curved, ordered, and disordered origami. (A) A generalized Miura-ori tessellation fit to a target surface with mixed
Gaussian curvature generated. Lower and upper bounding surfaces are displaced normally from the target surface, and a seed strip of quads is initialized
in between the two with one growth front on each surface. New strips are attached on either side of the seed by reflecting the growth front back and
forth between bounding surfaces in their interstice. (B) A low-resolution conical seed with fourfold symmetry grows by reflecting between the interstices of
two rotating upper and lower boundary planes. New strips form closed loops with overlapping endpoint faces. (C) A high-resolution conical seed grows by
attaching progressively tilted cone rings to reproduce a curved-fold model. New strips form closed loops with overlapping endpoint faces. (D) A curved-fold
model grows from a seed created by using the corollary to attach a strip of quads to a corrugated parabola. (E) A self-avoiding walk away from a Miura-ori
seed strip with noise added to the boundary growth front produces a crumpled sheet. New strips are added by sampling flap angles within bounds that
prevent local self-intersection. (F) A Brownian ribbon whose development approximates a circular annulus is created by using the corollary. The seeds are
highlighted in yellow, and the arrows indicate the growth direction. The fold pattern for each model is shown at the bottom right of each image. The Upper
Right Insets in A–C and F, along with the small square next to the pattern in F, are zoomed-in views to highlight details. See SI Appendix, Figs. S8 and S9 for
higher-resolution versions of the fold patterns.
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landscape that includes geometric frustration (see SI Appendix,
section S5 and Fig. S18 and Movie S10 for folding simulations).
Because the landscape depends on the geometry of the folding
pattern for which folding motions are not unique, this opens
future routes to also program metastability. We also note that
by replacing the right side in Eq. 1 by K 6=2π and suitably
modifying the subsequent trigonometric formulas, our additive
approach generalizes to the design of non-Euclidean origami
(42, 43), with solutions uniquely existing in the same way when
K − θi,3− θi,4 ∈ (βi , 2π−βi).

Overall, our study provides a unified framework for the inverse
design of generic developable quad origami patterns and dis-
crete developable surfaces via growth. A simple theorem forms
the basis for a marching algorithm that replaces the solu-
tion of a difficult global optimization problem with a scalable,

easy-to-implement scheme for the evolution of a constrained
folded front. This interplay between bulk rigidity and boundary
flexibility that allows us to rapidly prototype computational
designs of ordered, disordered, straight-, and curved-folded
geometries holds substantial promise for advances in dis-
crete geometry, engineering applications, and artistic creations
alike.

Data Availability. Some study data are available in GitHub at
https://github.com/garyptchoi/additive-origami.
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Fig. S1. Geometry of a single vertex. (Left) The angles θ3 ∈ [0, π] and θ4 ∈ [0, π] are preexisting design angles at the vertex x. The angle β ∈ [0, π] is the angle
between the two boundary edges incident to x and defines a plane. The flap angle α ∈ [0, 2π] is the angle between the β plane and the plane of r and θ1, which will be a
new edge direction and a new design angle incident to x, respectively. The angle θ2 ∈ [0, π] is the other new design angle at x. To analyze the geometry of this system, we
consider θ1 an independent variable sweeping through [0, π] in the plane determined by α and θ2 a function of θ1, i.e. θ2 = θ2(θ1). (Right) Solutions to Eq. (S1) form
γ(β, k) (where k = 2π − θ3 − θ4) curves, which are ellipses of spherical arcs and thus represent directions of r that use the exact amount of material required at this vertex
to satisfy developability. These simple loops enclose the lines containing the two growth front edges at this vertex and sweeping α through [0, 2π) uniquely selects uniquely a
point on a given γ curve.

Supporting Information Text

S1. Construction

A. Completing a quad pair. Consider a potential single vertex origami of degree four, existing at the moment only as a pair of
quads (i.e. two of its incident faces exist and two have yet to be designed, see Fig. S1). Let the new design angles incident to
the vertex be θ1 and θ2 and the existing design angles be θ3 and θ4. Let the angle between edges at the growth boundary be
β ∈ [0, π] and the oriented angle between the β plane and the new face containing θ1 be α ∈ [0, 2π). The new design angles θ1
and θ2 at the vertex must satisfy two equations:

4∑
i=1

θi = 2π, [S1]

cos θ2 = cos θ1 cosβ + sin θ1 sin β cosα. [S2]
Eq. (S1) guarantees the developability of the interior angles around the new interior node and Eq. (S2) expresses compatibility
between θ1, θ2, α and β (see Fig. S1). Eq. (S2) is the familiar law of cosines from spherical trigonometry, with θ1, θ2 and β
forming a spherical triangle with interior angle α opposite θ2. Notice that this system expresses the same pair of constraints
as prior optimization-based origami design studies (1), namely developability in Eq. (S1) and planarity by construction in
Eq. (S2).

To show existence and uniqueness of solutions to this system, we begin by observing that the existing θ3 and θ4 values at x
determine the value of θ1 + θ2 = 2π − (θ3 + θ4) = k by Eq. (S1). This allows us to rewrite the system as

f(θ1) = θ1 + θ2(θ1) = k, [S3]

where θ2(θ1) = cos−1(cos θ1 cosβ + sin θ1 sin β cosα). Now we can make several observations about this equation. For the
left-hand side, note that

• f(0) = β,

• f(π) = 2π − β,

• f(θ1) is positive monotonic on θ1 ∈ [0, π].

Intuitively, θ2(θ1) always decreases at a smaller rate than the rate of increase of θ1, except in the singular cases α = 0, π where
the rates are equal and opposite and f(θ1) is constant (see Section S1A.3 for details). These observations imply that f(θ1) is
bounded by [β, 2π − β] and positive monotonic for θ1 ∈ [0, π]. Now for the right-hand side, observe that

• k ∈ [β, 2π − β]

because θ3 + θ4 ∈ [β, 2π − β] (see Section S1A.2 for details). Taken together, these observations guarantee existence and
uniqueness of solutions to Eq. (S3) and thereby Eq. (S1) and Eq. (S2).
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Fig. S2. Genericity vs. singularity. (Left) β = 0 (singular) The two edge vectors at this vertex are collinear and point in the same direction, so θ2 increases at the same rate
as θ1. (Middle) β = π/2 (generic for α 6= 0, π) A qualitatively general picture of S2. θ2 decreases a smaller rate than that of the increase of θ1, so the blue curves are
positive monotonic. At α = 0, π the planes of θ1 and θ2 coincide with the β plane, and rates of change in θ1 and θ2 are either equal in magnitude with opposite sign (when r
is inside β) or equal (when r is outside β). (Right) β = π (singular) Again, the two vectors at the growth front are collinear, but now point in opposite directions, so the only
possible value of θ1 + θ2 at this vertex is π.

