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Effective multicellularity requires both cooperation
and competition between constituent cells.
Cooperation involves sacrificing individual fitness
in favour of that of the community, but excessive
cooperation makes the community susceptible to
senescence and ageing. Competition eliminates
unfit senescent cells via natural selection and thus
slows down ageing, but excessive competition
makes the community susceptible to cheaters, as
exemplified by cancer and cancer-like phenomena.
These observations suggest that an optimal level of
intercellular competition in a multicellular organism
maximizes organismal vitality by delaying the
inevitability of ageing. We quantify this idea using
a statistical mechanical framework that leads to
a generalized replicator dynamical system for the
population of cells that changes their vitality and
cooperation due to somatic mutations that make them
susceptible to ageing and/or cancer. By accounting
for the cost of cooperation and strength of competition
in a minimal setting, we show that our model predicts
an optimal value of competition that maximizes
vitality and delays the inevitability of senescence or
cancer. The results have implications for the design
of strategies aimed at delaying ageing in biological,
technical and social systems that exhibit similar
processes.
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1. Introduction
The evolution of multicellularity is linked to the advantages of collective physiology and
behaviour absent in unicellular life, which include, but are not limited to [1–4]: division of
labour, adaptation to varied environments, efficient use of resources, creation and maintenance of
extracellular environmental niches, the collective inhibition of cell proliferation and programmed
cell death. All these benefits of multicellular life require cooperation—the coordinated
orchestration of functions that are essential for the development and maintenance of a complex
organism. Cooperation, however, comes with a cost to individual cells that need to invest a part
of their resources into traits that contribute positively to organismal vitality but reduce individual
cell fitness [5–7].

Cooperation in multicellar organisms creates interdependence among cells, which in turn
leads to damage accumulation, gradual decay and ageing. Indeed, it has been shown that many
complex systems with multiple connected components (including both biologically evolved
organisms and artificially engineered systems) in general experience ageing as a result of the
interdependence between the components [8–13]. To ameliorate the consequences of degradation
induced by ageing in both evolved and engineered systems requires continuous maintenance and
repair. In multicellular organisms, a particular form of maintenance, controlled cell proliferation,
increases the risk of accumulating deleterious heritable somatic mutations that cause the
progressive decline of cellular function and, eventually, an irreversible arrest of cell growth, i.e.
cellular senescence [14–16]. The accumulation of senescent cells results in a progressive loss of
organismal vitality and a number of ageing-related pathologies [16,17].

In multicellular organisms with renewable tissues, senescent cells can be eliminated through
natural selection as a result of the reduced fitness of senescent cells compared with healthy
cells [5,16–20]. The resulting intercellular competition serves to increase organismic vitality at
a cost associated with proliferation-driven renewal. The potential for the breakdown of cellular
cooperation driven by excessive proliferation can lead to inappropriate cell survival, resource
monopolization, abnormal cell differentiation, or degradation of the extracellular environment,
which are considered hallmarks of cancer [2,21–24]. This is a form of cheating that emerges in a
competitive environment because uncooperative cancerous cells enjoy a higher fitness relative to
cooperative healthy cells and have an advantage in selection [5]. Then individually uncooperative
cells can thrive (transiently) in a competitive environment, with deleterious consequences for the
(long-term) collective vitality of the organism [25].

Thus intercellular competition in multicellular organisms is a double-edged sword: without
competition, multicellularity is susceptible to senescence, while too much competition can lead to
cheating and cancer or cancer-like phenomena [2,23]. Recently, an elegant study [14] builds on this
idea suggesting that senescence and cancer are an inevitable consequence of the dilemma posed
by competition that cannot be too weak or too strong, and spawned a series of commentaries
on the generality of the conclusions [26–28]. Some questions that naturally arise in this context
include the possibility of a minimal analytic framework that might help to uncover the essence of
the arguments, while also posing the problem of whether there is an optimal level of competition
that maximizes organismal vitality by controlling or delaying senescence without succumbing to
cancer?

Here, we attempt to answer this question in terms of an approach based on a probabilistic
master equation. We show that this leads to an analytically tractable mathematical model for
the dynamics of multicellular ageing in terms of a modified form of generalized replicator
dynamics. Our solvable model reveals the fundamental factors controlling the optimal level of
intercellular competition in terms of two parameters that characterize the base fitness and vitality
in the system. Our solution reveals the fundamental biophysical factors controlling the level of
intercellular competition and predict an optimal value of this parameter that maximizes system
vitality by delaying the inevitability of senescence or cancer. By providing a minimal statistical
mechanical framework for the study of the collective vitality of a system, our results may motivate
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Figure 1. Master equation for multicellular ageing. (a) Cell vigour v and cooperation c define a two-dimensional coordinate
system (v, c) of cell types. Progressive loss of vigour corresponds to cell senescence, while progressive loss of cooperation
corresponds to cancer. Thedynamics of thepopulationN(v, c, t) of cells of type (v, c) at time t aredescribed in termsof transition
rates between different states (v, c)→ (v′, c′). (b) The inset illustrates the different fluxes away from and into state (v, c): (i)
each cell type (v, c) proliferates with state-dependent rate f (v, c); (ii) mutations correspond to transitions that lower vigour
(v → v − 1, with rateμv ) or cooperation (c → c − 1, with rateμc).

the rational design of strategies for delaying ageing in biological, technical or social systems,
where processes similar to those considered here are at play.

