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The presence of incomplete cuts in a thin planar
sheet can dramatically alter its mechanical and
geometrical response to loading, as the cuts allow
the sheet to deform strongly in the third dimension,
most beautifully demonstrated in kirigami art-forms.
We use numerical experiments to characterize the
geometric mechanics of kirigamized sheets as a
function of the number, size and orientation of cuts.
We show that the geometry of mechanically loaded
sheets can be approximated as a composition of
simple developable units: flats, cylinders, cones and
compressed Elasticae. This geometric construction
yields scaling laws for the mechanical response of
the sheet in both the weak and strongly deformed
limit. In the ultimately stretched limit, this further
leads to a theorem on the nature and form of
geodesics in an arbitrary kirigami pattern, consistent
with observations and simulations. Finally, we show
that by varying the shape and size of the geodesic in
a kirigamized sheet, we can control the deployment
trajectory of the sheet, and thence its functional
properties as an exemplar of a tunable structure that
can serve as a robotic gripper, a soft light window or
the basis for a physically unclonable device. Overall
our study of disordered kirigami sets the stage for
controlling the shape and shielding the stresses in thin
sheets using cuts.

2023 The Author(s) Published by the Royal Society. All rights reserved.
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1. Introduction
Kirigami, the art of paper cutting to create an articulating single sheet, is now increasingly
viewed as a paradigm for the design of mechanical metamaterials that exhibit exceptional
geometric and structural properties [1–3]. The basis for kirigami is the well-known observation
that the mechanical response of thin sheets is characterized by the scale separation
induced by slender geometries, which makes bending deformations inexpensive compared to
stretching deformations. In kirigami, varying the number, size and location of cuts provides extra
degrees of control via the internal localization of large bending deformations anchored at the
ends of the cuts. This raises a number of questions associated with both the forward problem of
understanding the mechanics of these topologically and geometrically complex materials, as well
as the inverse problem of designing the cuts to obtain different types of articulated deformations
for shape optimization. Recent work in the context of the forward problem has focused primarily
on the mechanics of kirigami with simple distributions of periodic cuts, aimed at characterizing
the response using a combination of theory, experiment and computation [4–6]. By contrast, the
inverse problem of designing cuts that allow for articulated shape transformations has been
limited primarily to geometric optimization [7,8], without much discussion of the mechanical
response of the resulting structures by incorporating bending energies. To design cut patterns to
control the shape and response of kirigamized sheets, we need to combine aspects of both these
classes of problems by understanding the geometric mechanics of sheets with multiple aperiodic
cuts. Here, we take a step in this direction by characterizing the geometry and mechanics of a
single cut subject to deformation, and then generalize our study to kirigami sheets with randomly
located cuts, but staying in the dilute limit where the cuts do not intersect.

2. Geometry and mechanics of a sheet with a single cut
To get a sense of the geometry of deformations in a kirigamized sheet, in figure 1, we show a
sheet with four parallel cuts that has been strongly stretched, leading to a shape like a kabuki
mask. In figure 2a, we show the shape of a thin circular sheet of radius R, thickness h and a single
horizontal cut of length l. When the nominal strain γ induced by the applied horizontal force
crosses a threshold, the initially planar sheet buckles out of the plane into a complex geometrical
shape. Casual observations of the sheet show that the deformed sheet is constituted of simple
conical and cylindrical domains connected by transition regions, as expected from thin sheet
mechanics; increasing the topological complexity of the sheet increases the number, size, shape
and orientational order of such domains.

We use experimental observations and numerical simulations to study the geometrical
mechanics of kirigamized sheets (see electronic supplementary material, S2), starting from the
nonlinear elastic energy of a triangulated plate that is minimized using a conjugate gradient
method. In our simulations, cuts are defined as thin rectangular slits of length l and small width
w, with a semicircular tip of diameter w added to the ends of each cut.

Figure 2a shows the mean curvature of the simulated sheet for different values of the strain γ

when the cut is initially orthogonal (θ = π/2) to the loading axis (the line connecting the loading
points O1 and O2, the separation of which defines the strain γ ) (figure 2a(i)). We observe that for
very low strains γ � 1, the sheet stretches, but remains planar. When γ exceeds a critical value
γc, the sheet buckles with bending deformations becoming localized along two conical domains
centred near each end of the cut, and a large cylindrical domain of nearly uniform mean curvature
κ appears to connect the cut ends and the loading points on both sides. Further stretching of the
sheet causes an increase in the curvature of these cylindrical domains, and reduces the Euclidean
distance between the end-points (A and B) of the cuts from its initial length (see electronic
supplementary material, movie S1). This deformation localization enables the three-dimensional
straightening of geodesics, the minimal-length curves connecting the loading points O1, O2 that
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(a) (c)

–10 0

(b)

Figure 1. Complex response of a stretched kirigami sheet with four parallel cuts. (a) When a thin circular paper sheet (R=
8.9 cm, h= 0.01 cm)with several cuts is loaded along diametrically opposite ends, it buckles into a complex three-dimensional
surface that can be geometrically approximated by a set of cylindrical sections and cones emanating from the ends of each cut.
(b,c) The simulatedenergetic decompositionof the sheet reveals that thedominant energetic contributions stem fromthequasi-
cylindrical regions connecting the cuts, whose widths scale with the lengths of the cuts they connect. Brightness corresponds
to a logarithmically scaled energy (details are in the electronic supplemental material). (a) Kirigami sheet, (b) bending energy,
(c) stretching energy.

do not cross any cuts, shown in figure 2a,b; details of the geodesic construction and behaviour are
described in §4.

Simultaneously, the free edges associated with the cut deform into a shape that resembles
Euler’s elastica [9] as shown in figure 2c. When the applied strain becomes very large, the end
points of these elasticae, corresponding to the ends of the cut, come together consistent with
the geodesics straightening in three dimensions. If the sheet thickness is very small (h/R → 0),
the bending energy of the sheet becomes negligible relative to the stretching energy, and any
deformations must become approximately isometric. Based on our observations, we expect that
in this limit, the sheet will approach a flat folded state, a configuration discussed in §4.