β

φ
θ3

θ′3 θ′4

θ4

β

φθ3

θ′3 θ′4

θ4

Fig. S3. Bounding the sum of two angles. Three arbitrary angles θ3, θ4 and β form a spherical triangle that can be divided into two spherical triangles by projecting the point
between θ3 and θ4 to the β plane (dashed line). Denote the unsigned angle between the original point and its projection φ and observe that θ3, θ4 = π/2 when φ = π/2.
(Left) Projection onto β plane of point in R3 falls inside β: θ′3 + θ′4 = β when φ = 0. These projections can either both be less than π/2 or one less and one greater. (Right)
Projection onto β plane of point in R3 falls outside β: θ′3 + θ′4 = 2π − β when φ = 0. These projections can either both be greater than π/2 or one less and one greater.

A.1. Genericity vs. singularity. In general, we will forbid singular configurations throughout this work, as these growth fronts can
admit multiple solutions for a given flap angle choice. Fig. S2 illustrates the behavior of Eq. (S3) under generic (β 6= 0, π) and
singular configurations (β = 0, π).

A.2. Spherical triangle inequality. Consider a spherical triangle consisting of the angles β, θ3 and θ4, each of which is in [0, π]. Let
the angles θ′3 and θ′4 be the angles of the projections of θ3 and θ4, respectively, onto the plane containing β. Let φ be height of
the node incident to θ3 and θ4 above the β plane (see Fig. S3).

Now consider the sum θ3 +θ4 for all values of φ. Observe that at φ = π, θ3 = θ4 = π/2 and thus θ3 +θ4 = π ∈ [β, 2π−β] ∀ β ∈
(0, π). Observe also that at φ = 0, there are two possibilities: θ3 + θ4 = β (the “inside” case) and θ3 + θ4 = 2π−β (the “outside”
case). By projecting θ3 and θ4 onto the β plane, we can construct two right spherical triangles, allowing us to write

cos θ3 = cos θ′3 cosφ+ sin θ′3 sinφ cos π2 = cos θ′3 cosφ, [S4]

cos θ4 = cos θ′4 cosφ+ sin θ′4 sinφ cos π2 = cos θ′4 cosφ, [S5]

and
θ3 + θ4 = cos−1(cos θ′3 cosφ) + cos−1(cos θ′4 cosφ). [S6]

Now observe that θ3 + θ4 monotonically approaches π as φ goes from zero to π/2. The sign of d/dφ(θ3 + θ4) is determined by
which projected angle θ′3 or θ′4 deviates most from π/2 (i.e. if |π/2− θ′3| > |π/2− θ′4| then sgn[d/dφ(θ3 + θ4)] = sgn[π/2− θ′3]).
This follows from the negative monotonicity and symmetry of inverse cosine about π/2. So θ3 + θ4 begins at an endpoint of the
interval [β, 2π − β] when φ = 0 and approaches π monotonically within the same interval as φ→ 0. This parameterizes all
angle pairs in space and thus β ≤ θ3 + θ4 ≤ 2π − β.
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Fig. S4. Location of α is arbitrary. Each value of αi uniquely determines a point on the γ curve, which in turns uniquely determines a value of α′i, the angle from the β
plane and the θi,2 plane, left-hand oriented about the growth front edge ei+1. α′i shares an axis with αi+1, so a given αi uniquely determines αi+1.

A.3. Angle sum solutions are unique. For uniqueness, we need to show that f is positive monotonic on the interval θ1 ∈
[β, 2π − β]. This amounts to showing that |dθ2(θ1)/dθ1| ≤ 1 or, equivalently, (dθ2(θ1)/dθ1)2 ≤ 1. Recalling that θ2(θ1) =
cos−1(cos θ1 cosβ + sin θ1 sin β cosα), we have

dθ2

dθ1
= sin θ1 cosβ − cos θ1 sin β cosα√

1− (cos θ1 cosβ + sin θ1 sin β cosα)2
[S7]

and hence (
dθ2

dθ1

)2
= (sin θ1 cosβ − cos θ1 sin β cosα)2

1− (cos θ1 cosβ + sin θ1 sin β cosα)2 = cos2 β + sin2 β cos2 α−K2

1−K2 ≤ 1, [S8]

where K = cos θ1 cosβ + sin θ1 sin β cosα and equality occurs only for α = 0, π. Thus f(θ1) is positive monotonic on
θ1 ∈ [β, 2π − β] and solutions f(θ1) = k are unique for all values β 6= 0, π.

A.4. Any flap angle location explores the full design space. One detail in this construction remains, which is the question of whether
choosing different locations for the flap angle will yield different spaces of possible new designs. If this were true, it would
complicate the search at each additive design step, requiring the designer / algorithm to explore design spaces yielded by
varying the flap angle at each new quad and to collate the results before choosing a new design. Fortunately, this is not the
case: all choices of quad locations for the flap angle are equivalent, so exploring α values at any location along the growth front
explores the full space of possible designs at that front. Let αi be the flap angle at the chosen location along strip (dihedral
angle between θi,1 face and βi face, left-hand oriented about the growth front edge ei), α′i be the angle from the β plane
and the θi,2 plane, left-hand oriented about the growth front edge ei+1 (see Fig. S4). Solutions of the angle sum constraint
θi,1 + θi,2 = ki form an ellipse of spherical arcs γi. The foci of this ellipse are given by the edges that define the β face, i.e. the
boundary edges ei and ei+1 of the growth front and the axes of αi and α′i, respectively. Clearly, any choice of αi ∈ [0, 2π) yields
a unique α′i ∈ [0, 2π), which is related to the next flap angle αi+1 by a constant phase shift given by the dihedral angle between
the βi and βi+1 planes. Thus sweeping αi through the interval [0, 2π) also sweeps αi+1 uniquely through the same interval.
This establishes a bijective mapping between two consecutive flap angles, which in turn determine new interior angles along the
entire growth front. So the choice of which quad along the strip to pick as the flap angle location is arbitrary: any sweeping
the flap angle at any quad location along the strip will explore the full space of possible new interior strip geometries uniquely.