2. Dynamics of multicellular ageing
To describe the dynamics of multicellular ageing, we use a master equation approach in the space
of cell types, as an equivalent to the Price equation formalism [29–31] (see appendix A for a master
equation formulation of the Price equation). Following a previous study [14], we classify cell types
in terms of two traits: vigour v and cooperation c. Vigour v is used as a general measure of cellular
resources or function, e.g. metabolic activity. Cooperation c describes the fraction of resources that
a cell devotes in activities that favour the functioning of the multicellular organism, including
controlling homeostasis or maintaining the extracellular infrastructure. Since it is measured in
terms of the fraction of the vigour, we expect it to be an intensive variable. Vigour and cooperation
define a coordinate system of discrete cell types (v, c); in the simplest setting, we assume that v

and c take discrete values in the range 0 ≤ v ≤ n and 0 ≤ c ≤ m (figure 1a) (a formulation using
continuous values of these variables does not lead to results that are qualitatively different—see
appendix C). Cells with high vigour (v = m) and high cooperation (c = m) are ‘healthy’ (h), cell
types that have lost vigour (v = 0) are ‘senescent’ (s), while cells with c = 0 are ‘cancerous’ (c) [14].
A fraction of cancer cells can undergo senescent transformations, leading to a group of cells in
state (v = 0, c = 0) that are both senescent and cancerous (b) [32]. Cells with intermediate values
of v and c represent types that are not fully degraded; this situation mimics the fact that multiple
mutations are necessary to induce senescence or cancer [33].

(a) Cell populations
To quantify the time evolution of the (average) population N(v, c, t) of cells in state (v, c) at time
t, we use a (mean field) master equation approach [34]. This captures spontaneous transitions
between states in the coordinate system (v, c). In our system, transitions occur as a result of two
effects (figure 1): (i) cell proliferation (i.e. intercellular competition) at a rate f (v, c) and (ii) somatic
mutations, which are permanent changes of cell genotype that lead to a gradual decline of vigour
or cooperation phenotypes. In the following, we shall use the terms fitness and competition
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interchangeably to denote the proliferation rate f (v, c). We consider somatic mutations that affect
only one of the two traits v or c in single steps with (state-dependent) rates μvv, respectively, μcc
[14], but note that our framework can in principle be generalized to account for more complex
transitions. Then the master equation describing the time evolution of N(v, c, t) is given by

∂N(v, c, t)
∂t

= f (v, c) N(v, c, t)

+ μv(v + 1) N(v + 1, c, t) − μv v N(v, c, t)

+ μc(c + 1) N(v, c + 1, t) − μc c N(v, c, t). (2.1)

The first term on the right-hand side of equation (2.1) describes the proliferation of N(v, c, t) with
growth rate f (v, c). The remaining terms in equation (2.1) describe the effect of somatic mutations
by means of reaction fluxes away from and into the different cell types, i.e. N(v, c, t) decreases due
to transitions v → v − 1 and c → c − 1; conversely, N(v, c, t) increases through transitions v + 1 →
v or c + 1 → c.

(b) Cell fractions
Since it is more useful to consider the dynamics of population fractions rather than the time
evolution of various cell populations, we define the fraction of cells in state (v, c) at time t as

ρ(v, c, t) = N(v, c, t)
N(t)

and N(t) =
∑
v,c

N(v, c, t), (2.2)

where N(t) is the total population of cells. We can then use equation (2.1) and derive a dynamic
equation for ρ(v, c, t) (see appendix A) as

∂ρ(v, c, t)
∂t

= (
f (v, c) − f (t)

)
ρ(v, c, t)

+ μv(v + 1) ρ(v + 1, c, t) − μv v ρ(v, c, t)

+ μc(c + 1) ρ(v, c + 1, t) − μc c ρ(v, c, t), (2.3a)

where

f (t) =
∑
v,c

f (v, c) ρ(v, c, t), (2.3b)

is the (time-dependent) average competition. Compared with equation (2.1), the key difference
of equation (2.3a) lies in the first line, which describes the effect of selection: cell types with f > f
will be enriched by selection (fitness is higher than average), while those with f < f will decrease
in frequency over time (fitness lower than average). Equation (2.3a) is thus an extension of the
replicator equation [35] that accounts for mutation fluxes changing cell type. Note that while the
master equation for cell populations (2.1) is linear, the equation for cell fractions (2.3a) is nonlinear.
Also note that the master equation is a deterministic equation describing the average population
or fraction of cells of a certain type, while v and c are stochastic variables, capturing stochasticity
in the appearance of mutations or in cell proliferation. Alternative methods commonly used in
population genetics include PDE-based approaches such as the Fokker–Planck formalism [36],
which follow from the master equation through Taylor-series expansion in v and c; here we stay
with the ME approach for generality.

We choose the mutation rates μv , μc to be linearly dependent on v and c respectively for
simplicity. This choice guarantees that in the absence of selection the average vigour v(t) =∑

v,c v ρ(v, c, t) ∝ e−μv t and cooperation c(t) = ∑
v,c c ρ(v, c, t) ∝ e−μct decay exponentially with rates

μv , respectively, μc, and naturally ensures that mutation transitions do not reduce v or c below
zero (boundary condition at v = 0, c = 0).
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Figure 2. Fitness (competition) landscape for different cell types. Senescent cells are non-competitive with f (0,m)= 0.
Healthy cells are moderately competitive with f (n,m)= f0(1 − k), while cancer cells are the most competitive species with
f (n, 0)= f0. In the model, it is important that ∂ f/∂v > 0 but ∂ f/∂c < 0, i.e. the fitness landscape is tilted in favour of
cancerous types. This condition ensures that loss of cooperation in the formof cheating corresponds to an advantage in selection.
Parameters: k = 0.3.

(c) Time evolution of cell fractions
To solve the master equation (2.3a), we need to specify a closure relation for f (v, c). This
procedure is analogous to path or contextual analysis of the Price equation [37], where fitness,
or other parameters entering the Price equation, are partitioned into separate causes through
regression equations [29–31]. In the simplest setting, we assume a linear relationship for f (v, c)
(corresponding to a one-term Taylor expansion) by imposing two minimal requirements: f should
increase with increasing v, and decrease with increasing c, i.e.