Moving from this geometric description of the sheet to its mechanical properties, the force–
displacement response of the kirigami sheet described in figure 2a–c is shown in figure 2d. At
low values of strain γ , the force is linearly proportional to γ , but once the sheet buckles, the force
plateaus as the sheet deforms by bending out of the plane. Eventually, as the ends of the cut come
together, the sheet stiffens as it cannot deform any further without significant stretching and the
force increases, showing a divergent behaviour. In the buckled state, there are two alternate modes
of deformation: a symmetric mode when both cylindrical domains on either side of the cut are
in-phase, and an antisymmetric mode where both cylindrical domains on either side of the cut
are out-of-phase. The plateau force for these two cases differs marginally, but the linear and the
divergent responses away from the plateaus are indistinguishable as can be seen in figure 2d.

To understand the origin of this divergence, we use a scaling approach. The torque due to the
applied force f acting over a length S corresponding to the (small) distance between the ends of
the cut is balanced by the internal elastic torque Bκc where κc is the characteristic mean curvature
in the neighbourhood of the end of the cut, with B as the flexural modulus of the sheet, so that
fS ∼ Bκc. As shown in figure 3b, at the ends of the cut of small width w, the characteristic curvature
κc ∼ θc/w, where θc is the angle at the cut’s corner. As the sheet is pulled apart by the forces
so that the cut edges are 2Rγ apart at their widest, geometry implies that θcS/2 ∼ 2Rγ and S ≈
2
√

(l/2)2 − 2R2γ . Substituting these geometric relations into the overall torque balance then yields
the relation

f ∼ B
wR

γ

(l̄)2 − γ
, (2.1)

where l̄ = l/(2
√

2R). Writing the stretch ratio of deformation as the end-to-end displacement R(1 +
γ ) normalized by the length of the shortest segment connecting the force application points to the
ends of the cut, i.e. the piecewise linear geodesic length lg = 2

√
(l/2)2 + R2, equation (2.1) can be
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Figure 2. Geometric andmechanical response of a kirigami sheetwith a single cut. (a) The simulatedmean curvature of a sheet
with a single cut along ABwith two extensile point loads atO1 andO2 for various applied strainsγ . The cut has length l = 0.86R
and is symmetric with respect to the centre of the sheet. Here, grey/black lines track the geodesics (length lg) that connect the
loading points without intersecting the cuts, and the blue lines track the cut shape. Highly localized bending deformations, as
indicated by themean curvature, can be observed at the edges of the cut. An experimental image (left, black background) shows
a similar geometry. (b) Geodesic connecting the loading points O1, O2, extracted from (a), tend to align with the axis O1O2 with
increasing strain. (c) The evolving shape of the cut edges is similar to an elastica [9]. Here, the cut boundary is extracted from
(a), and darker colour shows the cut shapes at higher strains. (d) Numerically obtained force displacement curves for the case
shown in (a). The curves show three distinct regimes corresponding to the cases shown in (a). The green curve corresponds to
the configurations shown in (a), while the red curve corresponds to the case where the two cut edges buckle out-of-plane in
opposite directions. Inset: a log-log plot of the scaled strain plotted against the force shows a form similar to the response of a
freely jointed chain with the same divergent force–strain behaviour. The shaded region in the inset corresponds to the shaded
region in the main figure.

expressed in a more familiar form f̂ ∼ 1/(1 − 2R(1 + γ )/lg) where f̂ = f/(BwR) which we see is
the same as the divergent response of a freely jointed polymer chain [10]. The inset to figure 2d
shows that the mechanical response with the rescaled definition of the stretch agrees well with this
simple scaling estimate. We pause to make two comments: (i) the divergent mechanical response
of freely jointed chain is intimately linked to the balance between entropic effects and a finite
chain length, quite unlike the divergent response of the athermal kirigami sheet, which is due to
the localization of curvature of the sheet at the ends of the cut and (ii) the geometric origin of the
divergent behaviour suggests that single-cut kirigami can serve as a building block for a new type
of lockable mechanical response [11] that is material independent, and can instead be controlled
by geometry and topology.

Having understood the geometry and mechanical response of a sheet with a single
symmetrically placed cut, we ask what would happen when the cut’s length l and/or orientation
θ is varied. Figure 3a inset shows the mechanical response for various cases where l is varied
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Figure 3. Mechanical response of a kirigami sheet with an angled cut. (a) Scaling of the stretching force for a sheet of radius R
with a single cut with the parameter R3/(l3 sin3 θ ) collapses the plateau regions of the mechanical responses for the cases of
varying cut length l and orientation θ . Unscaled data are shown in the inset. Red curves correspond to the cases with θ = π/2
and l/R= 0.86, 1.29, 1.71. Green curves are the cases with θ = π/4,π/3, 5π/12 and l/R= 0.86. (b) A zoomed in view of
the cut corner for the case (figure 2a(iii)), and a schematic showing the relevant length scales that govern themechanics in this
regime (see text for further details). (c) Strongly strained kirigami sheets qualitatively show a ‘freely jointed’ polymer-chain like
divergence as the length 〈O1O2〉 → lg. Shown here are the cases with θ = π/2 and l/R ∈ [0.57, 1.71].

keeping the cut orientation orthogonal to the clamped axis (θ = π/2) in red curves. The mechanical
response in all cases is qualitatively similar to figure 3a, with a shift in the applied strain γ at
the onset of plateau response, the magnitude of the plateau force, and the strain at the onset of
divergent response. Larger l results in a lower value of the threshold in γ and a lower force plateau
persisting for longer, before the force diverges. Similarly, changing the orientation θ of the cut
changes the mechanical response by increasing the plateau force value, as the initial cut direction
is more aligned with the direction of the clamping axis. The deformed geometric configurations
for all these cases are shown in electronic supplementary material, figure S3.