B. Adaptations of strip construction. While it is trivial to growth a simple patch of quad origami by adding strips in any
order to its four boundaries, the strip construction can be adapted, in most cases by sacrificing some degrees of freedom, to
alternative surface geometries and topologies. We illustrate two cases here, non-convex patches and closed loops, and leave
further adaptations for future work. Notably, the degree of freedom associated with flap angle choice becomes determined in
both of these examples.

B.1. Concave corner. For a surface patch with a concave corner formed by a row of boundary points xi, i ∈ {0, n} and a column
of boundary points yj , j ∈ {0, . . . ,m} such that x0 = y0 is the corner, we adapt the strip algorithm to add a pair of strips
originating at this corner by determining growth directions ri and tj for the x and y boundaries, respectively (see Fig. S5).
It is clear that the plane containing x0, x1, y0 and y1 determines the flap angle needed to calculate both r1 and t1. So all
interior growth directions ri, i ∈ {i, . . . , n− 1} and tj , j ∈ {j, . . . ,m− 1} are determined by the existing surface geometry. The
boundary growth directions rn and tm can be chosen freely in the plane of xn−1, xn and rn−1 and the plane of ym−1, ym and
tm−1, respectively. Finally, the edge lengths at xi, i ∈ {2, . . . , n} and yj , j ∈ {2, . . . ,m} may be chosen freely within the usual
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r2r1

Fig. S5. Adaptations of strip construction. (Left) For a concave corner formed by a row of boundary points xi, i ∈ {0, n} and a column of boundary points
yj , j ∈ {0, . . . ,m} with x0 = y0, the lengths of the new edges at x1 and y1 are bounded additionally by the possible intersection of the growth directions r1 and t1.
One can choose the edge lengths at these locations to match their intersection lengths, or add a new edge to the growth front at the corner to make it five-coordinated.
(Right) For a closed loop consisting of m− 1 quads, we treat the growth front as consisting of m + 1 vertices xi, i ∈ {0, . . . ,m} with two overlapping pairs (x0,xm−1)
and (x1,xm), such that the boundary growth directions r0 and rm overlap with the interior growth directions rm−1 and r1 respectively. We then search for flap angles
which give n1 = nm, where ni is the unit normal of the ith new quad.

local intersection bounds. The lengths of new edges at x1 and y1 are bounded additionally by the possible intersection of r1
and t1. If edge lengths at these locations are not chosen to match their intersection lengths, then a new edge will be added to
the growth front at the corner, the corner face will be five-coordinated rather than four (a defect) and the next growth front
will be simple rather a corner.

B.2. Closed loop. For a surface patch having a growth front formed by a single closed loop of quads, we adapt the strip algorithm
to attach a new closed loop of quads at this boundary by searching for closure conditions around the loop. Let the growth front
consist of m− 1 quads, then we can treat the growth front as consisting of m+ 1 vertices xi, i ∈ {0, . . . ,m} where the pairs
(x0,xm−1) and (x1,xm) each describe the same vertex, i.e. these labels overlap (see Fig. S5). This gives a simple growth front
with boundary growth directions r0 and rm overlapping with interior growth directions rm−1 and r1, respectively. This setup
allows us to search for flap angles which give n1 = nm, where ni is the unit normal of the ith new quad. The continuation
solution is guaranteed to exist, and other solutions to this closure condition give non-trivial folds at the growth front.

S2. Special vertices

A. Angle conditions. We derive the flap angle values that produce flat-foldable, equal new design angles, continuation/reflection
and locked single vertices. First, we derive the closed-form single vertex solution from the main text using the law of cosines
for the spherical triangle formed by θi,1, θi,2 and βi and a cosine identity.

cos θi,2 = cos (ki − θi,1) [S9]
cos θi,1 cosβi + sin θi,1 sin βi cosαi = cos ki cos θi,1 + sin ki sin θi,1 [S10]

cosβi + tan θi,1 sin βi cosαi = cos ki + sin ki tan θi,1 [S11]
tan θi,1(sin βi cosαi − sin ki) = cos ki − cosβi [S12]

tan θi,1 = cos ki − cosβi
sin βi cosαi − sin ki

. [S13]

We now have a relationship between one of the new design angles and the flap angle, so special vertex solutions given only by
design angles conditions follow, so long as (ki − βi)/2 ≤ θi,1 ≤ (ki + βi)/2.
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Fig. S6. Locked configurations. (Left) A locked left vertex has coplanar faces containing θ1 and θ4. The flap angle αi,ll rotates ni,β to ni,1 = −ni,4 about ei, shown
oriented into the page. (Right) A locked right vertex has coplanar faces containing θi,2 and θi,3. The angle α′i,lr rotates ni,β to ni,2 = −ni,3 about ei+1, shown oriented
out of the page.

flat-foldable (Kawasaki (2)) θ1 + θ3 = θ2 + θ4 = π cosαff = 1
sin β

(
sin k + cos β−cos k

tan θ3

)
equal design angles θ1 = θ2 = k/2 cosαeq = 1

sin β

(
sin k − cos β−cos k

tan (k/2)

)
continuation θ1 + θ4 = θ2 + θ3 = π cosαcon = 1

sin β

(
sin k + cos β−cos k

tan θ4

)
B. Locked configurations. A single vertex origami is trivially locked when αi ∈ {0, π}, i.e. the βi, θi,1 and θi,2 faces are
coplanar. Non-trivial locked configurations occur when one of the new faces in the vertex is coplanar with an existing face.
These special vertices depend on the orientation of the existing faces in three-dimensional space, so their flap angles cannot
be derived from the above design/flap angle relation. The left locked configuration occurs when face normals ni,1 and ni,4
belonging to θi,1 and θi,4 faces, respectively, satisfy ni,1 = −ni,4 (see Fig. S6). We write down the flap angle αi,ll that gives a
such a vertex by inspecting the arrangement of ni,1, ni,4 and ni,β about their common axis, the growth front edge ei between
the faces containing θi,1 and θi,4:

