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Combing a double helix†

Thomas B. Plumb-Reyes,a Nicholas Charlesa and L. Mahadevan *b

Combing hair involves brushing away the topological tangles in a collective curl, defined as a bundle of

interacting elastic filaments. Using a combination of experiment and computation, we study this

problem that naturally links topology, geometry and mechanics. Observations show that the dominant

interactions in hair are those of a two-body nature, corresponding to a braided homochiral double helix.

This minimal model allows us to study the detangling of an elastic double helix driven by a single stiff

tine that moves along it and leaves two untangled filaments in its wake. Our results quantify how the

mechanics of detangling correlates with the dynamics of a topological quantity, the link density, that

propagates ahead of the tine and flows out the free end as a link current. This in turn provides a

measure of the maximum characteristic length of a single combing stroke in the many-body problem

on a head of hair, producing an optimal combing strategy that balances trade-offs between comfort,

efficiency and speed of combing in hair curls of varying geometrical and topological complexity.

Introduction

Long-haired people are familiar with a well-known strategy for
combing their hair: comb away the tangles starting close to the
free hair ends, and work steadily upward towards the scalp.
This allows for the untangling of a collective curl—a bundle of
interacting elastic filaments clamped at one end, free at the
other, and braided and tangled in between—to proceed more
efficiently from the free end, minimizing pain but at the
expense of time. But how does a comb work its way through a
curl? This quotidian problem which lies at the intersection of
mechanics, geometry and topology has many cousins—the
carding of textiles and felts,1,2 and the spontaneous tangling
and detangling of polymers in a flow,3,4 of flux lines in
superconductors5 and of magnetic fields in solar coronae6

among other problems. In the context of hair, there has been
a recent resurgence of interest in characterizing the effective
properties of fiber assemblies and packings,7–14 inspired by
technological applications to fields such as robotics, and the
computer animation of hair etc.15,16 However, most of these
studies neglect individual hair–hair interactions, and little is
known about the dynamics of detangling in complex packings
of fibers and hair from a mechanical, geometrical or topologi-
cal point of view.

Minimal model of hair curl

The complexity of detangling hair physically is matched by the
difficulty of a physical and mathematical description of the
combing problem. This is because of the many-body nature of
interacting filaments (hairs) and their potential for long-range
interactions; interactions at one location along the curl affect
interactions elsewhere by preventing the hairs from sliding
relative to each other, moving past each other etc. Indeed, this
is similar to what is seen in entangled polymer melts and other
thermal analogs that have been studied for a long time17 (note
that our use of ‘‘interaction’’ is similar to the concept of
‘‘entanglement’’ in polymer physics), with one critical differ-
ence – polymers are subject to thermal (Brownian) fluctuations
owing to their small size while hairs are effectively at zero
temperature. In Fig. 1a, we see an example of a curl of horse-
hair that is gently entangled near the free end, tightly packed
near the other end, and braided along its bulk. To quantify the
nature of these interactions, we digitally color each strand in
images of a curl of hair by first segmenting it into sections
(Fig. 1b), and then count and characterize the internal interac-
tions of each strand using the definitions in Fig. 1c. Viewing the
curl by projecting it onto a plane parallel to the main axis, we
define an interaction to be where strands cross each other, but
ignoring the sign of the crossing, so that our metric acts as an
upper bound on the true number of signed interactions.
Because hair entanglements can be removed through the free
end during each combing stroke, it is not relevant to count
interactions over the whole length of the curl. Instead it suffices
to consider a scale comparable to the smaller of two natural
scales: the natural radius of curvature or the length determined
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by the balance between elasticity and gravity. In our study of
naturally straight hair, we use the gravitational length which of
order O(10) cm.

In Fig. 1d, we plot the number of N–body interactions, and
see that pair-wise interactions form a plurality of the tangle
types (the extent to which pair-wise interactions dominate
depends on curl segmentation, chosen to match the character-
istic length over which hairs curl; see Appendix for details).
While this plurality would likely be less pronounced for curlier
hair, we restrict ourselves to relatively straight curls–i.e., where
an individual hair’s radius of curvature is on the same order as
its length. For strongly curled hair, our analysis would need to
be revisited since it is likely that multi-hair interactions are far
more numerous there.