To quantify these observations, we note that the linear response at very small strain
corresponds to the planar stretching of sheet. We note similarities of our scaling analysis to
previous studies [4,12,13], and hence keep the discussion on the linear regime and the onset of
the nonlinear response very brief here. The presence of the cut leads to a stress intensification
near the ends of the cut. As first described in Inglis’ seminal work [14], the stress near the tip of

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 J

un
e 

20
23

 



6

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220822

..........................................................

a cut of length 2l and a very small radius of curvature w can be approximated as σ0
√

l/w, where
σ0 is the far field applied stress on a large plate. Assuming that the planar elastic deformation
is confined near the cut tip, we get σ0

√
l/w ∼ Eγ . Hence we expect σ0 ∼ f ∼ 1/

√
l (see electronic

supplementary material, figure S2b). Following the initial linear increase in the force with applied
strain, the sheet buckles when the compressive load on a plate of size corresponding to the length
of a cut reaches a threshold given by the buckling stress σb ∼ B/hl2, with B being the flexural
rigidity of the sheet, so that the buckling force fb ∼ (B/h2R)(1/l2) (see electronic supplementary
material, figure S2d). Then the strain at which the sheet buckles (γb) can be estimated from a
balance of the in-plane stress (∼ Eγb/

√
l/w) with the buckling stress, so that γb ∼ 1/(l/R)3/2 (see

also electronic supplementary material, figure S2c).
Following the onset of buckling, for small out-of-plane displacements δ � l of the cut

boundary, the curvature of the deformed cylindrical core of the sheet scales as κ ∼ δ/l2. Thus
the total bending energy of the sheet scales as U ∼ Eh3κ2A ∼ Eh3δ2R/l3, with A ∼ Rl being the
area of the quadrilateral O1AO2B shown in figure 2a. Further, the out-of-plane displacement can
be expressed as δ ≈ Rγ 1/2, and hence U ∼ Eh3R3γ /l3. Thus the force scales as f = ∂U/∂(Rγ ) ∼
Eh3R2/l3 (see electronic supplementary material, §S3 and figure S1). For a cut oriented at an
arbitrary angle θ to the clamped axis, we replace l by its orthogonal projection to the loading axis
l sin θ . Figure 3a shows the collapsed data from figure 3a inset, indicating that the bending energy
localization in the elasticae corresponding to the two edges of cut determines the magnitude of
plateau response in the force–displacement curves. We note that we have ignored the contribution
of energy from the conical domains since the size of conical domains is much smaller than the
cylinder-like domains just above the onset of out-of-plane deformation, and the mean curvature
decays away from the cone tip as κ ∼ 1/r. At large applied strain, when the geodesics are relatively
better aligned with the loading axis, application of further strain induces a strong bending
deformation at the cut corners. Sheets with a finite tearing threshold stress generally tear as a
result of this deformation, and this raises a class of different questions about the nature and shape
of the curve of tearing [15], which we do not discuss here. Figure 3c depicts the rescaled force–
displacement curves showing the divergence response of sheets with varying cut length, which
agree well with the scaling arguments given by equation (2.1).

3. Geometry and mechanics of a sheet with multiple cuts
We now turn to understand how the geometric mechanics of single-cut kirigami translates into
our understanding of sheets with multiple cuts. In figure 4a, the mean curvature maps of the
deformed sheet show the similarity in the localized deformation for the different cases with the
number of cuts N, all of which are perpendicular to the loading axis, varying from 2 to 12 (see
electronic supplementary material, movie S2 and figure S6). We see that the deformed geometry
in all cases consists of four conical domains, and N + 1 connected elasticae N. Indeed, regardless
of the number of cuts, the conical domains localize to the ends of cuts that are nearest to the
loading points while the sheet remains flat in between. Figure 4b shows the mechanical response
of sheets kirigamized with varying number of cuts and shows that increasing the number of
cuts softens the system, reducing the plateau force and delaying the transition to the ultimately
divergent force–displacement response.

To characterize the mechanical response in the case with multiple cuts, we approximate
the bending deformations as localized in N + 1 elasticae close to the onset of out-of-plane
deformation so that the elastic energy U ∼ Eh3R2dγ /l3, and hence the force f ∼ ∂U/∂(Rγ ) ∼
Eh3Rd/l3, where d is the distance between the loading point and the nearest cut (see electronic
supplementary material, §S3 and figure S4). Consistent with this, rescaling the force with d
collapses the data over the scale of intermediate deformations as shown in the inset of figure 4b.

At large strains, the strong bending deformations near the cone tips appear similar to the case
with a single cut discussed earlier. Predicting the potential sites of structural failure in practical
applications requires knowledge of the location of conical domains. Our observations suggest
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Figure4. Geometric andmechanical responseof a kirigami sheetwithmultiple parallel cuts. (a) Localizedbendingdeformation
in sheets with multiple cuts aligned perpendicular to the loading axis shows similar geometric structures regardless of the
number of cuts. Shown are top and side views of the cases with 2 and 12 cuts. (b) Mechanical response for kirigami sheets with
different number of parallel cuts (θ = π/2, l = 0.57R). (inset) Rescaled force with the length d, labelled in (a) collapsed the
plateau regime. (c) Effective shielding of the inner cuts due to the localization of bending deformation near the outer cuts
that are closest to the loading points is demonstrated. The conical domains are absent in the additional cuts added to
the configuration in the left case. (d) Mechanical response for the cases shown in (c) show that the mechanical response in
the linear and plateau regime is essentially the same and only the cuts nearest to the loading points determine the stiffness of
the kirigamized sheet in these regimes.

that the high-stress conical domains will appear at the ends of a particular cut, if the presence of
that cut increases the geodesic length lg. To formalize this, we define a binary participation ratio
(PR) for each cut as

PRi =
⎧⎨
⎩

1 if l0g > l−i
g ,

0 if l0g = l−i
g ,

(3.1)

where l0g is the geodesic length evaluated for a given arrangement that includes cut i, and l−i
g is the

geodesic length with the ith cut removed from the arrangement. For the cases shown in figure 4a,
the two cuts nearest to the loading points have a PR = 1 and all other cuts have PR = 0. Similarly,
for the cases with two cuts of varying projected lengths (see electronic supplementary material,
figure S5), conical domains disappear at the corners of cuts with PR = 0. In figure 4a, we see
that an increase in the number of cuts increases the geodesic length lg. Since the divergent force–
displacement response emerges as 2R(1 + γ ) → lg, the plateau response in the force–displacement
curves is observed at larger γ for larger N. In cases with N > 2, fixing the location of the cuts
closest to the points of force application sets the trajectory of geodesics as well as the geodesic
length lg, regardless of the presence of the inner cuts. In figure 4c, we see that the mean curvature
field of the kirigamized sheets with different cut configurations results in similar profiles. Each
case has two conical domains that appear at the corners of the cuts closest to the points of
force application, a cylindrical core extending between the two loading points whose extent is
defined by the cut length. Since the geodesic length is the same for all the cases in figure 4c, the
divergent response occurs at the same strain regardless of the presence of the inner cuts; in fact,
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the force–displacement curves overlap at all applied strains for such cases, and the geometry of
the deformed sheets is almost identical as shown in figure 4d.