∂f
∂v

> 0,
∂f
∂c

< 0. (2.4)

In figure 2, we depict the relative fitness of the different cell types: senescent cells (s) have the
lowest fitness with f = 0, cancer cells (c) have the highest fitness f0, while healthy cells have
an intermediate fitness f = f0(1 − k), where k ∈ [0, 1] is the cost of cooperation. A linear fitness
function that satisfies these requirements can then be written as f (v, c) = f0k + fv v − fc c, where
fv = f0(1 − k)/n and fc = f0k/m, such that f (n, m) = f0(1 − k), f (n, 0) = f0, f (0, m) = 0 and f (0, 0) = f0k.
We see that cells that have higher vigour or invest a smaller fraction of their resources on
sustaining the organism have an advantage in selection compared with less vigorous or more
cooperative types.

With the simple choice in equation (2.4), the master equation (2.3a) can now be solved using
the method of generating functions [34] to obtain an exact analytical solution for the evolution of
the population fractions of cells. To solve equation (2.1), we introduce the generating function

C(z, y, t) =
∑
v,c

zvyc N(v, c, t), (2.5)

and note that

N(t) =
∑
v,c

N(v, c, t) = C(z, y, t)
∣∣
z=y=1 (2.6)

and

N(v, c, t) = 1
v! c!

∂v+c

∂zv∂yc C(z, y, t)
∣∣∣
z=y=0

. (2.7)
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First, we multiply both sides of equation (2.1) with zvyc and sum over v and c to yield a single
partial differential equation for the generating function C

∂C
∂t

= f0k C + [
μv(1 − z) + fv z

] ∂C
∂z

+ [
μc(1 − y) − fc y

] ∂C
∂y

. (2.8)

Then, we use the method of characteristics to solve equation (2.8) subject to the initial condition
that only healthy cells are present initially N(v, c, t = 0) = N0 δv,n δc,m, i.e.

C(z, y, t = 0) = N0 znym, (2.9)

yielding

C(z, y, t) = N0 e(fh−nμv−mμc)t

[
z + μv(1 − e(μv−fv )t)

fv − μv

]n [
y − μc(1 − e(μc+fc)t)

fc + μc

]m

, (2.10)

where fh = f0(1 − k). The total number of cells is obtained by evaluating C at z = y = 1 (see (2.6))

N(t) = C(z, y, t)
∣∣
z=y=1

= N0 e(fh−nμv−mμc)t

[
1 + μv(1 − e(μv−fv )t)

fv − μv

]n [
1 − μc(1 − e(μc+fc)t)

fc + μc

]m

. (2.11)

To find the number of cells of type (v, c), we take derivatives of C evaluated at z = y = 0 (see (2.7)),
yielding

N(v, c, t) = 1
v! c!

∂v+c

∂zv∂yc C(z, y, t)
∣∣∣
z=y=0

= N0 e(fh−nμv−mμc)t
(

n
v

)[
μv(1 − e(μv−fv )t)

fv − μv

]n−v (
m
c

)[
μc(e(μc+fc)t − 1)

fc + μc

]m−c

, (2.12)

where
(n
v

) = n!/[v!(n − v)!] is the binomial coefficient. Dividing (2.12) by (2.11), we obtain the
fraction of cells in state (v, c) as

ρ(t, v, c) = N(v, c, t)
N(t)

= Bin
(
v, n, pv(t)

)
Bin

(
c, m, pc(t)

)
. (2.13a)

Here, Bin(v, n, p) = (n
v

)
pv(1 − p)n−v denotes the binomial distribution and the functions pv(t) and

pc(t) are given by

pv(t) = fv − μv

fv − μv e−t/τv
(2.13b)

and

pc(t) = fc + μc

fc + μc et/τc
, (2.13c)

where τv = 1/(fv − μv) and τc = 1/(fc + μc) are the two natural timescales that control the
dynamics in our model. The analytical solution reveals that ρ(t, v, c) is the product of two
independent binomial distributions in vigour and cooperation spaces, with pv(t) and pc(t)
representing the (time-dependent) probabilities of cells having one unit of vigour or cooperation,
respectively.

Figure 3a illustrates the time evolution of the various cell fractions for n = m = 1. This
corresponds to a four-state model where cells can be in one of four states at time t = 0: healthy
(h, (v, c) = (1, 1)), senescent (s, (v, c) = (0, 1)), cancerous (c, (v, c) = (1, 0)), and both senescent and
cancerous (b, (v, c) = (0, 0)). We also assume that μv � μc capturing the observation that only about
one per cent of human genes contributes to cancer risk [38], so that μc/μv � 10−2.

The separation of timescales between senescence-causing and cancer-causing mutations
implied by μv � μc causes the resulting complex ageing dynamics to display two stages of
kinetics, as reflected by the distinct timescales controlling the time evolution of the probabilities
pv and pc (figure 3b). Initially, there is a phase of characteristic timescale τv where a build-up
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Figure 3. Dynamics of multicellular ageing. (a) Time evolution of fractions of healthy (h), senescent (s), cancerous (c) and
both senescent and cancerous (b) cells obtained as solution to the master equation (equation (2.3a)) for k = 0.3,μv = 10−3,
μc = 10−5, f0 = 0.004 andn= m= 1 (four-statemodel). Solid lines indicate thenumerical solution to equation (2.3a),while
dashed lines indicate the exact analytical solution (given by equation (2.13)) for initial conditions associated with (v, c)=
(1, 1), (0, 1), (1, 0), (0, 0) corresponding to the four-state model. (b) Time evolution of the probabilities pv (t) and pc(t), defined
in equation (2.13), and graphical representation of the timescales τv and t1/2.