Experimental observations of combing

Given the dominance of two-body interactions, we consider a
minimal model of the comb-curl system: two homochiral

entwined helices clamped at the top end and hanging freely
at the bottom. Rather than working with hair, here we work
with a simple mimic – a pair of filaments made of nylon heated
to force them to conform to 3-D printed helically grooved
cylinders with a constant radius and pitch, and then cooled,
and entwined. This assembly is then pierced at the midpoint of
the double helix centerline by a single stiff rod (the tine of a
comb). As the tine moves downward quasi-statically, it detan-
gles the downstream region of the curl. By connecting the tine
to an Instron 5566 material testing machine, we measure the
force-extension curves associated with the combing of a double
helix.‡

In Fig. 2a we show that quasi-static combing (the physically
relevant case when inertial effects are negligible) leads to a
response that can be associated with unwinding the helix,
kinking it or both. Unwinding causes the relative rotation of
one filament endpoint around the other, but frequently leads to
kinking that results from shear/sliding between the two helices
and leads to a characteristically bent state (Fig. 2a and b).
Additionally, we see that the filaments are slightly over-wound
and compressed ahead of the tine, and under-wound and
extended behind it. To examine the force-extension curves for
different combing parameters, we note that the double helix
can be parametrized in terms of the helix radius R and pitch P,
the filament radius r, tine radius t, as shown in Fig. 2b,
expressed in terms of the dimensionless ratios p1 = P/r,
p2 = R/r and p3 = t/r. (See Appendix for the dependence of the
force-extension curves as a function of p3 since t appears to
have little impact on the results.)

In Fig. 2d and e we show the scaled force on the tine f = Fl0
2/B

as a function of the dimensionless tine displacement x (scaled by
the filament radius r), where F is unscaled force, B is hair
bending rigidity and l0 is a fixed reference length§. Helices of
smaller pitch and radii that are more tightly wound require
larger forces to detangle, consistent with experience and intui-
tion. In all cases, there is an initial rise in the force extension
curve before a leveling off. The rise corresponds to the phe-
nomena of overwinding of the helix in front of the tine and
underwinding behind the tine, while the leveling off is asso-
ciated with the tine jamming and then breaking through even
as the free ends unwind. For loose helices, i.e. P/r 4
c E 20, there is no tine jamming or maximum in the force.
To elucidate the force patterns unique to combing, we compare
the forces required to comb a double helix with those required
to stretch a single helix with the same pitch and radius (i.e., a
helix with initial angle a B P/R and helix radius R extended to
final angle a1 and helix radius R1;18 see Appendix for details).
Not surprisingly, we find that the force-extension curve for
combing a double helix shows a flattening (softening) in
contrast with the divergent response for a single helix that is

Fig. 1 Tangles in hair. (a) Curl of horse hair. (b) Colored curl of 12 human
hairs, clamped at one end. (c) Examples from (b) of N-body interactions
(N = 2–5 circled left to right, top to bottom). (d) Histogram of N-body
interactions for a sample similar to (b) with r = number of interactions per
unit length (in meters). We segment the curl into 20 sections, count
interaction types as shown in (c) within each section and average.

‡ Similar force testing experiments were performed with real curls of hair
(human and horse) but are not included in this publication to focus on the
minimal model results.
§ Note that l0 = 0.01m is a fixed reference length used to make quantities
dimensionless and was chosen as the typical order of magnitude length over
which hairs curl at their curliest location.
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straightened out. This is because the moving tine untangles the
two filaments, eventually decoupling the helix strands so that
the force felt by the tine eventually vanishes, while the force to
straighten an inextensible helix becomes large as the end-to-
end distance becomes comparable to the length of the filament.