When cuts are distributed in a disordered manner on a loaded sheet, the geometry of the
geodesics continues to control the mechanical response of the overall system. In figure 5a, we
show an example with 21 cuts of the same length (totaling 8R), with randomly chosen locations
of the cut midpoint and its orientation, but with a minimum separation between the cuts and
between the cut and the loading points. The localization of deformation in participating cuts’
elasticae and conical domains is evident, while the sheet remains flat and undeformed near cuts
with PR = 0 (also see electronic supplementary material, figure S7).

To obtain the average response for the case of disordered kirigami, we repeat the simulations
keeping the sum

∑
l constant. Figure 5d shows the mechanical response for these disordered

kirigami structures averaged over 10 samples per case. The overall nature of the force–
displacement curve is similar to that of a single cut, with the plateau force decreasing for longer
cuts. When the sum of the cut lengths

∑
l is small, we see a very weak deviation from the

initial linear response, but with increasing
∑

l a clear plateau is observed. The divergent force–
displacement response is observed when the geodesic connecting the two loading points nearly
straightens out under applied strain, and we observe relatively large variance in force beyond the
initial linear response due to the strong dependence on the cut length and location. Increasing
the number of cuts while keeping

∑
l constant results in similar observations (see electronic

supplementary material, figure S8) with a lower number of longer length cuts resulting in a lower
plateau force response and an increased variance.

Since the cuts with PR = 0 do not significantly affect the geometric mechanics of the sheet,
simply removing them from the given cut arrangement results in a sheet with a nearly identical
geometric and mechanical response to a sheet with a much smaller number of cuts. In
figure 5b, we show a kirigami pattern derived from that shown in figure 5a where the cuts
with PR = 0 are removed. When such a structure is loaded, we see that the mean curvature
field is quantitatively similar to that in figure 5a; indeed figure 5c shows that the force-strain
curves are nearly the same.

It is evident from the observed geometry of disordered kirigami that the dominant modes of
deformation become localized near a few cuts. Disordered cuts behave similarly to structured
cuts, where the mechanical response depends on the distance of the cut from the loading
point(s), its projected length, and its PR. At the onset of the buckling transition from the initial
planar stretching response at very low strains, each cut with PR = 1 introduces a soft bending
deformation mode in the sheet with a characteristic bending force f ∗, given by the smallest
buckling load, i.e.

f ∗ ∼ Eh3 min
i

[
di

l3i sin3 θdi

+ 2R − di

l3i sin3 θ2R−di

]
2R, (3.2)

where di is the minimum distance of the mid-point of the cut of length li from the loading points,
and 2R − di is the distance of the cut midpoint from the farthest loading point, and θdi and θ2R−di

are the angles that the cut makes with the line joining the midpoint of the cut to the points of force
application. The above result follows from the assumption that at the onset of the plateau regime,
the characteristic mean curvature for bending localization is set by the cut that corresponds to f ∗,
so that the two terms in equation (3.2) follow from the energy of two elasticae that exist on both
sides of the cut. Here, we note that the cuts with PR = 0 do not alter the plateau response near
its onset as seen with the cases in figures 4b and 5c. These observations allow us to determine
the rescaled mechanical response shown in the inset of figure 5d, providing a reasonable collapse
in the plateau region of force–displacement data. The spread in the scaled data is likely due to
the simplification that the area of the sheet where energy is localized is assumed to span the
sheet (hence the factor 2R in equation (3.2)), and that additional cuts which buckle following the
onset of first buckling also contribute to localizing the bending deformation. All together, this
allows us to reduce a given disordered kirigamized sheet to a simpler ‘mechanical equivalent’
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Figure5. Geometric andmechanical responseof a kirigami sheetwithdisordered cuts. (a) Localizeddeformation inadisordered
kirigami sheet of radius Rwith 21 randomly distributed cuts of same individual length (dashed lines) with a total length 8R. The
mean curvature of the deformed sheet is projected on the initial flat configuration.With increasing strain themean curvature of
the domains where the bending deformations are localized generally increases. Note that only a few cuts which directly impact
the geodesic path connecting the points of force application, shown in solid black curve, localize the deformation near them.
(b) Removing the cuts with PR= 0 (defined in equation (3.1)) from (a) doesn’t significantly impact the deformed configuration
of the kirigami structure; the majority of the localized bending domains are similar to that of (a). Most of the deformation is
still determined by the cuts closest to the two ends, which cause the greatest deviation in the geodesic path. (c) Themechanical
response of the structures in (a) and (b) with 21 and 8 cuts, respectively. The structure with 21 cuts has a slightly softer response
in the linear regime while the plateau force values for both the cases are essentially the same. (d) Mechanical response of a
disordered kirigamized sheet perforated with 21 randomly distributed uniform cuts, with varying total cut length has similar
behaviour as sheets with single and multiple structured cuts. Inset: Rescaled force data (using equation (3.2)) collapses the
plateau region reasonably well.

(e.g. figure 5b). Thus, our simple scaling approach reduces the complexity of disordered kirigami
using elementary geometric mechanics.

4. Rectifying the geodesics and the flat-foldable kirigami
For an initially flat sheet, our observations suggest that the shortest path between the points of
force application for simple cut patterns is just a polygonal curve that connects these points,
i.e. geodesics in a planar sheet with random cuts are polygonal. When a very thin sheet is
deformed by boundary forces, its ultimate shape is characterized by the formation of sharp
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Figure 6. (a) (Adapted from [16].) The path-shortening algorithm yields a polygonal competing to be a geodesic. (b–d)
Strongly stretched inextensible sheets of negligible bending rigidity, h→ 0, can be flat-folded to two-dimensional sheets
while simultaneously rectifying all geodesics to lie along a single straight segment in space.

creases as the sheet folds on itself, as shown in figure 6b–d. These observations of the geometry of
strongly deformed kirigamized sheets show that the polygonal geodesic in the plane become an
approximately straight geodesic in R

3 connecting the points of force application. The sheet can
be then flat-folded, leading to a configuration that is a piecewise affine isometric immersion of
the plane. We leave precise theorems and proofs of these statements for a separate study [16], but
provide a brief summary of the results here.