αi,ll = mod
(
atan2

(
(ni,β × ni,4) · ei,−ni,β · ni,4

)
, 2π
)
. [S14]

The right locked configuration occurs when face normals n2 and n3 belonging to θ2 and θ3 faces, respectively, satisfy ni,2 = −ni,3.
We write down the angle α′i,lr by inspecting the arrangement of ni,2, ni,3 and ni,β about their common axis, the growth front
edge ei+1 between the faces containing θi,2 and θi,3:

α′i,lr = mod
(
atan2

(
(ni,β × ni,3) · ei+1,−ni,β · ni,3

)
, 2π
)
. [S15]

The flap angle αi,lr that gives a locked right vertex can then be calculated from α′i,lr. Calculating θi,2 from tan θi,2 =
(cosβi − cos ki)/(sin ki − sin βi cosα′i) and using the spherical laws of cosines and sines for the spherical triangle formed by θi,1,
θi,2 and βi, we have

αi,lr = mod
(
atan2

( sin θi,2
sin θi,1

sinα′i,lr,
cos θi,2 − cos θi,1 cosβi

sin θi,1 sin βi
)
, 2π
)
. [S16]

We also observe that a single vertex origami is self-intersecting when (r · n̂3)(r · n̂4) < 0 and r · r̄ < 0, which occurs when
α ∈ (π,min(αll, αlr))

⋃
(max(αll, αlr), 2π) if n̂β · r̄ > 0 or α ∈ (0,min(αll, αlr))

⋃
(max(αll, αlr), π) if n̂β · r̄ < 0.

S3. Edge length bounds

For each new quad along the growth front incident to new design angles θi,2 and θ1,i+1 and new edge directions ri and ri+1, if

θi,2 + θ1,i+1 < π, [S17]

the lines pi(ti) = xi+ tiri and pi+1(si) = xi+1 +siri+1 will intersect for some positive ti and si (see Fig. S7). Their intersection
gives a bound on the edge length choices li and li+1, which we can locate by minimizing the distance D between pi and pi+1
with respect to t and s:

D(ti, si) = ||pi(ti)− pi+1(si)||2. [S18]
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pi−1(t̂i−1) = pi(ŝi−1)

pi(t̂i) = pi+1(ŝi)

Fig. S7. Edge length bounds. Two new quads (gray) along a growth front will be formed by selecting lengths li−1, li and li+1 for edges parallel to the solved directions
ri−1, ri and ri+1, respectively. Eq. (S17) is satisfied for both quads, so bounds are calculated by determining the intersections x of the new edge directions.

Note that this formulation is valid for skew rays in R3, but because ri and ri+1 are coplanar by construction we expect to find
positive t and s such that D(t, s) = 0 if Eq. (S17) holds. For simplicity, we can minimize D2 directly:

∇D2(ti, si) = 0, [S19]

producing a system of two linear equations in t and s, which can be inverted analytically:[
t̂i
ŝi

]
= 1

1− (ri · ri+1)2

[
1 ri · ri+1

ri · ri+1 1

][
(xi+1 − xi) · ri

(xi − xi+1) · ri+1

]
. [S20]

Plugging the solved values t̂i and ŝi back into pi and pi+1 gives the point of intersection of the new ray directions in R3, so ti
and si bound li and li+1, respectively. Now, each new interior edge direction ri (where i 6= 0 and i 6= m) is incident to two new
quads and could intersect either new edge direction ri−1 or ri+1. So we must apply t and s bounds from the preceding (ti−1,
si−1) and following (ti, si) quads in the strip to give our final bound on li:

li ≤ min(si−1, ti). [S21]

S4. Applications

We implement our strip construction in inverse design frameworks to design a variety of quad origami surfaces (see Figs. S8
and S9 for high-resolution images of the mountain-valley assignments for the patterns from Fig. 4 of the main text). The
applications differ only in their input seeds and how the DOFs identified by the strip construction are chosen. Our design
frameworks tend to focus on the flap angle, and thereby the growth direction of the front, as the key DOF. Boundary design
angles and edge lengths, the other DOFs of the strip construction, are typically chosen after a flap angle is determined and in
that order. Although this ordering is not strictly necessary, it follows naturally from the observation that the new transverse
edge lengths in the strip are bounded by local self-intersection of the growth directions. Of course, alternative DOF selection
patterns are possible, for example the selection of edge lengths before all growth directions are determined, but such an
implementation will inevitably be more complicated as local self-intersection bounds must then be observed retroactively and
the predetermined edge lengths may therefore need to be modified. We begin our discussion with a detailed look at edge
length bounds from local self-intersection of growth directions and then describe in detail three surface design applications:
surface fitting by inverse design of generalized Miura-ori tessellations, inverse design of curved fold models and disordered or
“crumpled” sheets.

A. Surface fitting (main text Fig. 4A). Returning to the inverse problem of origami surface approximations, we harness this novel
additive construction to fit generalized Miura-ori tessellations to curved surfaces. Given a smooth target surface, we consider
two surfaces displaced in the normal direction from the target surface (upper and lower), forming a sandwich structure. A
simple singly-corrugated strip is constructed as a seed, with one side lying on the upper surface and one side on the lower surface.
We then add strips to either side of the seed additively such that all nodes on the upper side of the origami surface fall exactly
on the upper corrugating surface and all nodes on the lower side of the origami patch fall exactly on the lower corrugating
surface. This novel approach is perfectly tailored to design origami sandwich structures that reside in the interstice of the two
smooth surfaces (see Fig. S10). Consider a target surface X(u, v) with surface normal vector n(u, v). A normal surface Xh(u, v)
is given by displacing the target surface in the direction of its normal field by a constant thickness h: X(u, v) + hn(u, v). We
construct upper Xε/2 and lower X−ε/2 normal surfaces each displaced by a distance of ε/2 from the target surface to give a
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Fig. S8. The mountain-valley pattern of the model in Fig. 4A in the main text.

volume with constant thickness ε. Note that ε is a tunable parameter that controls how close the origami structure is to the
target surface. The surface example in Fig. 4A in the main text is given by

X(u, v) =< u, v,H sin(Au) cos(Av) >, [S22]
with shape parameters H = 0.2 and A = 1.05π, thickness ε = 2/m and seed resolution m = 40.