of senescent cells is observed as a result of accumulation of senescence-causing mutations. In
this rapidly varying initial phase, a rapid pre-equilibrium is established between healthy and
senescent cells, with the fraction of healthy cells pre-equilibrating at pv(∞)n = [1 − μv/(kf0)]n and
the fraction of senescent cells approaching the maximal value [μv/(kf0)]n. This pre-equilibrium
reflects the interplay between selection kf0 and mutation forces μv ; stronger competition
eliminates senescent cells more effectively via natural selection hence increasing the pre-
equilibrium fraction of healthy cells. During this stage of dynamics, degradation events causing
cancer are negligible at leading order (i.e. pc � 1) and the fraction of cancerous cells stays
close to zero. After this rapid initial phase, the solution develops into a second, slower phase
(corresponding to the slow manifold [39]), where senescent cells are slowly removed by the
combined action of selection and cancer-causing mutations and the fraction of cancerous types
is seen to increase with time. Cancerous cells display sigmoidal kinetics, increasing slowly
initially then more rapidly and eventually reaching a plateau. At the end of this second phase
of dynamics, the fractions of healthy and senescent cells approach zero, while c and b cells
form an equilibrium with fractions [1 − μv/(kf0)]n and [μv/(kf0)]n, respectively. A measure of the
characteristic timescale of cancer development is given by the time needed for pc(t) to drop by a
factor of two (the half-life), yielding t1/2 = τc ln(2 + fc/μc), i.e. it is directly proportional to τc with a
logarithmic correction that depends on the ratio fc/μc. The half-life t1/2 increases with decreasing
fc or μc. In particular, for μc → 0, we find t1/2 → ∞, suggesting that in the absence of cancer-
causing mutations, intercellular competition is able to maintain the pre-equilibrium between
healthy and senescent cells indefinitely. In reality, for any value of μc > 0, however small, the final
(t → ∞) state of the system consists of an equilibrium between c and b cells and no healthy cells,
in line with the idea that above some threshold age, the mortality rate monotonically increases
with time [14].

(d) Organismal vitality, lifespan and optimal competition
With an understanding of the population dynamics using our master equation formalism, we
now turn to question the relative importance of the various ‘microscopic’ (cell-level) processes
and their contribution to ‘macroscopic’ (organism-level) observables, such as organismal vitality
and lifespan.
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To do so, a natural definition of a minimal model of average organismal vitality is the
population-weighted average [14]

V(t) ≡
∑
v,c

V(v, c) ρ(v, c, t), (2.14)

where V(v, c) describes the contribution of cell type (v, c) to the vitality of the whole organism.
Since vitality requires cells to be both vigorous and cooperative, a simple choice for V(v, c) is

V(v, c) = V0 v c, (2.15)

where vc measures the amount of resources devoted to cooperative activities and V0 is a pre-
factor that sets the units of vitality. This multiplicative choice is guided by the thought that for
a multicellular organism to be vital, we need cells to be both vigorous and cooperative. Since
the mean of the binomial distribution Bin(v, n, p) is v = np, for this choice of V(v, c), the average
vitality takes the simple form V(t) = V0 v(t) c(t) = V0 n m pv(t) pc(t).

Using the analytical solution for ρ(v, c, t) given by [2.13] we optimize V(T) with respect to
the strength of intercellular competition f0, for times T � 1/f0, 1/μv , i.e. much larger than the
timescales of proliferation and mutation (the dependence of the results on the choices of these
parameters is considered in appendix B). Figure 4a shows a plot of the average organismal vitality
V(T) at the observation time T = 3μ−1

v as a function of the cost of cooperation k and the strength
of competition f0. We see that V has a non-monotonic behaviour with f0. In figure 4b, we show the
distinct maximum of vitality as a function of the base level of competition characterized by f0 and
the cost of cooperation k, characterized by an optimal curve f �

0 (k) (see appendix B and figure 5 for
asymptotic analytical expressions for this optimal line f �

0 (k)). Inspection of figure 4b shows that
when k = 0 the optimal strength of competition diverges, i.e. f �

0 → ∞. This is intuitive since for
k = 0 there is no cost for cooperation. Cancer and healthy cells have therefore the same fitness,
which implies that cheating gives cancer cells no advantage in selection. As we increase the
cost of cooperation, k, the optimal competition f �

0 (k) gradually decays indicating that the system
cannot tolerate high levels of intercellular competition when the cost of cooperation becomes
large. Eventually, f �

0 (k) becomes zero at a critical value k = kcrit and then stays identically zero
for larger values k > kcrit. In this limit, the fitness of healthy cells is so low that any non-zero
amount of intercellular competition will result in a dominance of cancer. The critical kcrit depends
on a combination of the rates of mutation (see appendix B for the exact analytical expression
for kcrit). When μv/μc → 0 the critical kcrit → 0, while for μv/μc → ∞ we have kcrit → 1. When
μv/μc → 1 we find kcrit → 1/2. We note that the level of optimal competition also depends on the
rates of mutations causing senescence μv and cancer μc and on the observation time T (figure 6).
Increasing μv requires a higher optimal level of competition to counteract the stronger tendency
of senescent cell accumulation, while increasing μc causes f �

0 to decrease since the system is more
susceptible to cheating. Larger times T require a lower level of intercellular competition, reflecting
a balance between shorter-term advantage of cheating and longer-term detrimental effects of
cheating on organismal vitality.

The sensitivity of the value of the optimal competition is defined by the derivative of the
optimal line f �

0 (k) with respect to the cost of cooperation k, i.e. |∂f �
0 /∂k|. High sensitivity means

that optimal competition is easily affected by changes in k, i.e. small fluctuations in k will push
the system away from the optimum. By contrast, low sensitivity implies that optimal competition
is relatively insensitive to the choice of k, which facilitates a robust approach to the optimum. In
figure 4c, we show that to optimize vitality while maintaining low sensitivity a plausible solution
is to operate in the regime of low to moderate k, as this choice yields a robust strategy with
relatively high vitality.