(a) Polygonal structure of the geodesics
We represent the given set of cuts L, contained within an open, bounded, convex domain Ω ⊂ R

2,
as the union of the edges of a graph G. Without loss of generality, G may be taken as planar,
i.e. each pair of its edges intersects at most at a single common vertex. The polygonal structure
of geodesics follows from the idea of a path-shortening algorithm (figure 6a). Given O1, O2 ∈
Ω̄ \ L and a piecewise C1 curve τ : [0, 1] → Ω̄ \ L with τ (0) = O1 and τ (1) = O2, one successively
replaces its portions by segments, as follows. Firstly, for t > 0 sufficiently small, the segment O1τ (t)
does not intersect L. Let t1 ∈ (0, 1] be the first time that the segment O1τ (t1) intersects L. If τ (t1) =
O2, then O1O2 is the desired geodesic connecting O1 and O2. Otherwise, O1τ (t1) must contain
some of the vertices of the cuts. Call p1 the closest one of these vertices to τ (t1) and perform
the concatenation of the segment p1τ (t1) with the curve τ restricted to [t1, 1]. The process is now
repeated from p1. After finitely many such steps one obtains a polygonal connecting O1 and O2,
with a shorter length than τ .

(b) Geodesic rectification and flat foldability
The construction of the desired isometric immersion follows from the folding algorithm below
that consists of three steps. Let O1, O2 ∈ ∂Ω and denote by lg the length of the geodesics between
O1, O2. Then, we start with two preparatory steps.
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Step 1. Sealing portions of inessential cuts that do not affect lg. To this end, label cuts (the edges of G)
by l1, . . . , ln. Move the first endpoint vertex of l1 toward its second vertex, and start “sealing” the
portion of the cut l1 left behind. The length of the geodesics connecting O1 and O2 may drop
initially, in which case the configuration is left unchanged. Otherwise, the geodesic distance is
continuously non-increasing, although it may initially remain constant. The sealing process is
stopped when the aforementioned distance becomes strictly less than the original one, and the
new position point is labeled as the new vertex endpoint of l1. In the next step, the remaining
endpoint is moved along l1 toward the (new) first endpoint and the process is repeated, thus
possibly sealing the cut l1 further. The same procedure is carried out for each li in the given order
i = 1, . . . , n. It follows that upon repeating the same process for the newly created configuration,
labeled the minimal configuration will not be further altered. While different ordering of cuts and
vertices may yield different minimal configurations and new geodesics may be created in the cut-
sealing process, all original geodesics are preserved. Also, since the newly created set L is a subset
of the original one, finding the isometric immersion relative to the new L will yield the desired
isometric immersion.

Step 2: Ordering of the geodesics and connected components of Ω \ L. There are two important
properties of a minimal configuration: the graph G has no loops (i.e. it is a collection of its
connected components that are trees), and each vertex that is a leaf in some tree is a vertex of
some geodesic. With these properties, one proceeds to label all geodesics in a consecutive order,
with τ1 � . . . � τN . Here, τr � τr+1 means that the concatenated polygonal curve from O1 to O2
via τr and then back to O1 via τr+1 encloses a region Dr and it is oriented counterclockwise with
respect to Dr. Next, one labels and orders the trees {Tm}s

m=1 in D̄r so that Dr \ L is partitioned into
subregions {Pm}s

m=0 and {Qm}s
m=1 in the following way: each Pm is a polygon bounded by the

“right most” path from the tree Tm, the “left most” path from Tm+1, and the intermediate portions
of τr and τr+1 which are concave with respect to Pm. Each Qm is a finite union of polygons enclosed
within the single tree Tm, again bounded by the intermediate portions of geodesics τr and τr+1.
Note that τr and τr+1 may have nontrivial overlaps and some of {Qm}s

m=1 may be absent.
Step 3: Constructing a desired isometric immersion. Finally, we fix the segment I = [0, lg] along the

x1-axis in R
3. To construct an isometric immersion u of Ω \ L such that u(O1) = 0, u(O2) = lge1,

u(τr) = I for r = 1, . . . , N, and where each segment on τr is mapped onto a designated segment
portion of I, we first note that u consists exclusively of planar folds and returns the image that
is a subset of R

2. By Step 2, Dr = ⋃s
m=0 Pm ∪ ⋃s

m=1 Qm, for r = 1, · · · , N − 1, so that it is possible
to construct u on P0, Q1, Q2, . . . , Qm, Pm, even though the step to construct u on P1, . . . , Pm−1 can
be highly technical [16]. Since the exterior region D0 = Ω \ ⋃N−1

r=0 Dr does not contain trees, the
two outermost geodesics σ1 and σN are convex, and so the definition of u on D0 consists of
several simple folds. We note that the condition O1, O2 ∈ ∂Ω is essential here: indeed there exist
minimal configurations for O1, O2 /∈ ∂Ω , that do not admit any isometry u with the property that
the Euclidean distance from u(O1) to u(O2) equals the geodesic distance from O1 to O2 in Ω \ L
(for further details, we refer to [16]).

5. Functional kirigami structures
The geometric mechanics of ordered and disordered kirigami leads us naturally to questions of
design for function. We apply the principles discussed so far to three examples: a soft gripper
with multiple modes of grasping, a family of kirigami designs displaying optical transmittance
and shielding properties, and a physically unclonable function based on the inherent disorder in
the deformation of kirigami sheets.

(a) Active and passive gripping
The opening of a kirigami slit upon loading suggests its potential as a soft grasper, its shape
modulated by an applied force or strain at the boundary [12,18]. To be effective, a grasper
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must enable controlled gripping, lifting and relocating objects of varying scales and shapes with
minimal energy input.

We define a passive grasper as one that only requires external work to be done in order to
grasp or release the object, with energy-free relocation while an active grasper requires continuous
application of an external force (external energy) to grasp and relocate, as shown in the schematics
in figure 7b,c. Kirigami enables both designs; while the active grasper accommodates the target
object in the curved features of the deformed sheet, the passive grasper uses the cuts to
accommodate objects.

The simplest passive grasper design, a single slit perpendicular to the loading axis, requires
a prestretch to deform the cut into a hole that can accommodate the target object. On releasing
the prestretch, the cut boundary relaxes to contact the object, grasping it with no further energy
input. After relocation, the arrested object can be released by applying an extensional strain to
the sheet.