We initialize two rows of coordinates < ui,0, vi,0 > and < ui,1, vi,1 > according to

< ui,j , vi,j > =< (−1)i c2 + (−1)j 1
m
,−1 + i

m
>, [S23]

with i ∈ {0, . . . ,m} and j ∈ {0, 1}. Evaluating X−ε/2(ui,0, vi,0) and Xε/2(ui,1, vi,1) gives two rows of points in space, one on
each of the upper and lower surfaces, which define a strip of quads whose faces are nearly, but not exactly, planar. To polish
the geometry of the strip before it becomes a growth seed, we collect the set of rays ri and lengths li:

ai = Xε/2(ui,1, vi,1)−X−ε/2(ui,0, vi,0), [S24]
li = ‖ai‖2, [S25]

and use Matlab’s fmincon to minimize the objective function

C(b) =
m∑
i=0

1− ai · bi
li

[S26]
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Fig. S9. The mountain-valley patterns of the models in Figs. 4B–F in the main text. (Top left) Fig. 4B. (Top right) Fig. 4C. (Middle) Fig. 4D. (Bottom left) Fig. 4E.
(Bottom right) Fig. 4F.

subject to the constraints

‖bi‖2 − 1 = 0, i ∈ {0, . . . ,m}, [S27]
(bi × bi+1) · ei = 0, i ∈ {0, . . . ,m− 1}, [S28]

where

ei =
X−ε/2(ui+1,0, vi+1,0)−X−ε/2(ui,0, vi,0)

‖(X−ε/2(ui+1,0, vi+1,0)−X−ε/2(ui,0, vi,0))‖2
. [S29]

This allows us to construct our final Miura-type seed from the modified strip of quads with exactly planar faces whose two
boundary rows are the original X−ε/2(ui,0, vi,0) and the polished X−ε/2(ui,0, vi,0) + libi. In practice, this results in the polished
row of points being offset slightly from the bounding surface, so we adjust li according to the line/surface intersection routine
described in Section S4A.2 below such that all points in the seed fall on the upper or lower surfaces.
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Fig. S10. Surface fitting construction. (Left) The seed strip (outlined in black) and the target surface. (Middle) Flap angles optimization. (Right) The mountain-valley folding
pattern.

A.1. Choosing the angles. Now we proceed to grow the singly-corrugated seed by using the strip construction to determine
compatible strips at its two boundaries, one of which lies on each of the lower and upper surfaces. In general, we seek a flap
angle that gives growth directions toward the lower surface for the upper growth front and toward the upper surface for the
lower growth front. That is, we seek to induce a second, transverse corrugation in the origami surface by reflecting, at least in
a qualitative sense, its growth back and forth in the interstice of the upper and lower target surfaces. To accomplish this, we
write down bounds on the flap angle that constrain the growth of the surface to this interstice, and optimize the resultant
design angles within these bounds and with respect to the flap angle. A cost function that avoids extreme design angles is
given by

C(α1) =
m−1∑
i=1

(
θi,1(α1)− π/2

)2 +
(
θi,2(α1)− π/2

)2
, [S30]

and αi is bounded to the interval (0, π) or (π, 2π) depending on the orientation of the flap angle location relative to the upper
or lower surface. In practice, we perform a linear grid search of C(α1) over the valid interval to visualize the behavior of the
cost function, then polish the optimal evaluated flap angle by passing it as an initial value along with the above cost function
and bounds to Matlab’s fmincon.

Boundary design angles are chosen such that the boundary growth directions r0 and rm are parallel to their adjacent
interior rays r1 and rm−1, respectively.

A.2. Choosing the edge lengths. Edge lengths are chosen such that the next row of points lies exactly on the other corrugating
surface, either lower or upper, via a numerical projection routine that computes intersections between rays and a surface.
Consider a surface X(u, v) with unit normal n(u, v) and a line L(t) = p + tv. For a given t, we can calculate the distance from
a point on the line to the surface by finding û(t), v̂(t) that minimizes d(u, v) = ‖X(u, v)− L(t)‖2. We find the intersection of
the line and the surface, if it exists and is well-defined, by minimizing

d(t) = ‖X(û(t), v̂(t))− L(t)‖2 [S31]

using Matlab’s constrained optimization routine fmincon in order to bound t ≥ 0 during minimization.

We note that in the formulation above, the target surface is parameterized using two parameters u, v. We remark that
any other representation of the surface (in the form of an explicit function, an implicit function, a triangular mesh, a quad mesh
etc.) can also be used as long as the surface normal (for constructing the upper and lower surfaces) and the point-to-surface
distance (for optimizing the edge lengths) can be computed from it.

A gallery of origami surface fitting results created by our additive approach are presented in Fig. S11. It can be observed that
our additive approach is capable of approximating surfaces with different curvature properties. Moreover, our approach allows
for the creation of very high resolution models, which are nearly impossible to discover using a global optimization scheme
due to the computational complexity. We note that increasing the resolution of the approximating origami surface naturally
decreases the amount of integrated Gauss curvature each cell in the origami surface needs to accommodate. This suggests that
as resolution increases and the characteristic length of the approximating Miura-ori cell becomes vanishingly small compared to
the radii of principle curvatures of the target surface, the surface starts to look like its tangent plane and the surface fitting
problem becomes trivial, locally.

One may ask whether every target surface admits a unique origami approximant under our framework. As shown in Fig. S11,
one can change the resolution of the seed strip to achieve different fold patterns for the same target surface. Fig. S12 shows
two origami structures with the same resolution (same number of vertices and same number of quads) approximating the
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Fig. S11. Additional surface fitting results. We deploy our additive approach to approximate a large variety of surfaces, including a helicoid at two different resolutions (top
left), cylinders with different Gaussian curvatures (zero/negative/positive as shown in top right), a landscape shape with mixed curvature at four different resolutions (the middle
row), a paraboloid at five different resolutions (bottom left), and a hypar at five different resolutions (bottom right).

same target surface obtained by our additive framework. The seed strips of the two structures are set to be with different
corrugation widths, and it can be observed that both the 3D folded structures and the 2D crease patterns are significantly
different. This shows that our additive framework is capable of producing multiple surface-fitting origami structures even with
the same resolution.

