Physiology

Understanding how living systems work opens a window into how life harnesses and controls physical and chemical processes to achieve biological function. A comparative view of function across species and genera is often suggestive of optimal ways of processing energy and information at the molecular, cellular, organ and organismal level. Of particular interest are questions associated with the physiology, ethology and evolution of autonomous movement. We are also interested in the breakdown of normal physiology associated with diseases, e.g. sickle cell anemia.

Molecules and Cells

How can we make sense of biomacromolecular structure, dynamics and cellular function in light of the ability to image and manipulate them? How can we construct effective theories for cellular sensing, motility and behavior that do not drown in molecular details, and are yet are experimentally testable (and falsifiable)? We have explored simple aspects of these questions in such instances as a framework for dynamic instability of microtubules, immunological synapse patterning, cell spreading, cell motion and navigation etc.