However, a potential drawback of this solution is that the object is liable to rotate in order to
accommodate the two point-like forces from the cut edge on either side. Our disordered kirigami
observations suggest adding more cuts softens the grasper’s loading curve, enabling symmetric
deformation and reducing the severity of sudden reorientations at a minor cost to the maximum
load bearing capacity. Hence, an effective design of a kirigamized grasper is one that has multiple
smaller cuts in addition to a larger cut in the middle as shown in figure 7a. The additional cuts
are prescribed in a way that all cuts have a PR = 1, and buckle under the applied strain. Further,
the largest cut is split in the middle by a small cut, oriented along the pulling axis. Together these
features enable symmetric deformation of the flat kirigami sheet, and improve the stability of
contact with the grasped object. The additional contact points may not help stabilize the grasped
object if the size of the object is much smaller than that cut length, in which case the grasped
object may slip during handling. We note that the simplest kirigamized grasper with a single cut
(figure 2a) deforms asymmetrically, and hence cannot be effectively used as a grasper in both
active and passive modes. In practical scenarios however symmetric deformation can be realized
if the sheet is stretched significantly [19].

The final design sequence is demonstrated in figure 7b,c and visualized in the electronic
supplementary material, movie S3. In this passive mode, the conical tips and the cylindrical core
of the kirigami sheet enables confinement of the target object as shown in figure 7b and electronic
supplementary material, movie S3. The same geometry also functions as an active grasper, as the
two ends of the middle cut are forced toward each other as loading is applied. For the symmetric
deformations, this may be used to encase an object with compressive force and relocate it, as
shown in figure 7c.

The range of applicability of a general kirigami grasper can be understood from a balance
of the forces due to the bending of kirigami sheet, and the weight of the grasped object. For
a cut of length l, the characteristic grasping force of the deformed sheet can be written as
fg ∼ μ(B/l)c(γ ), with μ being the coefficient of friction and c(γ ) is a strain-dependent geometric
factor. For an object with effective density ρ and size l, force balance yields μ(B/l)c(γ ) ∼ ρgl3.
This provides a non-dimensional parameter ρgl4/(μBc(γ )), which has values ranging between
1 and 100 for the successful grasping demonstrations we attempted using a plastic grasper.
For a kirigami gripper with an arbitrary configuration of cuts, the geometric and mechanical
response of kirigamized sheets in various ordered and disordered cases can help estimate the
non-dimensional kirigami grasper parameter. This is because the nature of force–strain curve for
ordered/disordered kirigami is universal (schematics in figure 7b,c) and knowing the force in the
extensible regime, i.e. force corresponding to points 1, 3 in figure 7b and point 2 in figure 7c, will
help determine the operating regime of the gripper.

(b) Selective transmittance
Although our discussion so far has been restricted to piecewise linear cuts, the ideas established
are applicable to cuts with finite planar curvature. Inspired by the recent efforts towards
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Figure 7. A kirigami grasper. (a) A kirigami design for grasping objects. The deformed sheet shows the concave regions (for
active grasping), and open holes (for passive grasping). (b) The kirigami grasper can be employed in passive and active modes
requiring different energy input, shown in (b) and (c), respectively. The experimental images depict the passive grasping of a
racquet ball and active grasping of a tennis ball.

design of kirigami-based mechanically deployable structures [1], we demonstrate a family of
deployable kirigami designs whose force-dependent transmittance properties can be tuned by
varying a single geometric parameter. The application follows directly from our observations (in
figures 2–5) and analysis in figure 6 that with the increasing strain the geodesic in kirigamized
structures straightens out and the cuts with PR = 1 localize the bending deformation. Thus, a
careful choice of cuts (and hence the geodesic) can be used to embed force/strain-dependent
functional features in kirigamized sheets.

Figure 8a shows three cases of physical kirigamized sheets perforated with five concentric
circular arcs, differing only by a parameter dφ that defines the arcuate cuts that extend between
±dφ and ±(π − dφ) with respect to the vertical axis, while the radius is linearly increased between
the five arcs. We see that the planar kirigami sheets (with marginally different dφ) show very
different geometric mechanics under a small applied strain. When dφ = π/60, none of the cuts
intersect the vertical diameter, leaving a straight geodesic connecting O1 and O2; hence, tensile
loading of this structure results in simple in-plane stretching along this diameter.

However, a small change in dφ to −π/180 results in each of the circular cuts now intersecting
the vertical diameter, resulting in a geodesic connecting O1 and O2 that must meander around
the corners of all cuts. Under an applied load, this structure shows a large relative out-of-plane
displacement of different domains of the sheet (see electronic supplementary material, movie
S4). Further increasing the angular extent of the cuts by taking dφ = −π/30 makes the geodesic
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Figure 8. A kirigami light window. (a) Experimental images of kirigami sheets with circular curved cuts (dashed lines on top
row) show very different responses to an applied strain when the cut geometry is varied. Red curves represent the geodesic
connecting loading points O1 and O2, which changes dramatically as the curved cuts are very slightly extended or shortened
near the vertical diameter. dφ represents the angular deviation of each cut’s endpoint with respect to this vertical diameter.
When dφ > 0, the geodesic is simply the diameter connecting the loading points. However, when the cuts begin to intersect
this diameter for dφ < 0, the geodesic must take a different path and significantly alters the deployed geometry. Physical
parameters are identical to those in figure 1. (b) A phase diagram quantifying the transmittance (left axis) of the deployed
kirigami structures in varying the parameter dφ, subject to strain of 1%. Transmittance of the kirigami window is quantified as
the relative change in theprojected area of deformed sheet on the rest plane. The right axis reports geodesic distancenormalized
by sheet diameter, lg/2R.

qualitatively change, as it now skirts the two outermost cuts without intersecting any of the
inner cuts. Since the inner cuts have PR = 0, and hence do not introduce any soft deformation
modes, under an applied deformation, the outer frame localizes the bending while the inner
structure stays nearly planar without any deformation, and is thus shielded mechanically and
geometrically.

We now quantify some of the functional responses of these kirigamized structures using
dφ as the only tunable parameter. A straightforward observation is that the force required to
deform such a class of structures increases monotonically with dφ (see electronic supplementary
material, figure S11a). Very different geometric consequences due to changing geodesic paths can
be quantified in terms of the transmittance of the kirigami structure. In practice, transmittance
may correspond to the light transmitted though an optical window when illuminated with light
rays perpendicular to the rest plane. In experiments, we restrict the deformation to small strains
approximately 1%, a practically relevant regime, and note that geometric mechanics are generally
strain-dependent.
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Figure 8b shows a phase diagram of transmittance (left axis) measured at 1% strain as
a function of dφ, along with the computed geodesic length normalized by diameter (lg/2R)
for reference. The transmittance curves clearly display non-monotonic trends. Transmittance is
achievable in the cases when lg → 2R, and the strain sensitivity of transmittance is enhanced with
increasing lg/2R (see electronic supplementary material, figure S11b). For cases with dφ > 0, we
note lg/2R = 1 and we see only weak variation of transmittance, since these structures must deform
primarily by planar stretching.