B. Twisted plane models (main text Figs. 4B,C). We describe here details from the nested cone example presented in Fig. 4C in
the main text and display several other examples as well. Consider an upside-down cone of height h with origin p =< 0, 0,−h/2 >
and base described by the circle f(t) =< A cos t, A sin t, h/2 > where A = h tan(θ/2). Following the closed loop growth pattern
described in Section S1B.2, we construct a strip of m quads with overlapping end faces by sampling

xi = f
(

2iπ
(
1 + 1

m− 2
))
, i ∈ {0, . . . ,m− 1}, [S32]

yi = 0.01xi + 0.99p, [S33]

where xi forms the growth front and yi is the truncated point of the cone. The Huffman nested cones model in the main text
(Fig. 4C) usesm = 102, h = 1 and θ = π/4. The twisted squares model in the main text (Fig. 4B) usesm = 6, h = .1 and θ = π/4.

We use a simple design angle difference cost function to search for flap angles α1 that regularize the pattern design:

C(α1) = 1
2(m− 1)π2

m−2∑
i=1

2∑
j=1

(θi,j − θi+1,j)2. [S34]

In both cases, we use neighborhoods of minima of a continuation avoidance cost function (shown as dashed curves in Fig. S13)

Ccon(α1) = 1
m− 1

m−1∑
i=1

r̄i · ri, [S35]
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Fig. S12. Non-uniqueness of origami approximants for any given target surface. We use our additive framework to produce two surface-fitting origami structures with the
same resolution approximating the same target surface. Here, the corrugation width of the seed strip of the right example is set to be twice of that of the left example. With the
two different seed strips, it can be observed that both the 3D folded structures and the 2D crease patterns are significantly different.

where r̄i = (xi − yi)/‖xi − yi‖2, xi is a point on the current growth front and yi is its corresponding point on the previous
growth front, to bound the flap angle optimization and thus avoid selecting trivial solutions.

In the closed loop growth pattern, boundary growth directions r0 and rm overlap interior growth directions rm−1 and
r1, respectively, and so we choose boundary design angles such that r0 = rm−1 and rm = r1.

Consider a set of planes parameterized by

X(u, v) = u < cos(jφ), 0, sin(jφ) > +v < 0, 1, 0 > . [S36]

Edge lengths in the jth new strip are given by the intersection of growth directions r and the plane Xd(u, v) displaced by d in
the normal direction from X(u, v) where d = (−1)jh(1 + (j − 1)∆h)/2. The Huffman nested cones model in the main text
(Fig. 4C) uses ∆h = 0.3 and φ = π/18. The twisted squares model in the main text (Fig. 4B) uses ∆h = 0 and φ = π/180.

A gallery of curved fold results created by our additive approach are presented in Fig. S14. It can be observed that
our approach is capable of creating curved fold models with different geometry and topology. More specifically, note that each
of the small constitutive folds in the model is a straight fold, as is necessary when working in a discrete setting. Nevertheless,
by increasing the resolution of the folds, we can achieve models with folds resembling smooth curves.

C. Alternative curved fold model (main text Fig. 4D). In the Huffman example in the main text, we grow a curved fold surface
by adding strips in the transverse direction to the curved folds (i.e. each growth front is a curved fold). In this example, we
grow a curved fold surface by growing in the direction of the folds.

Consider a corrugated parabola given by

xi =< −1 + idx, (−1 + idx)2 + dy(−1)i−1, 0 >, [S37]

where dx = 2/n, dy = .05 and i = 0, . . . , n. We use the corollary with ki = 1.04π to construct a strip of quads incident to x.

We choose a flap angle of α1 = 7π/8 for every strip.

We choose boundary design angles such that the boundary growth directions r0 and rm are parallel to their adjacent
interior rays r1 and rm−1, respectively.
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Fig. S13. Flap angle optimization for main text Figs. 4B,C. Dashed lines show the continuation cost function Ccon, neighborhoods of whose minima give bounds for the
optimization of cost function C (solid line), which gives the final flap angle choice (dot). (Left) Cost functions landscapes used to design the curved twist model from main text
Fig. 4B. (Right) Cost functions landscapes used to design the curved twist model from main text main text Fig. 4C.

Fig. S14. Additional curved fold results. Using our additive approach, it is possible to create a wide range of curved fold models with different geometry and topology.

We choose all new new edge lengths to be li = .1.

D. Crumpled sheets (main text Fig. 4E). Finally, we deploy our strip construction to sample disordered, or “crumpled” folded
sheets.

Consider three vectors

a =< 0, cos ν,− sin ν >, [S38]
b =< 0,− cos ν,− sin ν >, [S39]
c =< − sinφ, 0,− cosφ >, [S40]

with ν = π/2− β/2 and φ = cos−1(cos((2π − k)/2)/ cos(β/2)). Then the points

x̄ = {a,0,b} [S41]
ȳ = {a + c, c,b + c} [S42]

describe a pair of quads with growth front x̄ described by the familiar scalars β and k. This pair can be repeated in space by a
shift of b− a to form a Miura-like strip of quads given by two rows of points {x′i} and {yi} (with overlapping points deleted).
To introduce disorder to the growth front, we perturb xi with Gaussian noise according to

xi = (x′i − yi)(1 +X), [S43]

where X ∼ N (µ = 0, σ = .4), which gives our final disordered seed with growth front x. The seed from the disordered example
in Fig. 4E in the main text consists of 20 quads and uses β = 0.6π and k = 1.2π.
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Fig. S15. Disordered strip self-intersection. (Top) A disordered strip with non self-intersecting (left) and self-intersecting flap angle choices (Bottom) Local (left) and
mapped (right) self-intersection bounds corresponding to the above growth front. The union of all mapped intervals is shown in bold black at the bottom of the right plot, along
with the flap angles values producing the above strip geometries.