The unlinking of the homochiral helices during this process
can be quantified in terms of the Calugareanu–Fuller–White
(CFW) theorem19–21 which states that Lk = Tw + Wr, where Link
(Lk) quantifies the oriented crossing number of the two fila-
ments averaged over all projection directions (equivalent to the

Gauss Linking integral) and effectively counts the number of
full turns one filament makes around the other,22 Twist (Tw) is
the integrated rotation of one filament around the two-
filament-centerline, and Writhe (Wr) is related to the (negative)
integral of the geometric torsion of the centerline. To quantify
the topology of the double helix, we treat the two interwoven
filaments as two edges of a ribbon and compute the local link
and twist densities, l(S) and t(S), defined as link and twist per
unit length along the double helix centerline as a function of
arclength S. Since Lk is a topological invariant while Tw is not,
we characterize the ribbon in terms of l. Since Lk is an
inherently global quantity whereas Tw is the integral of the
local twist density t(S), t can be defined more naturally than l;
for a relatively straight double helix, Wr E 0, allowing us to set
l(S) E t(S).23

In Fig. 2e we show the evolution of the link density l
calculated from images of the helix taken as the tine moved.
We see that an initially uniform l(S) evolves into a step-like
profile as the tine induces an excess of link ahead of it and a
deficit behind it, while link flows through the helical braid
from the clamped towards the free end. For tine displacements
x t 0.2, the scaled jump in the link density Dl/l0 4 0 across
the tine (l0 being the initial link density) increases faster
than the rate it which is expelled from the free end. This
jump eventually reaches a plateau as the tine gets closer to
the free end, and then induces a uniform flux of link there that
eventually unlinks the filaments.

We now turn to correlate the experimentally observed spatio-
temporal evolution of link density associated with the motion
of the tine to the evolution of the force on it. For a double helix
that is tightly wound initially, as the tine propagates, ahead of it
the scaled pitch p1 = P/r decreases, concomitant with the
propagation of a localized jump in the link density.¶ This
localized jump in the local link density causes the double helix
to tighten and stiffen and eventually the tine jams. This often
but not always causes the filaments to slide relative to each
other, leading to a kinked configuration seen in Fig. 2a and b.
As the tine breaks through, there is a simultaneous reduction in
the force, before the same cycle repeats again. If a kink forms,
the kinked double helix twirls about the axis of tine motion
as the tine moves (see Video-S1, ESI†). If the double helix is
initially loose enough, link propagates more easily from the
tine location to the free end, and l(S) never crosses the thresh-
old needed for kinking, so that the force required to comb does
not oscillate strongly. In all cases, there is a current of link that
flows out of the free end, driven by a combination of the
unwinding of the free ends of the individual filaments, and
the whirling rotation of the kinked portion of the double helix.

By using the local link, twist and writhe density instead of
the local curvature and torsion, we can characterize the untan-
gling of the double helix. In this picture, combing corresponds

Fig. 2 Combing a double helix. (a) As the tine moves along the double
helix from the clamped end towards the free end, it sometimes forms a
kink about which the helix whirls as link flows out of the bundle.
(b) Schematic of combing a double helix with pitch P, radius R (half the
distance between individual filament centerlines), filament radius r, tine

radius t and helix length L. (c and d) Scaled force f ¼ l0
2F

B
applied by tine

over scaled distance combed x ¼ d

D
, where F is unscaled force, d is

unscaled distance combed, l0 = 0.01m is a characteristic length, B is the
single filament bending rigidity and D is total tine displacement required to
detangle the helices. Dashed curves show theoretical force predicted for
stretching a single helix; black curves show a single representative comb-
ing. We scan the parameter space varying (c) p1 = P/r and (d) p2 = R/r. See
Appendix for details and variation as a function of p3 = t/r. (e) Change in link
density Dl normalized by initial link density l0 as a function of dimension-
less arclength s = S/c for p1 = 18, p2 = 1, plotted for several normalized tine
locations, showing flow of link from clamped end and eventually out of the
free end. In all experiments, r = 4.25 � 10�4 m and helix length L = 0.15 m.

¶ The abrupt change in link density, termed here a link front, is more visible in
Fig. 3e than its experimental counterpart, since link density measurements could
not be performed with as high resolution in experimental curls as in simulated
ones.
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topologically to a reduction in the global Lk driven by the flow
of a link current out of the free end.