(c) Kirigami-based physically unclonable function
We close with an unusual application of kirigami for encoding information, inspired by the
fact that for a given configuration of cuts in a sheet, every choice of a loading axis ‘activates’
a distinct set of deformations anchored at different cuts (i.e. cuts with PR �= 0), each leading
to a distinct geometrical response. Such a system in principle can be employed to encrypt
information geometrically in a flat kirigamized sheet. Encoding information in such a system
involves a choice of the number of cuts (N), parameters associated with each cut (xi, yi, li and θi),
a loading axis, and an extensional strain γ . The resulting high-dimensional design space leads to
a rich nonlinear strain-dependent and possibly discontinuous shape response.

This observation allows us to use kirigami sheets that are easy to realize practically in creating
physically unclonable functions (PUFs), building on the notion that the inherent disorder in many
physical systems is a promising hardware route towards roots-of-trust cryptographic keys [20,21].
Specifically, a kirigami PUF is generated by activating/stretching a kirigamized sheet along a
loading axis up to a fixed nominal strain. The deformed sheet is then imaged with a camera
held at a fixed distance and orthogonal to the initial plane of the sheet, and a z-displacement
map is created for the deformed structure. We store this z-displacement map, i.e. |z| as a PUF
key. For future authentication, the user will need to know the cut configuration, loading axis
and the extensional strain to duplicate such a key. Figure 9a shows a planar kirigamized sheet
with disordered cuts, and figure 9b shows the greyscale z-displacement maps of the kirigami
structure for different strain values and a different choice of loading axis. Since we use a two-
dimensional z-displacement map as a PUF key, we rely on a measure of image similarity index to
match keys between different experiments. Here, we use the multiscale structural similarity index
function in MATLAB [22] to compare different keys. The index quantifies the luminance, contrast
and structure of several versions of the image at various scales, with its values ranging between
0 and 1 (1 being the highest possible match).

To demonstrate the effectiveness of kirigami as a PUF in a minimal setting, we keep the cut
configuration of the kirigamized sheet fixed and only vary the loading axis and the applied strain.
The versatility of the kirigami PUF is directly linked to the nonlinear geometric mechanics of
disordered kirigami, and our observations make it evident that kirigamized sheets will yield
a deterministic geometric mechanical response. Thus given complete information about all the
variables involved, the PUF key will be deterministic. In practice, having a large number of cuts
will make it very difficult to be reverse engineered by an adversary.

A robust PUF system will return significantly different (false) PUF keys if there exists a
mismatch between the loading axis and the applied strain that corresponds to the stored
(true) PUF key, because even a small variation in the loading axis by dθ results in a sharp decrease
in the key similarity as shown in figure 9c. As an example, setting a threshold value on the
similarity index to 0.9 will enable a robust response from this PUF system, and yet allows for
a margin of error in ±dθ . In figure 9d, we show that there is a similar robustness in the PUF
keys when the applied extensional strain is varied. Indeed, we see that kirigami-based PUF are
only effective when the strain is large enough for the structure to undergo substantial out-of-
plane deformation and corresponds to the plateau regime in the force–displacement curve. In the
vicinity of the strain corresponding to the stored key, a slight error in the applied strain does not
impact the PUF performance, while a significant deviation results in a poor match.
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Figure 9. A kirigami approach for geometric encryption. (a) A physically unclonable function (PUF) can be realized using
kirgamized sheets. For a given configuration of disordered cuts, loading axis and tensile strain, a unique three-dimensional
deformation is realized. The z-deformation map of the kirigamized structure is used as a PUF at a fixed γ and θ . (b) Examples
of PUF keys that can be realized using the kirigamized sheet in (a) for various strains γ and loading angle θ . The geodesics for
each of the cases overlaid on the cut pattern is also shown. (c) A change in the loading axis (large dθ ) results in PUF keys that are
quantitatively different due to the changing geometric mechanics of kirigamized sheets (highlighted red). A slight mismatch
(small dθ ) between the loading axis yields keyswhich showhigh similarity to the stored key (highlighted in green). (d) The PUF
keys are robust to small change in the strain (highlighted green), keeping the cut configuration and loading axis fixed, while a
large change in applied strain leads to significantly different PUF keys (highlighted in pink).

6. Discussion
Our study of ordered and disordered kirigami has shown how elementary geometric and
energetic concepts allow us to understand the three-dimensional structure and mechanical
response of kirigamized sheets. The general principles relating the mechanical response of such
sheets to their geometry, along with scaling arguments for all regimes of deformation, reduces
a complex nonlinear problem to a combination of simple geometrical constructions, potentially
easing the search for novel kirigami-based engineering solutions in instances such as grasping,
windowing and encoding information. We believe that these examples are just the beginning of
a different way of thinking about functional aspects of topological and geometrical mechanical
metamaterials.

Data accessibility. Code for our numerical simulations are available from the GitHub repository: https://github.
com/jeffersontide/kirigami2022.

The data are provided in electronic supplementary material [23].
Authors’ contributions. G.C. and L.N. contributed equally. G.C.: conceptualization, data curation, formal
analysis, investigation, methodology, software, validation, visualization, writing—original draft, writing—
review and editing; L.N.: conceptualization, data curation, formal analysis, investigation, methodology,
software, validation, visualization, writing—original draft, writing—review and editing; M.L.: formal
analysis, investigation; Q.H.: formal analysis, investigation; L.M.: conceptualization, formal analysis, funding
acquisition, investigation, methodology, project administration, supervision, validation, writing—original
draft, writing—review and editing.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 J

un
e 

20
23

 

https://github.com/jeffersontide/kirigami2022
https://github.com/jeffersontide/kirigami2022


17

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220822

..........................................................