Given the growth vertices xi, i ∈ {0, . . . ,m}, we compute intervals that give local self-intersection at each potential flap angle
locations i ∈ {1, . . . ,m− 1} along the growth front (see Fig. S15). We can then use the inverse of gi, the adjacent flap angle
transfer function described in the main text, to map those local self-intersection intervals to a single growth front flap angle
location. Let g−1

i (αi+1) = αi be given by

α′i = mod(αi+1 + φi, 2π) [S44]
θi,2 = mod(tan−1((cos(ki)− cos(βi))/(sin(βi) cos(α′i)− sin(ki))), π) [S45]
θi,1 = ki − θi,2 [S46]

cosαi = (cos(θi,2)− cos(θi,1) cos(βi))/(sin(θi,1) sin(βi)) [S47]
sinαi = sin(θi,2)/ sin(θi,1) sin(α′i) [S48]

αi = atan2(sinαi, cosαi), [S49]

then we map the m − 1 intervals to the m − 2 location, the mapped m − 1 intervals and the m − 2 intervals to the m − 3
location and so forth until we have collected all local flap angle self-intersection intervals at the first flap angle α1 location
along the growth front. Once the local self-intersection intervals are mapped to a common flap angle location, we sample α1
from the exterior of their union to give ri, i ∈ {1, . . . ,m− 1}.

Boundary design angles are chosen such that the boundary growth directions r0 and rm are parallel to their adjacent
interior rays r1 and rm−1, respectively.

Define L = min(2,min(l̄i)), where l̄i is the upper bound on the new edge length at growth front vertex xi. The edge
length at location i is then sampled according to

li = Xi(1− ki/(2π))p, i ∈ 1, . . . ,m− 1, [S50]
l0 = Xi(1− k1/(2π))p, [S51]
lm = Xi(1− km−1/(2π))p, [S52]
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Fig. S16. Additional disordered results. The top row depicts other disordered examples using p = 2 and the bottom row examples use p = 1.

where Xi ∼ U(0.1L, 0.9L). Intuitively, the scaling prefactor provides for a kind of anti-preferential attachment. Locations
with large ki (close to 2π) have highly convex developments and thus, at least locally, ample space to grow. Locations with
small ki (close to 0) have highly concave developments and thus, at least locally, restricted space to grow. The scaling
prefactor, empirically, prevents caustics from forming and allows restricted locations to “catch up” with their relatively
unrestricted counterparts by, somewhat counter-intuitively, encouraging growth in restricted locations and discouraging growth
in unrestricted locations. The result in the main text uses p = 2. A gallery of other disordered results sampled in the same
batch as that shown in the main text and a batch using p = 1 are presented in Fig. S16.

E. Brownian ribbon (main text Fig. 4F). To illustrate the flexibility of the corollary to our main theorem, we construct a set of
folds that develop a Brownian path in R3 to a circle in R2. In this example, the growth front is no longer a front, but instead a
curve in space not associated with an existing origami surface. This requires choosing the angular material k associated with
the interior nodes of the target discrete curve in R3, rather than computing them from a the developability condition for an
existing origami surface.

We sample a path xi of Brownian motion with n steps in R3 according to

xi =
i∑

j=1

Xi, [S53]

where X ∼ N (µ = 0, σ = 1) and x0 =< 0, 0, 0 >. The corollary allows us to inverse design the shape of the folding pattern up
to the bounds ki ∈ (βi, 2π − βi), where βi is the usual angle in space formed by the points xi−1, xi and xi+1. Given a sampled
path x, we choose k according to

ki = cos−1
(‖ei+1‖2

2r

)
+ cos−1

( ‖ei‖2

2router

)
, [S54]

where r satisfies
n∑
i=1

sin−1
( ‖ei‖2

2router

)
= π [S55]

so that the development of xi falls on a circle of radius router and forms a closed loop. The result in the main text has n = 400
steps. To make visualization of the construction easier to follow, we show an example with n = 10 steps in Fig. S17.

We choose an arbitrary flap angle of α1 = π/4.

Boundary design angles are chosen according to

θ0,2 = cos−1
( ‖e1‖2

2router

)
[S56]

and
θn,1 = cos−1

( ‖en‖2

2router

)
, [S57]
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Fig. S17. Brownian ribbon. (Top Left) A strip of quads constructed by making use of the corollary to the main origami theorem in the main text pertaining to discrete curves.
A Brownian path with 10 steps (red) is given as the seed. (Top Middle) By choosing appropriate values of ki associated with the interior vertices of the Brownian path, the
development of the strip of quads is designed such that the Brownian path maps to a circle of radius router and the other side of the strip maps to a circle of radius rinner. (Top
Right) The values of βi given (blue) and ki chosen (red) at each interior vertex of the Brownian path, along with the bounds (βi, 2π − βi) for the ki choices. Different target
planar shapes for the development of the Brownian path besides a circle could be designed by choosing different ki within the valid region. (Bottom Left) Brownian ribbon with
1000 steps (Bottom Right) Brownian ribbon with 10000 steps

so that the developments of the growth directions r0 and rm are equal and fall on the line containing the development of x0
(which is equal to the development of xn) and the origin of the pattern’s circumscribed circle.

Edge lengths li are chosen such that the points on the other side of the developed ribbon fall on a circle of smaller ra-
dius than rinner with the same origin:

θi,r = cos−1
( −ei · ri
‖ei‖2‖ri‖2

)
− cos−1

( ‖ei‖2

2router

)
, [S58]

li = router cos θi,r −
√
r2
inner − r2

outer sin2 θi,r. [S59]

The above expression is valid when rinner/router > sin θi,r, where θi,r is the angle the development of ri makes with the radial
direction.

S5. Folding simulation

As all models generated by our additive framework are developable, there is always an elastic folding process that allows them
to transform from a 2D flat sheet to a 3D structure, possibly with geometrical frustration at the intermediate states (as the
models are not necessarily rigid-foldable). To show this, we apply the fast, interactive origami simulator (3) available online (4)
to simulate the folding process of our models. More specifically, for each model, we provide the 2D crease pattern and the target
fold angle for each edge in the final 3D structure as the inputs for the simulator, which then folds every crease simultaneously
using a compliant dynamic simulation method, using reasonable (default) simulation settings (numerical integration scheme =
Euler (first order), axial stiffness = 20, face stiffness = 0.2, fold stiffness = 0.7, facet crease stiffness = 0.7, damping ratio =
0.45). Fig. S18 shows the snapshots of the folding simulation for several models created by our framework, and Video S10
shows an animation of one of them.
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Fig. S18. Folding simulation. Each row shows the simulated folding process of a model obtained by our additive framework, from the 2D flat state (leftmost) to the final 3D
folded structure (rightmost).