Numerical simulations of combing

To quantify our experiments on the nonlinear topological
mechanics of interacting filaments, we use a numerical
approach that models each hair using the Kirchhoff–Cosserat
theory24,25 and solve the equations using a numerical integra-
tion scheme.26 In the limit of very thin filaments such as hair,
the model naturally reduces to the Kirchhoff–Love theory for
inextensible, unshearable filaments.18 We define SA [0, c] as
the material coordinate (also the arc length) of the rod of rest
length c, r(S) as the position vector of the center-line, and a
triad of orthonormal directors d1(S), d2(S), d3(S) = qSr
that defines the cross-section orientation. Then any body-
convected vector v with lab-frame coordinates %v may be written
as v = Q%v, where Q(s) A SO(3) is a rotation matrix, and
the bending and twist strain vector is given by k = vec(qSQTQ).
If N(S) is the internal force resultant, fg as gravitational
force density, the equilibrium equations for the filament
are25,26

0 = qSN + fg (1)

0 = qS(B(k � k0)) + qSr � N (2)

where B is the matrix of bending and twisting rigidities, k0 is
the natural curvature of the unstressed filament. The asso-
ciated boundary conditions of the filaments are that it is
clamped at one end and free at the other. We compute
equilibrium configurations by solving an overdamped version
of the corresponding dynamical system, since that is the
computationally most convenient method of deploying the
numerical scheme.26

To simulate the initial state of a curl of hairs such as that
depicted in Fig. 1b, we start with a collection of clamped
filaments hanging in a gravitational field | fg| = mAg (g B
10 N kg�1, m is the filament mass density and A is the filament
cross-sectional area), resulting in a curl such as that shown in
Fig. 3a. We then introduce an intrinsic curvature along the
discretized filament randomly drawn from a Gaussian distribu-
tion with zero mean and variance matching the distribution of
experimentally observed curvatures (see Appendix for details),
shown in Fig. 1b. Finally, we let the hairs relax elastically to
their new rest configurations, determined by a competition
between nonzero intrinsic curvature and gravitational straigh-
tening (see Appendix). After the hairs relax, we count interac-
tions using the same method as used in experiments, leading to
the histogram of interactions per unit length shown in Fig. 3b.
We find that pairwise interactions dominate, in agreement with
experimental results (see Appendix where we show that these
interactions do not change qualitatively in a 3d array).

To follow the combing of an elastic double helix as in Fig. 2,
we start with a random distribution of initial internal strains
for each of the filaments and anneal the pair into a double
helix, clamped at one end and hanging freely under the

influence of gravity. We then insert a rigid rod as a tine between
the two helices close to the clamped end and move it quasi-
statically towards the free end. As in experiments, when the tine
moves toward the free end, it detangles the helices by pushing
link out ahead of itself. In Fig. 3c and d we show the numeri-
cally computed force applied by the tine during combing, and
see that the results are similar to our experiments shown in
Fig. 2c and d.8 Comparing the evolution of the helix topology
numerically,27 Fig. 3e shows that this also matches the experi-
mental pattern of overwinding ahead and underwinding

Fig. 3 Numerical results. (a) Simulated curl of 12 hairs modeling those in
Fig. 1b. (b) Hair interactions as in Fig. 1d for simulations similar to (a), where
r = number of interactions per unit length (in meters). c = 0.2 m,
r = 7.5 � 10�5 m and E = 1 GPa. See appendix for 3-dimensional curl

results. (c and d) Scaled force f ¼ l0
2F

B
applied by tine over scaled distance

combed x ¼ d

D
, where parameters are defined as in Fig. 2. Dashed curves

show theoretical force predicted for stretching single helix an equivalent
distance; black curves show single representative combing. We scan the
parameter space varying (c) p1 = P/r and (d) p2 = R/r. See Appendix for
details and variation as a function of p3 = t/r. (e) Change in link density Dl
normalized by initial link density l0 as a function of dimensionless
arclength s = S/c for helix with p1 = 18, p2 = 1, plotted for several tine
locations, qualitatively reproducing experimental trends seen in Fig. 2e.
See Appendix for simulation settings. Note that f, x and s are
dimensionless.

8 The high-frequency oscillations seen in the mean force curves are due to the
oscillation in contact force between the tine and double helix filaments as the tine
passes by each discrete node in the double helical braid.
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behind the tine, shown in Fig. 2e. The oscillations in l(s) on the
clamped side of the tine come from the periodic shearing of the
clamped side filament segments with respect to each other, a
phenomenon that occurs on too fine a resolution to be seen in
experiments. The small discrepancies between the quantitative
values observed in the numerical and experimental results may
come from inhomogeneities in the geometry and material
properties of the double helix in experiments. We note that
the numerical calculations neglect contact friction; including
contact friction in our simulations leads to force-displacement
curves with similar shapes, indicating that in most situations
friction effects combing quantitatively but not qualitatively.