To understand the dynamics of the populations as a function of the level of competition, we
note that in figure 4b, the optimal curve f �

0 (k) divides (k, f0)-space into two separate regions,
which we term the senescent region and the cancerous region. As shown in figure 4d, choosing
the parameters (k, f0) along the optimal curve (scenario O) delays the loss of organismal
vitality, corresponds to a balance between senescence cell accumulation and cancer proliferation.
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Figure 4. Organismal vitality and optimal competition. (a) Average organismal vitality V(T) at observation time T = 3μ−1
v

plotted against the cost of cooperation k and the strength of cellular competition f0. The solid line indicates the position of the
optimum line f �0 (k). The plot is obtained by numerical integration of equation (2.3a) using the same parameters as in figure 3a.
(b) Optimal competition f �0 (k) in terms of k (this corresponds to a top view of (a)). Points on the optimal line f �0 (k) (scenario
O) balance the accumulation of senescent cells and development of cancer. Points in the (k,f0)-diagram that deviate from the
optimal line (scenarios S and C) correspond to systems that are either dominated by senescence or cancer. The parameters for the
different scenarios are: k = 0.2, f0 = 0.004 (O), f0 = 0.02 (S) and f0 = 0.0004 (C). (c) Sensitivity of optimal conditions, defined
as |∂ f �0 /∂k|. The plot is obtained by numerically evaluating the derivative of the optimal line f �0 (k) of (b) along k. Regions of
low sensitivity facilitate a robust approach to optimal conditions. (d) Time evolution of average organismal vitality V(t) for the
scenarios O, S and C defined in (b). (e) Organismal lifespanτlife (defined asV(τlife)= Vc) as a function of strength of competition
f0. (f ) Healthspan τhealth (defined as τhealth = ∫ ∞

0 tV(t) dt/
∫ ∞
0 V(t) dt) as a function of the strength of competition f0. Both

were calculated using the same parameters as in (d) with Vc = 0.1 (g) Fractions of healthy, senescent and cancerous cell types
(h, s, c and b) corresponding to scenarios O (left), S (middle) and C (right). The optimal scenario O balances senescent cell
accumulation and cancer cell proliferation.
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Compared with this situation, when parameters are chosen in the senescent region (scenario S)
the loss of organismal vitality is dominated by accumulation of senescent cells (figure 4e), while
in the cancerous region (scenario C) loss of vitality is driven by the proliferation of cancer cells
(figure 4e).

In addition to determining the strength of intercellular competition that optimizes vitality,
we ask how organismal lifespan or healthspan depends on intercellular competition. A measure
of organismal lifespan may be defined as the time τlife at which organismal vitality falls
below a fixed threshold value Vc, i.e. V(t = τlife) = Vc. In figure 4f, we see that τlife displays a
maximum with strength of competition. An alternative possibility is to account for quality of
lifespan, e.g. the healthspan, via an integrated measure of vitality, which we define as τhealth =∫ ∞

0 t V(t) dt/
∫ ∞

0 V(t) dt (figure 4g), a quantity that characterizes the (scaled) first moment of the
average organismal vitality.

3. Discussion
In this study, we have proposed a model for ageing in terms of the dynamics of a multicellular
population characterized by its vigour and cooperation, and a fitness parameter that is a function
of these variables. Using a master-equation-based framework, we derived a replicator-like
dynamical equation accounting for fluxes due to mutations that lead to cancer and senescence.
Assuming a minimal closure relation for the fitness that is linear in the vigour and cooperation,
we are led to an analytic solution for the evolution of the relative fraction of healthy, senescent and
cancerous populations while accounting for the interplay between competition and cooperation.
Using our model and a simple choice of organismal vitality that is multiplicative in the vigour
and cooperation, we then probed the optimal level of intercellular competition that maximizes
organismal vitality, balancing the cost of cooperation and the strength of competition.

Our study shows that for multicellular ageing, too little competition is a losing strategy
because it leads to senescent cell accumulation. On the other hand, too much competition is also a
losing strategy because even if senescent cells are eliminated it leads to cheater-cell proliferation
in the long term. This is reminiscent of Parrondo’s paradox as highlighted in a commentary
[27], wherein periodic and stochastic switching between two losing strategies may lead to a
winning strategy [40–43]. This idea has been invoked in a range of biological systems to explain
adaptation in areas ranging from genetics to ecology [44–46]. Following the logic of Parrondo’s
paradox suggests that a potentially fruitful approach to delay multicellular ageing could combine
both (losing) strategies to achieve a fine balance that delays senescence and staves off cancer.
In this optimal scenario, competition is strategically reduced when cheater cells over-proliferate
and increased back when senescent cells over-accumulate. A similar strategy may be realized
with coexisting subpopulations of uncompetitive and competitive cells if the ratio between the
subpopulations is strategically changed in response to the changing environment.

Our framework may be extended in multiple ways. Effective multicellularity not only requires
cooperation between cells, but also mechanisms for suppressing conflict that result from it. This
effect may be accounted for by introducing a feedback between strength of competition and the
current system state. To investigate the impact of drugs that clear senescent or cancer cells [47],
we can envisage coupling the master replicator equation with dynamic equations for an inhibitor
that removes deleterious cell types. Generalizing our results could thus provide a framework for
interrogating the effect of strategies to combat ageing and cancer dynamics and how to optimize
them. Furthermore, our model considers detrimental mutations reducing vigour or cooperation
as irreversible. Even though proliferation arrest in senescence cells is essentially irreversible,
certain biological manipulations, including inactivation of specific tumour suppressor genes, can
reverse senescence [48]. The latter scenario could be studied by making transitions between cell
types in our model reversible, and more generally by including separate dynamic equations
modelling changes of v and c over evolutionary timescales to model the effect of tumour
suppressor genes. While we have limited ourselves here to the balance between cooperation
and competition during the later stages of life associated with ageing, similar questions arise
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during the developmental stages of organisms when proliferation rates of cells are high and thus
susceptible to mutational errors [49]. Understanding the dynamic regulation (and misregulation)
of intercellular competition in early development might also be amenable to our approach.