S6. Description of supplementary videos

Movie S1. An animation of the single and adjacent vertex origami in Fig. 1 in the main text.

Given two boundary design angles θi,3, θi,4 (blue) and the angle in space between the two existing quads (green), we can
freely choose the flap angle αi (red). These angles together uniquely determine the new design angles θi,1 (yellow) and θi,2
(dashed) by the local developability constraint. In other words, αi parameterizes the ellipse γi of spherical arcs θi,1, θi,2 which
forms a closed loop around the line containing ei. The choice of αi does not only determine the geometry of the single vertex
origami but also propagates to all other vertices at the growth front via adjacency.

• 00:00-00:09 Flap angle αi (red) rotates a half-plane about growth front edge ei incident to growth front vertex xi.

• 00:09-00:20 The first new design angle θi,1 moves in the plane determined by αi and intersects γi uniquely, determining
ri, θi,1 and θi,2 for a given αi.

• 00:20-00:28 αi parameterizes γi uniquely: for every choice of αi there is a unique growth direction ri.

• 00:28-00:33 Rotating 3D view of single vertex system at growth front vertex xi.

• 00:33-00:46 An adjacent growth front vertex xi+1 is introduced. Flap angle αi+1 of this new vertex is determined by
the choice of the preceding flap angle αi, giving the half-plane of action for the new design θi+1, which intersects γi+1
uniquely.

• 00:46-00:54 This is true for every αi, so αi parameterizes γi+1 and adjacent growth direction ri+1 and design angles
θi+1,1 and θi+1,2 are determined by αi.

• 00:54-00:58 Rotating 3D view of adjacent vertex system at growth front vertices xi and xi+1.

Movie S2. An animation illustrating the choice of the flap angle for a pair of folded quads in Fig. 3A and B
in the main text.

• 00:00-00:10 Sweeping flap angle α through [0, 2π) gives the range of single vertex origami models possible at a growth
front vertex (left). Mountain-valley patterns (top left) and values of new design angle θ1 are shown for each flap angle
value scanned.

• 00:10-00:16 Special vertex solution given by α = 0 is shown rotating in 3D. This flap angle gives a trivially locked
configuration with coplanar θ1 and θ2 faces.

• 00:19-00:21 Flat-foldable θ1 + θ3 = θ2 + θ4 = π special vertex solution given by αff

• 00:22-00:24 Equal new design angles (θ1 = θ2) special vertex solution given by αeq

• 00:24-00:30 Special vertex continuation solution given by αcon is shown rotating in 3D. This flap angle continues the
existing fold on the interior of the growth front, giving a single vertex origami with no new folds and coplanar θ1 and θ4
faces and θ2 and θ3 faces.
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• 00:31-00:37 Special vertex solution given by α = π is shown rotating in 3D. This flap angle gives a trivially locked
configuration with coplanar θ1 and θ2 faces.

• 00:37-00:38 Flap angle scans through the interval α ∈ (π, αlr) producing self-intersecting single vertex origami.

• 00:38-00:44 Special vertex locked-right solution given by αlr is shown rotating in 3D. This flap angle gives a locked
single vertex origami with coplanar θ1 and θ4 faces.

• 00:45-00:51 Second special vertex continuation solution, given by reflection of the first αcon over the β plane, is shown
rotating in 3D. This flap angle produces the same design angles as the first αcon but embeds them in space such that new
folds are created.

• 00:51-00:53 Second equal new design angles (θ1 = θ2) special vertex solution given by reflection of the first αeq over the
β plane

• 00:54-00:56 Second flat-foldable θ1 + θ3 = θ2 + θ4 = π special vertex solution given by reflection of the first αff over the
β plane

• 00:57-01:03 Special vertex locked-left solution given by αll is shown rotating in 3D. This flap angle gives a locked single
vertex origami with coplanar θ2 and θ3 faces.

• 01:03-01:05 Flap angle scans through the interval α ∈ (αll, 2π) producing self-intersecting single vertex origami.

• 01:05-01:07 The single-vertex origami transitions to illustrate the effect the pair of scalars β, the green angle in space
along the growth front, and k, the amount of angular material needed to construct the two new design angles and the
shape parameter of γ, have in characterizing the design space of a single vertex origami. A plot of the valid region of
these scalars corresponding to the plane of the plot in Fig. 3B is shown on the right, with a black circle at the point in
this region depicted on the left.

• 01:07-01:17 For a given β, varying k ∈ (β, 2π − β) changes the shape of γ, i.e. the space of new growth directions r. As
k approaches β, γ collapses to the arc swept out by β in space. As k approaches 2π − β, γ collapses to the another arc
measuring β in space given by extending the growth front edges through x.

• 01:17-01:27 For a given k, varying β ∈ (0, π− |π− k|) changes the angle of the growth front in space. As k approaches 0,
γ approaches a simple cone shape with the colinear growth front edges as its axis. As k approaches π − |π − k|, collapses
to an arc measuring β in space.

• 01:27-01:38 Both β and k vary to trace a path in the valid region that visits the red, green and blue points identified in
Fig. 3B.

Movie S3. An animation illustrating the choice of the flap angle for a quad strip in Fig. 3C in the main text.

Given a folded quad strip, changing the flap angle α1 of the first new face produces a wide range of compatible growth
directions for the new strip (top). The new interior design angles θi,1 in the new strip, fold angles transverse to the growth
front φi,t and parallel to the growth front φi,p all vary as a function of the flap angle α1 (bottom right). Boundary growth
directions and edge lengths are chosen arbitrarily. The corresponding mountain-valley pattern is also shown (bottom left).

• 00:03-00:11 The new strip geometry given by α1,con has no new folds.

• 00:14-00:22 The new strip geometry given by α1,fold has new, non-trivial folds along the growth front and in the new strip.

Movie S4. An animation of the surface fitting model in Fig. 4A in the main text.

Movie S5. An animation of the twisted squares model in Fig. 4B in the main text.

Movie S6. An animation of the Huffman nested cones model in Fig. 4C in the main text.

Movie S7. An animation of the curved fold model in Fig. 4D in the main text.

Movie S8. An animation of the disordered model in Fig. 4E in the main text.

Movie S9. An animation of the Brownian fold model in Fig. 4F in the main text.

Movie S10. A simulation of the folding process for a surface fitting model obtained by our additive approach.
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