Optimal combing strategy

Complementing our analysis of the topological mechanics of
combing a double helix, we now consider how a curl’s resis-
tance to combing varies with the style of combing, e.g. short
strokes versus long strokes. Noting that a single helix pitch
corresponds to one helix filament revolving once around the
other helix filament, we fix R/r = 1 and P/r = 24 and vary q, the
number of pitches that initially separate the tine from the free
end of the double helix. In experiment (Fig. 4a) and simulation
(Fig. 4b) we find that significant tine jamming—as indicated by
the plateaus in the force-displacement curves—occurs only
when we start combing more than q = 4–5 helix pitches away
from the free end**. The differences between the two sets of
curves is likely due to not accounting for friction in the
computations, and explains the larger number of plateaus seen
in the large-q experiments relative to the more smooth force
evolution seen in computations. Nevertheless, we see that
starting to comb nearer to the free end allows link to be
expelled more easily, leading to complete untangling before
the differential link density across the tine surpasses the

threshold for kink formation and jamming, consistent with
experience.

To quantify this intuitive result, we define a cost C(q) for
combing a double helix of length L using a strategy in which the
tine is repeatedly inserted q links upstream from the last
insertion point and pulled through to the free end, thus
detangling q links of the helix each iteration. To illustrate the
trade-offs between fmax, the maximum dimensionless force
during combing, and the detangling quantized in terms of
the number of strokes q0/q needed to complete the combing
process (q0 = 25 is a fixed number of pitches characteristic to
the q-values used in these combing strategies), we use the
simplest linear cost that can interpolate between pain and

time. Writing this cost CðqÞ ¼ gfmax þ ð1� gÞq0
q

(see Appendix

for details), we consider the relative cost of the two effects by
varying g to optimize a combing strategy based on the initial
nature of the double helix. For very curly hair, choosing
g B O(1) is more sensible, while for straight hair, choosing
g B 0 is better. Using the results for the maximum force from
Fig. 2 and 3, we calculate the cost C(q) for the case of curly and
straight hair. In Fig. 4c, we see that for straight hair (gB 0), the
cost decreases as q increases, i.e. the number of strokes
decreases, while for curly hair (g B 1), the cost is lowest for
small q as it is biased to minimize the cost associated with the
maximum force. We note that, while a detailed study of the
effects of contact friction is beyond the scope of this work,
several simulations showed that friction may change combing
force-displacement curves quantitatively but not qualitatively.
Hence, lubricating hair may reduce the pain felt during comb-
ing, effectively reducing the g that should be used to compute
an optimal combing strategy for a particular curl geometry.

Conclusions

Our study has shown that a first approximation to the many-
body problem of combing a curl of relatively straight hair can
be captured by considering the combing of a single double
helix, a two-body problem with complex spatially extended

Fig. 4 (a and b) Scaled force f over scaled distance combed x for (a) experimental and (b) simulated double helices with varying number of links. Scaling
of x is different for each curve since the total raw tine displacement needed to comb each curl is different. Below a certain link threshold, combing
finishes without kink formation. Black curves show a single representative combing for q = 25. Filament parameters are the same as in Fig. 2. (c) Cost C to
comb a 10m double helix over number of downstream pitches q detangled per combing, using the strategies shown in (a and b) – see text for details.
Note that q is intrinsic to combing strategy. C combines maximum exerted force (proportional to pain felt during combing) and time required to comb; g
= 0 considers only time and corresponds to straight hair; g = 1 considers only pain and corresponds to curly hair. Simulation and experiment how optimal
combing strategy shifts depending on hair curvature.