All authors gave final approval for publication and agreed to be held accountable for the work performed
therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. The work was supported partially by NSF grant no. DMS-2006439 (M.L.), BioMatter DMR
1922321 (L.M.), MRSEC DMR 2011754 (L.M.), EFRI 1830901 (L.M.), the Simons Foundation (L.M.) and the
Seydoux Fund (L.M.), the NSF-Simons Center for Mathematical and Statistical Analysis of Biology at Harvard,
award no. 1764269 and the Harvard Quantitative Biology Initiative (L.N., L.M.).

References
1. Zhang Y et al. 2015 A mechanically driven form of kirigami as a route to 3D

mesostructures in micro/nanomembranes. Proc. Natl Acad. Sci. USA 112, 11 757–11 764.
(doi:10.1073/pnas.1515602112)

2. Blees MK et al. 2015 Graphene kirigami. Nature 524, 204–207. (doi:10.1038/nature14588)
3. Bertoldi K, Vitelli V, Christensen J, Van Hecke M. 2017 Flexible mechanical metamaterials.

Nat. Rev. Mater. 2, 1–11. (doi:10.1038/natrevmats.2017.66)
4. Rafsanjani A, Bertoldi K. 2017 Buckling-induced kirigami. Phys. Rev. Lett. 118, 084301.

(doi:10.1103/PhysRevLett.118.084301)
5. Moshe M, Esposito E, Shankar S, Bircan B, Cohen I, Nelson DR, Bowick MJ. 2019

Kirigami mechanics as stress relief by elastic charges. Phys. Rev. Lett. 122, 048001.
(doi:10.1103/PhysRevLett.122.048001)

6. Sadik S, Dias MA. 2021 On local kirigami mechanics I: isometric conical solutions. J. Mech.
Phys. Solids 151, 104370. (doi:10.1016/j.jmps.2021.104370)

7. Choi GPT, Dudte LH, Mahadevan L. 2019 Programming shape using kirigami tessellations.
Nat. Mater. 18, 999–1004. (doi:10.1038/s41563-019-0452-y)

8. Choi GPT, Dudte LH, Mahadevan L. 2021 Compact reconfigurable kirigami. Phys. Rev. Res. 3,
043030. (doi:10.1103/PhysRevResearch.3.043030)

9. Love AEH. 2013 A treatise on the mathematical theory of elasticity. Cambridge, UK: Cambridge
University Press.

10. Khoklov AR, Grosberg AY, Pande VS. 1994 Statistical physics of macromolecules, Vol. 1.
New York, NY: AIP Press.

11. Prager W. 1957 On ideal locking materials. Trans. Soc. Rheol. 1, 169–175. (doi:10.1122/1.548818)
12. Dias MA, McCarron MP, Rayneau-Kirkhope D, Hanakata PZ, Campbell DK, Park HS, Holmes

DP. 2017 Kirigami actuators. Soft Matter 13, 9087–9092. (doi:10.1039/C7SM01693J)
13. Isobe M, Okumura K. 2016 Initial rigid response and softening transition of highly stretchable

kirigami sheet materials. Sci. Rep. 6, 1–6. (doi:10.1038/srep24758)
14. Inglis CE. 1913 Stresses in a plate due to the presence of cracks and sharp corners. Trans. Inst.

Naval Archit. 55, 219–241.
15. Zehnder AT, Potdar YK. 1998 Williams meets von Karman: mode coupling and nonlinearity

in the fracture of thin plates. Int. J. Fract. 93, 409–429. (doi:10.1007/978-94-017-2854-6_21)
16. Han Q, Lewicka M, Mahadevan L. 2022 Isometric immersions with rectifiable geodesics.

Accepted, Rocky Mountain Journal of Mathematics.
17. Kawasaki T. 2005 Roses, origami & math. Tokyo: Japan Publications Trading.
18. Hong Y, Chi Y, Wu S, Li Y, Zhu Y, Yin J. 2022 Boundary curvature guided programmable

shape-morphing kirigami sheets. Nat. Commun. 13, 530. (doi:10.1038/s41467-022-28187-x)
19. Yang Y, Vella K, Holmes DP. 2021 Grasping with kirigami shells. Sci. Rob. 6, eabd6426.

(doi:10.1126/scirobotics.abd6426)
20. Pappu R, Recht B, Taylor J, Gershenfeld N. 2002 Physical one-way functions. Science 297,

2026–2030. (doi:10.1126/science.1074376)
21. Gao Y, Al-Sarawi SF, Abbott D. 2020 Physical unclonable functions. Nat. Electron. 3, 81–91.

(doi:10.1038/s41928-020-0372-5)
22. Wang Z, Simoncelli EP, Bovik AC. 2003 Multiscale structural similarity for image quality

assessment. In The 37th Asilomar Conf. on Signals, Systems & Computers, 2003, Pacific Grove,
CA, USA, vol. 2, pp. 1398–1402. IEEE.

23. Chaudhary G, Niu L, Han Q, Lewicka M, Mahadevan L. 2023 Geometric mechanics of ordered
and disordered kirigami. Figshare. (doi:10.6084/m9.figshare.c.6631833)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 J

un
e 

20
23

 

http://dx.doi.org/10.1073/pnas.1515602112
http://dx.doi.org/10.1038/nature14588
http://dx.doi.org/10.1038/natrevmats.2017.66
http://dx.doi.org/10.1103/PhysRevLett.118.084301
http://dx.doi.org/10.1103/PhysRevLett.122.048001
http://dx.doi.org/10.1016/j.jmps.2021.104370
http://dx.doi.org/10.1038/s41563-019-0452-y
http://dx.doi.org/10.1103/PhysRevResearch.3.043030
http://dx.doi.org/10.1122/1.548818
http://dx.doi.org/10.1039/C7SM01693J
http://dx.doi.org/10.1038/srep24758
http://dx.doi.org/10.1007/978-94-017-2854-6_21
http://dx.doi.org/10.1038/s41467-022-28187-x
http://dx.doi.org/10.1126/scirobotics.abd6426
http://dx.doi.org/10.1126/science.1074376
http://dx.doi.org/10.1038/s41928-020-0372-5
http://dx.doi.org/10.6084/m9.figshare.c.6631833

	Introduction
	Geometry and mechanics of a sheet with a single cut
	Geometry and mechanics of a sheet with multiple cuts
	Rectifying the geodesics and the flat-foldable kirigami
	Polygonal structure of the geodesics
	Geodesic rectification and flat foldability

	Functional kirigami structures
	Active and passive gripping
	Selective transmittance
	Kirigami-based physically unclonable function

	Discussion
	References