Although we have limited ourselves to studying the role of discrete mutations, it is not hard to
generalize our framework to the case of continuously varying vigour and cooperation. This leads
to a Boltzmann-like equation for the dynamics of cellular populations (see appendix C). Finally,
it is worth noting the natural appearance of extensive variables such as vigour (and vitality) and
intensive variables such as cooperation (and competition), suggesting natural analogies to (non-
equilibrium) thermodynamics. The relation between these variables and various forms of closure
relations will be explored in a separate study.
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Appendix A. Master-equation formalism for the Price equation
In this appendix, we first derive the Price equation [29,30] from a master equation perspective
[34]. This formalism will provide the basis for deriving, in appendix A(d), the master equation of
multicellular ageing (equations (2.1) and (2.3a) of the main text).

(a) Kinetic equation for cell populations
Consider a system of cell types described by the multi-index

i = (i1, i2, . . . , in),

in an n-dimensional coordinate system. For instance, in our model of multicellular ageing, we
set i = (v, c) where v is cell vigour and c is cell cooperation, see appendix A(d). Let N(i, t) be the
number of cells of type i at time t. N(i, t) evolves in time as a result of two effects: (i) growth and
(ii) somatic mutations.

— Growth. We define the relative growth probability per developmental time step �t of the
population of cells of type i as

w(i) = N(i, t + �t)
N(i, t)

. (A 1)

As we will quantify, differences in growth rates are the basis of selection: the species that
grow faster have an advantage during selection over the species that grow more slowly
[29,30].

— Somatic mutations. In addition to growth, individual cell populations are subject to
somatic mutations. These are permanent changes of cell type, i.e. changes of i to some
other type j. We let π (j → i) be the probability of a mutation that switches type from j to i
in time step �t.
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Then the dynamics of N(i, t) are given by combining the effects of growth and selection and is
given by

N(i, t + �t) = w(i) N(i, t) +
∑
j �=i

π (j → i) N(j, t) −
∑
j �=i

π (i → j) N(i, t). (A 2)

This equation can be re-written as

N(i, t + �t) − N(i, t) = (
w(i) − 1

)
N(i, t) +

∑
j

[π (j → i) N(j, t) − π (i → j) N(i, t)]. (A 3)

We now take the continuum-time limit in (A 3) by letting �t → 0 and using

N(i, t + �t) − N(i, t) � ∂N(i, t)
∂t

�t.

This yields a master equation (with continuous time) for the populations of cells in state i

∂N(i, t)
∂t

= f (i) N(i, t)

+
∑

j

[μ(j → i) N(j, t) − μ(i → j) N(i, t)], (A 4a)

where

f (i) = lim
�t→0

w(i) − 1
�t

, (A 4b)

is the growth rate and

μ(j → i) = lim
�t→0

π (j → i)

�t
, (A 4c)

is the rate of mutation. The first term in (A 4) describes the (exponential) growth of the population
of cell type i with growth rate f (i); the second term in (A 4) describes mutations of type i into any
other type j, while the third term in (A 4) describes the increase of population of type i as a result
of mutations from any type j into i.

(b) Kinetic equations for fractions
We now consider the dynamics of the fraction of cells of type i, which is defined as

ρ(i, t) = N(i, t)
N(t)

, (A 5a)

where

N(t) =
∑

i

N(i, t), (A 5b)

is the total population.
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(i) Dynamics of total population

To obtain a dynamical equation for N(t), we sum (A 4) over i, yielding

dN(t)
dt

=
∑

i

∂N(i, t)
∂t

=
∑

i

f (i) N(i, t) +
∑

i,j

[μ(j → i) N(j, t) − μ(i → j) N(i, t)]

=
⎛
⎝∑

i

f (i) ρ(i, t)

⎞
⎠ N(t) +

∑
i,j

[μ(j → i) ρ(j, t) − μ(i → j) ρ(i, t)]

︸ ︷︷ ︸
=0

N(t)

=
⎛
⎝∑

i

f (i) ρ(i, t)

⎞
⎠ N(t). (A 6)

Thus,
dN(t)

dt
= f (t) N(t), (A 7)

where
f (t) =

∑
i

f (i) ρ(i, t), (A 8)

is the average growth rate (of the population), i.e. the total number of cells grows according to the
average growth rate.

(ii) Dynamics of cell fractions

The dynamic equations for the fractions ρ(i, t) are obtained from (A 5) by applying the chain rule
for derivatives

∂ρ(i, t)
∂t

= 1
N(t)

∂N(i, t)
∂t

− N(i, t)
N(t)2

dN(t)
dt

. (A 9)

Together with (A 4) and (A 7), this yields

∂ρ(i, t)
∂t

=
selection (competition)︷ ︸︸ ︷(

f (i) − f (t)
)
ρ(i, t) +

somatic mutations︷ ︸︸ ︷∑
j

[μ(j → i) ρ(j, t) − μ(i → j) ρ(i, t)] . (A 10)

(A 10) has two contributions. The first term in (A 10) describes the effect of selection: cell types
that with growth rate faster than the average (f (i) > f ) will be selected over many generations,
while slowly reproducing types will be left behind. The second contribution to (A 10) describes
the effect of somatic mutations, which is captured by means of reaction fluxes into and away from
the population of type i.