** Quantitative differences in the shape of experimental and numerical force-
displacement curves in Fig. 4 likely stem from our model’s neglect of contact
friction.
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interactions. This process connects topology, geometry and
mechanics via a relation between flow of link driven by the
tine and out of the free end, and the time-varying force felt by
the tine. Our results also suggest that the two-body problem
also has the ability to capture the correct optimal strategy of
combing a tangle by balancing the cost of many short strokes
relative to longer, potentially more painful ones. While material
properties such as stiffness, friction, pretwist and cross-
sectional shape would likely quantitatively impact our results,
we expect the connections presented here are a start towards
understanding the mechanics of combing qualitatively differ-
ent styles of hair. A natural next step is to extend our combing
results to real hair and account for variations in their
geometric, entanglement and material properties, their
strong frictional anisotropy, and the dependence of these
parameters on environmental conditions such as humidity
and temperature.
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Appendix

Hair curl interactions

To quantify the nature of hair–hair interactions, we segment
the experimental curls into sections, and then count and
characterize the internal interactions of each strand using the
interaction types shown in Fig. 1c, noting that our definition of
interaction is an upper bound on the true number of interac-
tions (note that our use of ‘‘interaction’’ corresponds to ‘‘entan-
glement’’ in polymer physics). While the plurality of two-body
interactions would give way to a predominance of many-body
interactions for curlier hair, we restrict ourselves to relatively
straight curls, leaving an investigation of how curliness affects
hair–hair interactions to future work.

Even in this limit, the dominance of two-body interactions
depends, to some degree, on the length of segment used to
compartmentalize the curl. Since our goal is to investigate the
local interactions making up the global tangling of the hair,
we sought a segment length that would isolate local inter-
actions—i.e., those that take place over a length scale compar-
able to the characteristic length over which the hair curves at its
curliest locations. We chose 20 segments empirically to pro-
duce a segment length roughly equal to that characteristic
length.

Other curl properties, such as volumetric density of hairs in
the region of space occupied by the curl, hair thickness, and
average hair curvature, may also affect the precise relative
abundances of N–body interactions. However, for this study,
we limit ourselves to dry-combing of relatively straight hair, in
an attempt to reduce the formidable complexity of the many-
body problem to a more tractable two-body problem, and

leaving for future work a more detailed investigation of the
combing of a complete and complex curl.

To understand hair–hair interactions from a computational
perspective, leading to Fig. 3b, we simulate twelve hairs with
their top ends clamped in a planar triangular lattice. The hairs
hang freely down from their clamped tops, loosely filling the
volume below the triangular lattice. As with the two-
dimensional array of hairs considered in Fig. 3b, we then
introduce intrinsic curvature into the hairs. The random cur-
vature at each node of each hair is sampled from a Gaussian
distribution of curvatures with zero mean and standard devia-
tion B1 m�1. This distribution was chosen to match the local
curvatures of the hairs used in experiment, and was determined
by sampling the local radius of curvature of several individual
hairs at evenly spaced locations along the hairs. We employ two
interaction criteria to determine the presence of interactions,
both of which lead to similar results: in Fig. 5a, we use contact;
in Fig. 5b we consider two hairs to interact within a single layer
of the curl if the Lk between the segments of the two hairs
within that layer is greater than a fixed threshold, here set to
Lkthresh = 0.4, determined empirically to maximize intersection
classification accuracy. We again find pairwise interactions to
be the most prevalent, regardless of the definition of an
interaction.

The qualitative similarity between Fig. 1d and 3b suggests
that real hair curvatures are distributed similarly to the inde-
pendently randomly sampled curvatures used in simulation.
The similarity between simulated and experimental results
(Fig. 1d and 3b) implies that for real hairs, there is significant

Fig. 5 Hair curl interactions in three dimensions. Histogram of hair
interaction types for simulated curls similar to those used for Fig. 3b. Here,
we clamp the top of the hairs in a planar triangular lattice, letting all hairs
hang down in the same direction, loosely filling a volume of space below
the triangular lattice. We segment the curl into 20 layers, count interaction
types defined in Fig. 1c within each layer and average over all layers and
curls. In three dimensions we can no longer use projected intersections to
define hair interactions. In (a) we define an interaction by hairs being in
contact. In (b), we use a linking number threshold to define interactions. In
particular, we segment the curl into twenty segments; in any single
segment, if Lk(A, B) 4 m, where A and B are the parts of two hairs which
lie in the given segment, then A and B interact. We empirically determine
that m = 0.4 is roughly the smallest linking threshold that provides
nontrivial segregation of interaction types. Presumably, were m and seg-
ment length scaled equivalently, results would change only as a function of
segment length, not directly as a result of changing m. Here r = number of
interactions per unit length (in meters), and we again find pairwise inter-
actions to be dominant. Bar height represents mean r while error bars
show standard error in r.
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statistical independence between the local hair curvatures at
points close in arclength along the same hair and equivalent
points on nearby hairs. Curls of hair characterized by such
independence are ‘‘thermalized’’and mimic what would be
seen in a real curl.

