Dynamic morphoskeletons in development

Morphogenetic flows in developmental biology are characterized by the coordinated motion of thousands of cells that organize into tissues, naturally raising the question of how this collective organization arises. Using only the kinematics of tissue deformation, which naturally integrates local and global mechanisms along cell paths, we identify the dynamic morphoskeletons behind morphogenesis, i.e., the evolving centerpieces of multicellular trajectory patterns. These features are model- and parameter-free, frame-invariant, and robust to measurement errors and can be computed from unfiltered cell-velocity data. We reveal the spatial attractors and repellers of the embryo by quantifying its Lagrangian deformation, information that is inaccessible to simple trajectory inspection or Eulerian methods that are local and typically frame-dependent. Computing these dynamic morphoskeletons in wild-type and mutant chick and fly embryos, we find that they capture the early footprint of known morphogenetic features, reveal new ones, and quantitatively distinguish between different phenotypes.

Life from chaos

Researchers use geometry and dynamics to better understand tissue organization.

A better understanding of soft artificial muscles

Research sheds light on the underlying mechanics of soft filaments

Computational analysis of size, shape and structure of insect wings

The size, shape and structure of insect wings are intimately linked to their ability to fly. However, there are few systematic studies of the variability of the natural patterns in wing morphology across insects. We have assembled a dataset of 789 insect wings with representatives from 25 families and performed a comprehensive computational analysis of their morphology using topological and geometric notions in terms of (i) wing size and contour shape, (ii) vein topology, and (iii) shape and distribution of wing membrane domains. These morphospaces are complementary to existing methods for quantitatively characterizing wing morphology and are likely to be useful for investigating wing function and evolution. This Methods and Techniques paper is accompanied by a set of computational tools for open use.

Shape-shifting structured lattices via multimaterial 4D printing

Thin shape-shifting structures are often limited in their ability to morph into complex and doubly curved shapes. Such transformations require both large in-plane expansion or contraction gradients and control over extrinsic curvature, which are hard to achieve with single materials arranged in simple architectures. We solve this problem by 4-dimensional printing of multiple materials in heterogeneous lattice designs. Our material system provides a platform that achieves in-plane growth and out-of-plane curvature control for 4-material bilayer ribs. The lattice design converts this into large growth gradients, which lead to complex, predictable 3-dimensional (3D) shape changes. We demonstrate this approach with a hemispherical antenna that shifts resonant frequency as it changes shape and a flat lattice that transforms into a 3D human face.

Size control of the inner ear via hydraulic feedback

Animals make organs of precise size, shape, and symmetry but how developing embryos do this is largely unknown. Here, we combine quantitative imaging, physical theory, and physiological measurement of hydrostatic pressure and fluid transport in zebrafish to study size control of the developing inner ear. We find that fluid accumulation creates hydrostatic pressure in the lumen leading to stress in the epithelium and expansion of the otic vesicle. Pressure, in turn, inhibits fluid transport into the lumen. This negative feedback loop between pressure and transport allows the otic vesicle to change growth rate to control natural or experimentally-induced size variation. Spatiotemporal patterning of contractility modulates pressure-driven strain for regional tissue thinning. Our work connects molecular-driven mechanisms, such as osmotic pressure driven strain and actomyosin tension, to the regulation of tissue morphogenesis via hydraulic feedback to ensure robust control of organ size.

Deterministic and stochastic control of kirigami topology

Kirigami, the creative art of paper cutting, is a promising paradigm for mechanical meta-materials. However, to make this a reality requires controlling the topology of kirigami to achieve connectivity and rigidity. We address this question by deriving the maximum number of cuts (minimum number of links) that still allow us to preserve global rigidity and connectivity of the kirigami. This leads to a deterministic hierarchical construction method that yields an efficient topological way to control both the number of connected pieces (T) and the total degrees of freedom (DoF). We then turn to a statistical approach to the question by studying the rigidity and connectivity of kirigami with random cuts, and find that both the T and DoF can be exquisitely controlled by the density of cuts (links) in the neighborhood of percolation transitions in the connectivity and rigidity. All together, our work provides a general framework for the topological and statistical control of rigidity and connectivity in planar kirigami.

Topology, geometry and mechanics of strongly stretched and twisted filaments

Soft elastic filaments that can be stretched, bent, and twisted exhibit a range of topologically and geometrically complex morphologies. Recently, a number of experiments have shown how to use these building blocks to create filament-based artificial muscles that use the conversion of writhe to extension or contraction, exposing the connection between topology, geometry, and mechanics. Here, we combine numerical simulations of soft elastic filaments that account for geometric nonlinearities and self-contact to map out the basic structures underlying artificial muscle fibers in a phase diagram that is a function of the extension and twist density. We then use ideas from computational topology to track the interconversion of link, twist, and writhe in these geometrically complex physical structures to explain the physical principles underlying artificial muscle fibers and provide guidelines for their design.

Controlled gliding and perching through deep-reinforcement-learning

Controlled gliding is one of the most energetically efficient modes of transportation for natural and human powered fliers. Here we demonstrate that gliding and landing strategies with different optimality criteria can be identified through deep-reinforcement-learning without explicit knowledge of the underlying physics. We combine a two-dimensional model of a controlled elliptical body with deep-reinforcement-learning (D-RL) to achieve gliding with either minimum energy expenditure, or fastest time of arrival, at a predetermined location. In both cases the gliding trajectories are smooth, although energy/time optimal strategies are distinguished by small/high frequency actuations. We examine the effects of the ellipse’s shape and weight on the optimal policies for controlled gliding. We find that the model-free reinforcement learning leads to more robust gliding than model-based optimal control strategies with a modest additional computational cost. We also demonstrate that the gliders with D-RL can generalize their strategies to reach the target location from previously unseen starting positions. The model-free character and robustness of D-RL suggests a promising framework for developing robotic devices capable of exploiting complex flow environments.

Genetic and Mechanical Regulation of Intestinal Smooth Muscle Development

The gastrointestinal tract is enveloped by concentric and orthogonally aligned layers of smooth muscle; however, an understanding of the mechanisms by which these muscles become patterned and aligned in the embryo has been lacking. We find that Hedgehog acts through Bmp to delineate the position of the circumferentially oriented inner muscle layer, whereas localized Bmp inhibition is critical for allowing formation of the later-forming, longitudinally oriented outer layer. Because the layers form at different developmental stages, the muscle cells are exposed to unique mechanical stimuli that direct their alignments. Differential growth within the early gut tube generates residual strains that orient the first layer circumferentially, and when formed, the spontaneous contractions of this layer align the second layer longitudinally. Our data link morphogen-based patterning to mechanically controlled smooth muscle cell alignment and provide a mechanistic context for potentially understanding smooth muscle organization in a wide variety of tubular organs.