(iii) Conservation of total fraction

We note that

d
dt

⎛
⎝∑

i

ρ(i, t)

⎞
⎠ =

∑
i

∂ρ(i, t)
∂t

=
∑

i

(
f (i) − f (t)

)
ρ(i, t) +

∑
i,j

[μ(j → i) ρ(j, t) − μ(i → j) ρ(i, t)]

= 0, (A 11)
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which corresponds to the conservation law∑
i

ρ(i, t) = 1. (A 12)

(c) Price equation
We now derive the Price equation from (A 10). The Price equation is a dynamical equation for the
average of some trait z(i) of the population. The mean trait is defined as

z(t) =
∑

i

z(i)ρ(i, t). (A 13)

A dynamic equation for z can be obtained by multiplying (A 10) by z(i) on both sides and
summing over all possible cell types i, yielding

dz(t)
dt

=
∑

i

z(i)
dρ(i, t)

dt
=

∑
i

z(i)f (i)ρ(i, t) − z(t)f (t)

+
∑

i,j

z(i)μ(j → i)ρ(j, t) −
∑

i,j

z(i)μ(i → j)ρ(i, t). (A 14)

After swapping indices i and j in the double-sums, we find

dz(t)
dt

=
∑

i

z(i)f (i)ρ(i, t) − z(t)f (t) +
∑

i

ρ(i, t)
∑

j

[z(j) − z(i)]μ(i → j). (A 15)

The first two terms can be recognized as the covariance
∑

i z(i)f (i)ρ(i, t) − z(t)f (t) = cov(z, f ), such
that we arrive at the Price equation

dz(t)
dt

= cov(z, f ) + �z(t), (A 16a)

where

�z(i) =
∑

j

[z(j) − z(i)]μ(i → j)

= μ

⎛
⎜⎝∑

j

z(j)
μ(i → j)

μ
− z(i)

⎞
⎟⎠ , (A 16b)

with μ = ∑
j μ(i → j). The term �z(i) has an intuitive interpretation: it is the difference between

the value of z for type i and the average of other species weighted over the mutation distribution.
Thus the Price equation (A 16) describes the time evolution of the average value of z as a result of
natural selection (first term, covariance term) and mutations (second term), derived from a master
equation formalism.

(d) Master-equation for multicellular ageing
We now apply the formalism of appendix A(a)–(c) to construct a master equation description of
multicellular ageing. We describe cell types by means of two traits, vigour v and cooperation c,
which define a two-dimensional coordinate system

i = (v, c).

As discussed in [14], we assume that somatic mutations affect only one cellular trait at a time and
in a single step, either vigour with rate μv(v) or cooperation with rate μc(c).
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(i) Cell populations

Using (A 4), we obtain the following master equation for cell populations:

∂N(v, c, t)
∂t

= f (v, c) N(v, c, t)

+ μv(v + 1)N(v + 1, c, t) − μv(v)N(v, c, t)

+ μc(c + 1)N(v, c + 1, t) − μc(c)N(t, v, c). (A 17)

This is equation (2.1) of the main text.

(ii) Cell fractions

Using (A 10), we obtain the following master equation for cell fractions:

∂ρ(v, c, t)
∂t

= (
f (v, c) − f (t)

)
ρ(v, c, t)

+ μv(v + 1)ρ(v + 1, c, t) − μv(v)ρ(v, c, t)

+ μc(c + 1)ρ(v, c + 1, t) − μc(c)ρ(v, c, t), (A 18a)

where
f (t) =

∑
v,c

f (v, c) ρ(v, c, t), (A 18b)

is the average competition. This is equation (2.3a) of the main text.

Appendix B. Optimal competition
Here, we derive asymptotic analytical expressions for the optimal competition f �

0 (k). We will focus
on two limits: (i) k → 0 and (ii) f �

0 → 0, which occurs at a critical k → kcrit (figure 5).

(a) Limit k → 0
Consider the average vitality

V(t) = V0 n m pv(t)pc(t), (B 1)

as derived in the main text. In the limit of large observation times T � τv , the function pv(t) has
pre-equilibrated to 1 − μv/fv . Moreover, for μv � μc, we neglect terms proportional to μc in front
of fc. This yields

V(T) = V0 n m k
(1 − k)

(fv − μv)(
fc + μc efcT

) , (B 2)

where T is the observation time. We maximize (B 2) with respect to f0

0 = ∂ V(T)
∂f0

= V0 n m k
(1 − k)

(
kμv + μc ef0kT[

(1 − k)(kf0T − 1) − μvkT
])

(
f0k + μc ef0kT

)2 . (B 3)

This yields the optimal strength of competition as

f �
0 = 1

kT
+ μv

1 − k
+ W(z)

kT
and z = e−1−(μvkT/(1−k))kμv

(1 − k)μc
, (B 4)

where W(z) is the Lambert W-function, defined by z = WeW . In the limit t → ∞, we obtain

lim
T→∞

f �
0 = μv

1 − k
.
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Figure 5. Optimal competition with varyingμv ,μc and T . The figure shows how the optimal competition line f �0 (k) changes
with varying (a) the rate of senescence-causing mutations μv , (b) the rate of cancer-causing mutations μc and (c) the
observation time T .

(b) Limit k → kcrit
As k → kcrit, the optimal competition f �

0 approaches zero. To capture this behaviour, we consider
the leading order terms in the Taylor expansion of V(T) at f0 = 0 and yields

V(T) = A + B f0 + C
2

f 2
0 + higher-order terms. (B 5)

Maximization of V(T) with respect to f0 yields

0 = ∂ V(T)
∂f0

= B + C f0 ⇒ f �
0 =−A

B
. (B 6)

An optimum f �
0 > 0 exists when A > 0, which occurs for k > kcrit where

kcrit = 1
1 + ((μvμcT − μv(1 − e−μcT))/(μvμcT − μc(1 − e−μvT)))

. (B 7)

For k < kcrit, the optimum is f �
0 = 0.