Elasticity versus gravity in free-hanging
hair

In Fig. 1b, we show a curl of hair used in studying hair
interactions. Upon close inspection, one can see that at the
bottom of this curl, the hairs are more coiled—i.e. the curvature
of the hanging hairs appears to be greatest in a small region at
the bottom of the hairs. The characteristic length lg of an
individual hair (radius r, bending rigidity B, mass density m)
determined by a balance between gravity and elasticity is given
by lg B (B/mgr2)1/3 B (Er2/mg)1/3. For hair that has a natural
curvature k*, when lgk* c 1, gravity is unimportant, while
otherwise gravity does play a role; this can be seen in the
variegated forms of human and animal hair and fur. In the
case treated here, corresponding to relatively straight hair,
the role of gravity is limited to the slight splay seen at the
end of the curl seen in Fig. 1b. A more nuanced approach would
require us to consider the interactions between elasticity,
gravity, natural curvature and packing as treated in ref. 12.

Comparing single helix extension to
combing a double helix

To gain insight into the effects of interfilament contact during
combing, we compare our force-displacement curves (Fig. 2
and 3) to the curves obtained to stretch out a single helix using
the well-known analytic force-extension curves.18 For a helical
filament described by an angle a B P/R and helix radius R, and

one end clamped, the external load F and torque M applied
axially to the helix’s free endpoint to deform it to a helix along
the same axis with angle a1 and radius R1 are

F ¼ C
cos a1
R1

sin a1 cos a1
R1

� sin a cos a
R

� �

�Bsin a1
R1

cos2 a1
R1

� cos2 a
R

� � (A1)

M ¼ C sin a1
sin a1 cos a1

R1
� sin a cos a

R

� �

þB cos a1
cos2 a1
R1

� cos2 a
R

� � (A2)

Using the geometry of the helix as a function of its end-to-
end extension, and assuming that the tine is stuck to the helix
when it is inserted into the double helix, we can estimate the
force required to stretch the helix, as shown in Fig. 2 and 3, and
see that the single-helix force-extension curve vastly overesti-
mates the combing force for a double helix where the tine
drives link out of the system as it slides along it.

Varying tine radius

To explore the double-helix parameter space, we varied three
dimensionless ratios of length scales: p1 = P/r, p2 = R/r and
p3 = t/r. The effects of varying p1 and p2 are shown in Fig. 2 and
3. In Fig. 6, we show the effect of varying p3. Contrasting Fig. 6
to Fig. 2 and 3, we see that the effect of tine radius on the force
required to comb the curl is much smaller than that of the helix
pitch or radius.

Fig. 6 Force to comb a double helix under variation in tine radius t in (a) experiment and (b) simulation. We show scaled force f ¼ l0
2F

B
applied by tine

over scaled distance combed x ¼ d

D
, where F is unscaled force, d is unscaled distance combed, l0 = 0.01m is reference length, B is single filament bending

rigidity and D is total tine displacement required to fully unlink the tangle. Dashed curves show theoretical force predicted for stretching single helix an
equivalent distance. Black curves show a single representative combing, for p3 = t/r = 1.2 in (a) and p3 = 0.6 in (b). We vary tine radius relative to hair radius
p3 = t/r, keeping helix radius R = r and pitch P = 23.5r fixed. Comparing to Fig. 2 and 3, t affects combing force much less than R or P. Note that all
combing experiments and simulations in main text used p3 = 0.9.