Appendix C. Continuum limit and the Boltzmann transport equation

(a) Continuum limit
In the limit when the variables v and c vary continuously, we replace finite differences in (2.3a) by
derivatives. In particular, for a smooth function φ(v, c, t)

φ(v + dv, c, t) − φ(v, c, t) � ∂φ(v, c, t)
∂v

dv (C 1a)
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Figure 6. Solution to continuous master equation. The figure shows snapshots of the solution N(v, c, t) of the continuous
master equation (C 3) with initial profile N0(v, c)= N0 tanh((v − v0)/w) tanh((c − c0)/w). The parameters are: μv =
10−3,μc = 5 × 10−4, f0 = 10−3, k = 0.6, n= m= 1, N0 = 1, v0 = c0 = 0.9,w = 0.01.

and
φ(v, c + dc, t) − φ(v, c, t) � ∂φ(v, c, t)

∂c
dc. (C 1b)

We can thus reformulate equation (2.1) and (2.3a) as partial differential equations.

(i) Continuous master equation for cell populations

For cell populations, N(t, v, c), this procedure yields

∂N(v, c, t)
∂t

= f (v, c) N(v, c, t) + ∂

∂v

(
μv(v) N(v, c, t)

) + ∂

∂c

(
μc(c) N(v, c, t)

)
. (C 2)

This can be written as
∂N
∂t

+ ∇ ·(u N
) = f N, (C 3)

where u = (−μv(v), −μc(c)) is a velocity vector in (v, c)-space and ∇ = (∂v , ∂c).
The solution to the continuous master equation (C 3) can be obtained using the method of

characteristics. For an initial distribution N(v, c, t = 0) = N0(v, c) the solution is

N(v, c, t) = N0
(
v eμv t, c eμc t) e(f0 k+μv+μc)t exp

[
v fv

(
eμvt − 1

)
μv

− c fc
(
eμct − 1

)
μc

]
. (C 4)

This solution is shown in figure 6 and resembles a moving front in the v- and c-directions.
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(ii) Continuous master equation for cell fractions

Introducing the total number of cells as

N(t) =
∫

N(v, c, t) dv dc, (C 5)

we find the evolution equation

dN(t)
dt

= f (t) N(t), (C 6)

where the average competition is

f (t) =
∫

f (v, c) ρ(v, c, t) dv dc. (C 7)

The equation for the cell fractions ρ(v, c, t) = N(v, c, t)/N(t) follows from applying the chain rule
for derivatives

∂ρ(v, c, t)
∂t

= 1
N(t)

∂N(v, c, t)
∂t

− N(v, c, t)
N(t)2

dN(t)
dt

, (C 8)

and combining (C 2) with (C 6), yielding:

∂ρ

∂t
− ∂(μv ρ)

∂v
− ∂(μc ρ)

∂c
= (

f − f (t)
)
ρ . (C 9)

Not surprisingly, (C 9) is analogous to the Boltzmann transport equation (BTE)

∂ρ

∂t
+ ∇ ·(u ρ

) = (∂tρ)coll, (C 10)

and suggests an analogy with kinetic gas theory. The left-hand side of (C 9) describes the evolution
of a probability density due to mutational flows. The right-hand side of (C 9) is the ‘collision’
integral that characterizes changes due to interactions and is given by

(∂tρ)coll =
∫ (

f (v, c) − f (v′, c′)
)
ρ(v, c, t) ρ(v′, c′, t) dv′dc′. (C 11)

In kinetic gas theory, this term captures the forces due to particle collisions. In the context of
multicellular ageing, the collision integral describes the effect of selection: cell types with low
competition are ‘displaced’ by more competitive cell types who eventually take over the entire
system. These two driving forces associated with selection and mutation correspond to the direct
and inertial forces pointed out by Frank [30]. In particular, direct forces (collision forces) are
proportional to f (v, c) − f (t), which in the literature is known as Fisher’s excess of fitness [30].

(b) Continuous Price equation
We now consider the continuous analogue of the Price equation in the hydrodynamic limit treated
above. We first define the average of any quantity Φ(v, c)

Φ(t) =
∫

Φ(v, c) ρ(v, c, t) dv dc. (C 12)

The time evolution of Φ(v, c) can be obtained by differentiating (C 12) and combining it with the
BTE, (C 9), a procedure that is analogous to obtaining the equations of hydrodynamics from the
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BTE in kinetic theory. We have
dΦ

dt
=

∫
Φ

∂ρ

∂t
dv dc. (C 13)

Inserting the evolution equation for ρ, (C 9), yields using integration by parts

dΦ

dt
=

∫
Φ

(
f − f

)
ρ dv dc +

∫
Φ ∇ ·(u ρ

)
dv dc

=
∫

Φ f ρ dv dc − f
∫

Φ ρ dv dc −
∫

∇Φ · u ρ dv dc

= Φ f − Φ f + ∇Φ · u. (C 14)

Thus the continuum version of the Price equation (A 16) reads

dΦ

dt
= Φ f − Φ f︸ ︷︷ ︸

covariance

+ ∇Φ · u︸ ︷︷ ︸
mutations

= cov(Φ, f ) + ∇Φ · u. (C 15)

This allows us to write the dynamic equations for v, c and f as

dv

dt
= v f − v f − μv v, (C 16)

dc
dt

= c f − c f − μc c (C 17)

and
df
dt

= f 2 − f
2 + u · ∇f . (C 18)
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