Soft Matter Paper



2774 |  Soft Matter, 2022, 18, 2767–2775 This journal is © The Royal Society of Chemistry 2022

Cost of combing

Before discussing the cost of combing, we define the process of
combing in terms of q, the number of pitches in the double
helix between the tine insertion point and the free end of the
double helix, so that a length-L braid with qtot = L/P = 1000 links
must be combed through. Combing the long double helix can
be achieved via a sequence of strokes, each of which detangles q
links, or pitches, of the long double helix. For the first combing,
the tine is inserted q pitches away from the free end, and is
pulled through to the free end, detangling those q links. For
each subsequent combing, the tine is inserted q pitches further
away from the free end than it was inserted for the previous
combing. Each time, it is pulled through to the free end,
detangling q new pitches. In all combings after the first one,
the tine must push the q pitches through some amount of
previously-detangled helix arclength. During this part of the
combing, no new links build up in front of the tine; rather, the
tine causes the q links to translate down the double helix to
the free end.

Our cost function needs to incorporate a measure of the
pain associated with the force exerted by the tine, and time

spent combing the curl; letting fmax ¼ Fmax
l0
2

B

� �
be the max-

imum dimensionless force felt during combing, we choose the
simplest cost that can interpolate between these two contribu-
tions:

CostCðqÞ ¼ gfmax þ 1� gð Þq0
q

(A3)

where q0 = 25 is a fixed number of pitches characteristic to the
q-values used in these combing strategies, and g A [0, 1] spans
possible hair geometries. In particular, as indicated by the
force-displacement curves in Fig. 2 and 3, combing curly hair
requires more force, hence more pain, while combing straight
hair is rather painless. Hence, setting g = 1 selects the pain term
from the cost and corresponds to combing curly hair, while
g = 0 chooses the time term and corresponds to combing
straight hair. We note that our cost function implicitly incor-
porates an approximate mechanical work performed in comb-
ing the length-L helix using each combing strategy, which can
be seen by considering the square of the cost above.

Simulation settings

We model each hair using the Cosserat theory of elastic
rods,24,25 and solve the governing equations using the numer-
ical methods described in earlier work et al.26,27 To simulate
large numbers of hairs at once, we parallelize the integration
scheme within each timestep, computing forces and torques
and updating filament positions, velocities and other quanti-
ties for all filaments simultaneously. To parallelize computa-
tion of contact forces, we check each filament separately for
contact with other filaments, and only update the external
forces on individual filaments, avoiding multiple calls to the
same memory block by different threads at the same time.

We use the simulation and filament parameters listed in
Tables 1 and 2, noting that all quantities plotted in this paper
are dimensionless, making the real values of E and r used in
simulation only representative.

Movie A1

Experimental combing of a double helix. We mold two nylon
filaments around a helically-grooved cylinder, forming them into
two identical helices that we entwine into a single double helix. We
clamp the double helix at one end and let the other end hang freely.
This assembly is then pierced at the midpoint of the double helix
centerline arclength by a single stiff rod which moves downward to
detangle the curl. We use an Instron 5566 material testing machine
to measure the force extension curves of a stiff rod piercing and
pulling downward on the pinned, hanging helices. Here we show
the combing process and corresponding force-displacement curve.
The experiment shown is the same as that used to generate Fig. 2e,
with p1 = 18, p2 = 1.

Movie A2

Simulated combing of a double helix. We clamp a double helix at
the top allowing it to hang free. We insert a tine halfway down the
tangle and gradually displace the tine toward the free end at a
constant rate. The simulation proceeds quasi-statically. We show
simultaneously a visualization of the combing process, the force-
displacement curve and the local change in link density as a
function of rescaled arclength s and rescaled tine displacement x.
The simulation shown corresponds to the one used to generate
Fig. 3e, with p1 = 18, p2 = 1. See Table 1 for simulation settings.

Acknowledgements

For partial financial support, we thank the National Science
Foundation grants NSF DMR 20-11754, NSF DMREF 19-22321,
and NSF EFRI 18-30901, and the Henri Seydoux Fund.

Table 1 Parameters used for estimating real hair crossings

Radius r 7.5 � 10�5 m
Hair length c 0.2 m
E 1 GPa
Poisson ratio n 0.5
Spatial discretization dl 0.002 m
Time discretization dt 0:008

s

m

� �
dl

Table 2 Parameters used for combing nylon double helix

Radius r 4.2 � 10�4 m
Helix height L 0.15 m
Mean E 0.3 GPa
Poisson ratio n 0.5
Spatial discretization dl 0.014 m
Time discretization dt 0:08

s

m

� �
dl
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